9.8: THE POWER OF A TEST

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "9.8: THE POWER OF A TEST"

Transcription

1 9.8: The Power of a Test CD : THE POWER OF A TEST I the iitial discussio of statistical hypothesis testig, the two types of risks that are take whe decisios are made about populatio parameters based oly o sample evidece were defied. Recall from sectio 9.1 that represets the probability that the ull hypothesis is rejected whe i fact it is true ad should ot be rejected, ad represets the probability that the ull hypothesis is ot rejected whe i fact it is false ad should be rejected. The power of the test, which is 1 (that is, the complemet of ), idicates the sesitivity of the statistical test i detectig chages that have occurred by measurig the probability of rejectig the ull hypothesis whe i fact it is false ad should be rejected. The power of the statistical test depeds o how differet the actual populatio mea really is from the value beig hypothesized (uder H 0 ), the value of used, ad the sample size. If there is a large differece betwee the actual populatio mea ad the hypothesized mea, the power of the test will be much greater tha if the differece betwee the actual populatio mea ad the hypothesized mea is small. Selectig a larger value of makes it easier to reject H 0 ad therefore icreases the power of a test. Icreasig the sample size icreases the precisio i the estimates ad therefore icreases the ability to detect differeces i the parameters ad icreases the power of a test. I this sectio, the cereal-box-fillig process is examied i order to further develop the cocept of the power of a statistical test. Suppose that the fillig process is subject to periodic ispectio from a represetative of the local office of cosumer affairs. It is this represetative s job to detect the possible short weightig of boxes, a situatio i which cereal boxes are sold at less tha the specified 368 grams. Thus, the represetative is iterested i determiig whether there is evidece that the cereal boxes have a average amout that is less tha 368 grams. The ull ad alterative hypotheses are set up as follows: H 0 :µ 368 (fillig process is workig properly) H 1 : µ < 368 (fillig process is ot workig properly) The represetative of the office of cosumer affairs is willig to accept the compay s claim that the stadard deviatio over the etire packagig process is equal to grams. Therefore, the test is appropriate. If the level of sigificace of 0.05 is selected ad a radom sample of boxes is obtaied, the value of that eables you to reject the ull hypothesis is foud from Equatio (9.1) as follows with used i place of : L L µ L µ L µ + Because this is a oe-tail test with a level of sigificace of 0.05, the value of equal to stadard deviatios below the hypothesized mea is obtaied from Table E.2 (see Figure 9.27). Therefore, L ( ) ( )

2 CD9-2 CD MATERIAL L µ FIGURE 9.27 Determiig the lower critical value for a oe-tail test for a populatio mea at the 0.05 level of sigificace Regio of Rejectio L Regio of Norejectio The decisio rule for this oe-tail test is Reject H0 if < ; otherwise do ot reject H. The decisio rule states that if a radom sample of boxes reveals a sample mea of less tha grams, the ull hypothesis is rejected, ad the represetative cocludes that the process is ot workig properly. The power of the test measures the probability of cocludig that the process is ot workig properly for differig values of the true populatio mea. Suppose that you wat to determie the chace of rejectig the ull hypothesis whe the populatio mea is actually 360 grams. O the basis of the decisio rule, the probability or area uder the ormal curve below grams eeds to be determied. From the cetral limit theorem ad the assumptio of ormality i the populatio, you ca assume that the samplig distributio of the mea follows a ormal distributio. Therefore, the area uder the ormal curve below grams ca be expressed i stadard deviatio uits, because you are fidig the probability of rejectig the ull hypothesis whe the true populatio mea has shifted to 360 grams. Usig Equatio (9.1), 0 where µ 1 is the actual populatio mea. Thus, µ From Table E.2, there is a 84.61% chace of observig a value less tha This is the power of the test or area below (see Figure 9.28). The probability ( ) that the ull hypothesis (µ 368) will ot be rejected is Thus, the probability of committig a Type II error is.39%.

3 9.8: The Power of a Test CD9-3 Power.8461 FIGURE 9.28 Determiig the power of the test ad the probability of a Type II error whe µ grams.39 µ L Now that the power of the test if the populatio mea were really equal to 360 has bee determied, the power for ay other value that µ could attai ca be calculated. For example, what is the power of the test if the populatio mea is equal to 352 grams? Assumig the same stadard deviatio, sample size, ad level of sigificace, the decisio rule is Reject H 0 if < ; otherwise do ot reject H 0. Oce agai, because you are testig a hypothesis for a mea, from Equatio (9.1) If the populatio mea shifts dow to 352 grams (see Figure 9.29), the µ From Table E.2, there is a % chace of observig a value less tha This is the power of the test or area below The probability ( ) that the ull hypothesis (µ 368) will ot be rejected is Thus, the probability of committig a Type II error is oly 0.011%. Power FIGURE 9.29 Determiig the power of the test ad the probability of a Type II error whe µ grams µ L I the precedig two cases the power of the test was quite high, whereas, coversely, the chace of committig a Type II error was quite low. I the ext example, the power of the test is computed for the case i which the populatio mea is really equal to 367 grams a value that is very close to the hypothesized mea of 368 grams.

4 CD9-4 CD MATERIAL Oce agai, from Equatio (9.1), µ 1 If the populatio mea is really equal to 367 grams (see Figure 9.30), the Power FIGURE 9.30 Determiig the power of the test ad the probability of a Type II error whe µ grams L µ From Table E.2, observe that the probability (area uder the curve) less tha 1.31 is (or 9.51%). Because i this istace the rejectio regio is i the lower tail of the distributio, the power of the test is 9.51% ad the chace of makig a Type II error is 90.49%. Figure 9.31 illustrates the power of the test for various possible values of µ 1 (icludig the three cases examied). This is called a power curve. The computatios for the three cases are summarized i Figure FIGURE 9.31 Power curve of the cereal-boxfillig process for the alterative hypothesis H 1 : µ < 368 grams Power Possible True Values for µ 1 (grams)

5 9.8: The Power of a Test CD9-5 Pael A Give: α.05,, Oe-tailed test µ (ull hypothesis is true) L 368 (1.645) Decisio rule: Reject H 0 if < ; otherwise do ot reject Regio of Rejectio α.050 Regio of Norejectio α.95 Pael B Give: α.05,, Oe-tailed test H 0 : µ µ (true mea shifts to 367 grams) µ Power.0951 Power Pael C Give: α.05,, Oe-tailed test H 0 : µ µ (true mea shifts to 360 grams) µ Power.8461 Power Pael D Give: α.05,, Oe-tailed test H 0 : µ µ (true mea shifts to 352 grams) µ Power Power Regio of Rejectio Regio of Norejectio FIGURE 9.32 Determiig statistical power for varyig values of the actual populatio mea

6 CD9-6 CD MATERIAL 3 For situatios ivolvig oe-tail tests i which the actual mea µ 1 really exceeds the hypothesized mea, the coverse would be true. The larger the actual mea µ 1 compared with the hypothesized mea, the greater is the power. O the other had, for two-tail tests, the greater the distace betwee the actual mea µ 1 ad the hypothesized mea, the greater the power of the test. From Figure 9.31, observe that the power of this oe-tail test icreases sharply (ad approaches 100%) as the actual populatio mea takes o values farther below the hypothesized mea of 368 grams. Clearly, for this oe-tail test, the smaller the actual mea µ 1 is whe compared with the hypothesized mea, the greater will be the power to detect this disparity. 3 O the other had, for values of µ 1 close to 368 grams, the power is rather small because the test caot effectively detect small differeces betwee the actual populatio mea ad the hypothesized value of 368 grams. Note that whe the populatio mea approaches 368 grams, the power of the test approaches, the level of sigificace (which is 0.05 i this example). You ca observe the drastic chages i the power of the test for differig values of the actual populatio meas by reviewig the differet paels of Figure From paels A ad B you ca see that whe the populatio mea does ot greatly differ from 368 grams, the chace of rejectig the ull hypothesis, based o the decisio rule ivolved, is ot large. However, oce the actual populatio mea shifts substatially below the hypothesized 368 grams, the power of the test greatly icreases, approachig its maximum value of 1 (or 100%). I the discussio of the power of a statistical test, a oe-tail test, a level of sigificace of 0.05, ad a sample size of boxes have bee used. With this i mid, you ca determie the effect o the power of the test by varyig, oe at a time, the type of statistical test oe-tail versus two-tail. the level of sigificace. the sample size. While these exercises are left to the reader (see problems ), three basic coclusios regardig the power of the test are summarized i Exhibit 9.6. EHIBIT 9.6 THE POWER OF A TEST There are three basic coclusios ivolved i uderstadig the power of the test. 1. A oe-tail test is more powerful tha a two-tail test ad should be used wheever it is appropriate to specify the directio of the alterative hypothesis. 2. Because the probability of committig a Type I error ( ) ad the probability of committig a Type II error ( ) have a iverse relatioship ad the latter is the complemet of the power of the test (1 ), the ad the power of the test vary directly. A icrease i the value of the level of sigificace ( ) results i a icrease i power, ad a decrease i results i a decrease i power. 3. A icrease i the size of the sample chose results i a icrease i power. A decrease i the size of the sample selected results i a decrease i power.

7 9.8: The Power of a Test CD9-7 PROBLEMS FOR SECTION 9.8 Applyig the Cocepts A coi-operated soft-drik machie is desiged to discharge, whe it is operatig properly, at least 7 ouces of beverage per cup with a stadard deviatio of 0.2 ouce. If a radom sample of 16 cupfuls is selected by a statisticia for a cosumer testig service ad the statisticia is willig to take a risk of 0.05 of committig a Type I error, compute the power of the test ad the probability of a Type II error ( ) if the populatio average amout dispesed is actually a. 6.9 ouces per cup. b. 6.8 ouces per cup Refer to problem If the statisticia is willig to take a risk of oly 0.01 of committig a Type I error, compute the power of the test ad the probability of a Type II error ( ) if the populatio average amout dispesed is actually a. 6.9 ouces per cup. b. 6.8 ouces per cup. c. Compare the results i (a) ad (b) of this problem ad i problem What coclusio ca you reach? Refer to problem If the statisticia selects a radom sample of cupfuls ad is willig to take a risk of 0.05 of committig a Type I error, compute the power of the test ad the probability of a Type II error ( ) if the populatio average amout dispesed is actually a. 6.9 ouces per cup. b. 6.8 ouces per cup. c. Compare the results i (a) ad (b) of this problem ad i problem What coclusio ca you draw? A tire maufacturer produces tires that last, o average, at least,000 miles whe the productio process is workig properly. Based o past experiece, the stadard deviatio of the tires is assumed to be 3,500 miles. The operatios maager will stop the productio process if there is evidece that the average tire life is below,000 miles. If a radom sample of 100 tires is selected (to be subjected to destructive testig) ad the operatios maager is willig to take a risk of 0.05 of committig a Type I error, compute the power of the test ad the probability of a Type II error ( ) if the populatio average life is actually Refer to problem If the operatios maager is willig to take a risk of oly 0.01 of committig a Type I error, compute the power of the test ad the probability of a Type II error ( ) if the populatio average life is actually c. Compare the results i (a) ad (b) of this problem ad (a) ad (b) i problem What coclusio ca you draw? Refer to problem If the operatios maager selects a radom sample of tires ad is willig to take a risk of 0.05 of committig a Type I error, compute the power of the test ad the probability of a Type II error ( ) if the populatio average life is actually c. Compare the results i (a) ad (b) of this problem ad (a) ad (b) i problem What coclusio ca you draw? 9.1 Refer to problem If the operatios maager will stop the process whe there is evidece that the average life is differet from,000 miles (either less tha or greater tha) ad a radom sample of 100 tires is selected alog with a level of sigificace of 0.05, compute the power of the test ad the probability of a Type II error ( ) if the populatio average life is actually c. Compare the results i (a) ad (b) of this problem ad (a) ad (b) i problem What coclusio ca you draw?

Hypothesis testing in a Nutshell

Hypothesis testing in a Nutshell Hypothesis testig i a Nutshell Summary by Pamela Peterso Drake Itroductio The purpose of this readig is to discuss aother aspect of statistical iferece, testig. A is a statemet about the value of a populatio

More information

Hypothesis testing. Null and alternative hypotheses

Hypothesis testing. Null and alternative hypotheses Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate

More information

Inference on Proportion. Chapter 8 Tests of Statistical Hypotheses. Sampling Distribution of Sample Proportion. Confidence Interval

Inference on Proportion. Chapter 8 Tests of Statistical Hypotheses. Sampling Distribution of Sample Proportion. Confidence Interval Chapter 8 Tests of Statistical Hypotheses 8. Tests about Proportios HT - Iferece o Proportio Parameter: Populatio Proportio p (or π) (Percetage of people has o health isurace) x Statistic: Sample Proportio

More information

Key Ideas Section 8-1: Overview hypothesis testing Hypothesis Hypothesis Test Section 8-2: Basics of Hypothesis Testing Null Hypothesis

Key Ideas Section 8-1: Overview hypothesis testing Hypothesis Hypothesis Test Section 8-2: Basics of Hypothesis Testing Null Hypothesis Chapter 8 Key Ideas Hypothesis (Null ad Alterative), Hypothesis Test, Test Statistic, P-value Type I Error, Type II Error, Sigificace Level, Power Sectio 8-1: Overview Cofidece Itervals (Chapter 7) are

More information

Notes on Hypothesis Testing

Notes on Hypothesis Testing Probability & Statistics Grishpa Notes o Hypothesis Testig A radom sample X = X 1,..., X is observed, with joit pmf/pdf f θ x 1,..., x. The values x = x 1,..., x of X lie i some sample space X. The parameter

More information

Unit 20 Hypotheses Testing

Unit 20 Hypotheses Testing Uit 2 Hypotheses Testig Objectives: To uderstad how to formulate a ull hypothesis ad a alterative hypothesis about a populatio proportio, ad how to choose a sigificace level To uderstad how to collect

More information

Hypothesis testing: one sample

Hypothesis testing: one sample Hypothesis testig: oe sample Describig iformatios Flow-chart for QMS 202 Drawig coclusios Forecastig Improve busiess processes Data Collectio Probability & Probability Distributio Regressio Aalysis Time-series

More information

Chapter 10. Hypothesis Tests Regarding a Parameter. 10.1 The Language of Hypothesis Testing

Chapter 10. Hypothesis Tests Regarding a Parameter. 10.1 The Language of Hypothesis Testing Chapter 10 Hypothesis Tests Regardig a Parameter A secod type of statistical iferece is hypothesis testig. Here, rather tha use either a poit (or iterval) estimate from a simple radom sample to approximate

More information

Statistics Lecture 14. Introduction to Inference. Administrative Notes. Hypothesis Tests. Last Class: Confidence Intervals

Statistics Lecture 14. Introduction to Inference. Administrative Notes. Hypothesis Tests. Last Class: Confidence Intervals Statistics 111 - Lecture 14 Itroductio to Iferece Hypothesis Tests Admiistrative Notes Sprig Break! No lectures o Tuesday, March 8 th ad Thursday March 10 th Exteded Sprig Break! There is o Stat 111 recitatio

More information

Statistical Inference: Hypothesis Testing for Single Populations

Statistical Inference: Hypothesis Testing for Single Populations Chapter 9 Statistical Iferece: Hypothesis Testig for Sigle Populatios A foremost statistical mechaism for decisio makig is the hypothesis test. The cocept of hypothesis testig lies at the heart of iferetial

More information

Practice Problems for Test 3

Practice Problems for Test 3 Practice Problems for Test 3 Note: these problems oly cover CIs ad hypothesis testig You are also resposible for kowig the samplig distributio of the sample meas, ad the Cetral Limit Theorem Review all

More information

Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown

Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown Z-TEST / Z-STATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large T-TEST / T-STATISTIC: used to test hypotheses about

More information

1. C. The formula for the confidence interval for a population mean is: x t, which was

1. C. The formula for the confidence interval for a population mean is: x t, which was s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : p-value

More information

Economics 140A Confidence Intervals and Hypothesis Testing

Economics 140A Confidence Intervals and Hypothesis Testing Ecoomics 140A Cofidece Itervals ad Hypothesis Testig Obtaiig a estimate of a parameter is ot the al purpose of statistical iferece because it is highly ulikely that the populatio value of a parameter is

More information

Lesson 15 ANOVA (analysis of variance)

Lesson 15 ANOVA (analysis of variance) Outlie Variability -betwee group variability -withi group variability -total variability -F-ratio Computatio -sums of squares (betwee/withi/total -degrees of freedom (betwee/withi/total -mea square (betwee/withi

More information

Chapter 10 Student Lecture Notes 10-1

Chapter 10 Student Lecture Notes 10-1 Chapter 0 tudet Lecture Notes 0- Basic Busiess tatistics (9 th Editio) Chapter 0 Two-ample Tests with Numerical Data 004 Pretice-Hall, Ic. Chap 0- Chapter Topics Comparig Two Idepedet amples Z test for

More information

Statistical inference: example 1. Inferential Statistics

Statistical inference: example 1. Inferential Statistics Statistical iferece: example 1 Iferetial Statistics POPULATION SAMPLE A clothig store chai regularly buys from a supplier large quatities of a certai piece of clothig. Each item ca be classified either

More information

Probability & Statistics Chapter 9 Hypothesis Testing

Probability & Statistics Chapter 9 Hypothesis Testing I Itroductio to Probability & Statistics A statisticia s most importat job is to draw ifereces about populatios based o samples take from the populatio Methods for drawig ifereces about parameters: ) Make

More information

Lesson 17 Pearson s Correlation Coefficient

Lesson 17 Pearson s Correlation Coefficient Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

More information

One-sample test of proportions

One-sample test of proportions Oe-sample test of proportios The Settig: Idividuals i some populatio ca be classified ito oe of two categories. You wat to make iferece about the proportio i each category, so you draw a sample. Examples:

More information

PSYCHOLOGICAL STATISTICS

PSYCHOLOGICAL STATISTICS UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Cousellig Psychology (0 Adm.) IV SEMESTER COMPLEMENTARY COURSE PSYCHOLOGICAL STATISTICS QUESTION BANK. Iferetial statistics is the brach of statistics

More information

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio

More information

Definition. Definition. 7-2 Estimating a Population Proportion. Definition. Definition

Definition. Definition. 7-2 Estimating a Population Proportion. Definition. Definition 7- stimatig a Populatio Proportio I this sectio we preset methods for usig a sample proportio to estimate the value of a populatio proportio. The sample proportio is the best poit estimate of the populatio

More information

1 Hypothesis testing for a single mean

1 Hypothesis testing for a single mean BST 140.65 Hypothesis Testig Review otes 1 Hypothesis testig for a sigle mea 1. The ull, or status quo, hypothesis is labeled H 0, the alterative H a or H 1 or H.... A type I error occurs whe we falsely

More information

Confidence Intervals for One Mean with Tolerance Probability

Confidence Intervals for One Mean with Tolerance Probability Chapter 421 Cofidece Itervals for Oe Mea with Tolerace Probability Itroductio This procedure calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) with

More information

CHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Means and Proportions

CHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Means and Proportions CHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Meas ad Proportios Itroductio: We wat to kow the value of a parameter for a populatio. We do t kow the value of this parameter for the etire populatio because

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

Confidence Intervals for One Mean

Confidence Intervals for One Mean Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a

More information

Review for Test 3. b. Construct the 90% and 95% confidence intervals for the population mean. Interpret the CIs.

Review for Test 3. b. Construct the 90% and 95% confidence intervals for the population mean. Interpret the CIs. Review for Test 3 1 From a radom sample of 36 days i a recet year, the closig stock prices of Hasbro had a mea of $1931 From past studies we kow that the populatio stadard deviatio is $237 a Should you

More information

Determining the sample size

Determining the sample size Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors

More information

5: Introduction to Estimation

5: Introduction to Estimation 5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample

More information

15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011

15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011 15.075 Exam 3 Istructor: Cythia Rudi TA: Dimitrios Bisias November 22, 2011 Gradig is based o demostratio of coceptual uderstadig, so you eed to show all of your work. Problem 1 A compay makes high-defiitio

More information

Text&Tests5. Project Maths SUPPLEMENT. Frances O Regan O. D. Morris. Leaving Certificate Higher Level Maths

Text&Tests5. Project Maths SUPPLEMENT. Frances O Regan O. D. Morris. Leaving Certificate Higher Level Maths Project Maths SUPPLEMENT Text&Tests5 Leavig Certificate Higher Level Maths Cotais all the Deferred Material ad Cetral Limit Theorem Fraces O Rega O. D. Morris O.D. Morris, Fraces O Rega, 2014 All rights

More information

x : X bar Mean (i.e. Average) of a sample

x : X bar Mean (i.e. Average) of a sample A quick referece for symbols ad formulas covered i COGS14: MEAN OF SAMPLE: x = x i x : X bar Mea (i.e. Average) of a sample x i : X sub i This stads for each idividual value you have i your sample. For

More information

TIEE Teaching Issues and Experiments in Ecology - Volume 1, January 2004

TIEE Teaching Issues and Experiments in Ecology - Volume 1, January 2004 TIEE Teachig Issues ad Experimets i Ecology - Volume 1, Jauary 2004 EXPERIMENTS Evirometal Correlates of Leaf Stomata Desity Bruce W. Grat ad Itzick Vatick Biology, Wideer Uiversity, Chester PA, 19013

More information

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means)

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means) CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:

More information

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The

More information

Center, Spread, and Shape in Inference: Claims, Caveats, and Insights

Center, Spread, and Shape in Inference: Claims, Caveats, and Insights Ceter, Spread, ad Shape i Iferece: Claims, Caveats, ad Isights Dr. Nacy Pfeig (Uiversity of Pittsburgh) AMATYC November 2008 Prelimiary Activities 1. I would like to produce a iterval estimate for the

More information

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the. Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).

More information

Measures of Central Tendency

Measures of Central Tendency Measures of Cetral Tedecy A studet s grade will be determied by exam grades ( each exam couts twice ad there are three exams, HW average (couts oce, fial exam ( couts three times. Fid the average if the

More information

Institute for the Advancement of University Learning & Department of Statistics

Institute for the Advancement of University Learning & Department of Statistics Istitute for the Advacemet of Uiversity Learig & Departmet of Statistics Descriptive Statistics for Research (Hilary Term, 00) Lecture 5: Cofidece Itervals (I.) Itroductio Cofidece itervals (or regios)

More information

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.

More information

A Test of Normality. 1 n S 2 3. n 1. Now introduce two new statistics. The sample skewness is defined as:

A Test of Normality. 1 n S 2 3. n 1. Now introduce two new statistics. The sample skewness is defined as: A Test of Normality Textbook Referece: Chapter. (eighth editio, pages 59 ; seveth editio, pages 6 6). The calculatio of p values for hypothesis testig typically is based o the assumptio that the populatio

More information

Math C067 Sampling Distributions

Math C067 Sampling Distributions Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters

More information

Laboratory: Case-Control Studies. Hypothesis Testing

Laboratory: Case-Control Studies. Hypothesis Testing Laboratory: Case-Cotrol Studies How may do I eed? is oe of the most commo questios addressed to a epidemiologist. The epidemiologist aswers with What questio are you attemptig to aswer? Sample size depeds

More information

Confidence Intervals and Sample Size

Confidence Intervals and Sample Size 8/7/015 C H A P T E R S E V E N Cofidece Itervals ad Copyright 015 The McGraw-Hill Compaies, Ic. Permissio required for reproductio or display. 1 Cofidece Itervals ad Outlie 7-1 Cofidece Itervals for the

More information

Hypothesis Testing. Definitions. H 0 : The Null Hypothesis This is the hypothesis or claim that is initially assumed to be true.

Hypothesis Testing. Definitions. H 0 : The Null Hypothesis This is the hypothesis or claim that is initially assumed to be true. Hypothesis Testig Hypothesis testig allows us to use a sample to decide betwee two statemets made about a Populatio characteristic. These two statemets are called the Null Hypothesis ad the Alterative

More information

Chapter 9 Hypothesis Tests

Chapter 9 Hypothesis Tests Chater 9 Hyothesis Tests Learig Objectives 1. Lear how to formulate ad test hyotheses about a oulatio mea ad/or a oulatio roortio. 2. Uderstad the tyes of errors ossible whe coductig a hyothesis test.

More information

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5 Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

More information

Case Study. Normal and t Distributions. Density Plot. Normal Distributions

Case Study. Normal and t Distributions. Density Plot. Normal Distributions Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca

More information

Correlation. example 2

Correlation. example 2 Correlatio Iitially developed by Sir Fracis Galto (888) ad Karl Pearso (8) Sir Fracis Galto 8- correlatio is a much abused word/term correlatio is a term which implies that there is a associatio betwee

More information

Lecture 23. Chapter 11: Testing Hypotheses About Proportions. Nancy Pfenning Stats 1000. Recall: last time we presented the following examples:

Lecture 23. Chapter 11: Testing Hypotheses About Proportions. Nancy Pfenning Stats 1000. Recall: last time we presented the following examples: Lecture 23 Nacy Pfeig Stats 1000 Chapter 11: Testig Hypotheses About Proportios Recall: last time we preseted the followig examples: 1. I a group of Pitt studets, 42 were left-haded. Is this sigificatly

More information

Output Analysis (2, Chapters 10 &11 Law)

Output Analysis (2, Chapters 10 &11 Law) B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should

More information

Measures of Spread and Boxplots Discrete Math, Section 9.4

Measures of Spread and Boxplots Discrete Math, Section 9.4 Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,

More information

Standard Errors and Confidence Intervals

Standard Errors and Confidence Intervals Stadard Errors ad Cofidece Itervals Itroductio I the documet Data Descriptio, Populatios ad the Normal Distributio a sample had bee obtaied from the populatio of heights of 5-year-old boys. If we assume

More information

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number. GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea - add up all

More information

Stat 104 Lecture 16. Statistics 104 Lecture 16 (IPS 6.1) Confidence intervals - the general concept

Stat 104 Lecture 16. Statistics 104 Lecture 16 (IPS 6.1) Confidence intervals - the general concept Statistics 104 Lecture 16 (IPS 6.1) Outlie for today Cofidece itervals Cofidece itervals for a mea, µ (kow σ) Cofidece itervals for a proportio, p Margi of error ad sample size Review of mai topics for

More information

Lecture 10: Hypothesis testing and confidence intervals

Lecture 10: Hypothesis testing and confidence intervals Eco 514: Probability ad Statistics Lecture 10: Hypothesis testig ad cofidece itervals Types of reasoig Deductive reasoig: Start with statemets that are assumed to be true ad use rules of logic to esure

More information

Chapter 7: Confidence Interval and Sample Size

Chapter 7: Confidence Interval and Sample Size Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum

More information

hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation

hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation HP 1C Statistics - average ad stadard deviatio Average ad stadard deviatio cocepts HP1C average ad stadard deviatio Practice calculatig averages ad stadard deviatios with oe or two variables HP 1C Statistics

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

AQA STATISTICS 1 REVISION NOTES

AQA STATISTICS 1 REVISION NOTES AQA STATISTICS 1 REVISION NOTES AVERAGES AND MEASURES OF SPREAD www.mathsbox.org.uk Mode : the most commo or most popular data value the oly average that ca be used for qualitative data ot suitable if

More information

Confidence intervals and hypothesis tests

Confidence intervals and hypothesis tests Chapter 2 Cofidece itervals ad hypothesis tests This chapter focuses o how to draw coclusios about populatios from sample data. We ll start by lookig at biary data (e.g., pollig), ad lear how to estimate

More information

Confidence Intervals for the Population Mean

Confidence Intervals for the Population Mean Cofidece Itervals Math 283 Cofidece Itervals for the Populatio Mea Recall that from the empirical rule that the iterval of the mea plus/mius 2 times the stadard deviatio will cotai about 95% of the observatios.

More information

Research Method (I) --Knowledge on Sampling (Simple Random Sampling)

Research Method (I) --Knowledge on Sampling (Simple Random Sampling) Research Method (I) --Kowledge o Samplig (Simple Radom Samplig) 1. Itroductio to samplig 1.1 Defiitio of samplig Samplig ca be defied as selectig part of the elemets i a populatio. It results i the fact

More information

SAMPLING NTI Bulletin 2006,42/3&4, 55-62

SAMPLING NTI Bulletin 2006,42/3&4, 55-62 SAMPLING NTI Bulleti 006,4/3&4, 55-6 Sample size determiatio i health studies VK Chadha * Summary Oe of the most importat factors to cosider i the desig of a itervetio trial is the choice of a appropriate

More information

Overview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals

Overview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals Overview Estimatig the Value of a Parameter Usig Cofidece Itervals We apply the results about the sample mea the problem of estimatio Estimatio is the process of usig sample data estimate the value of

More information

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas: Chapter 7 - Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries

More information

MEI Structured Mathematics. Module Summary Sheets. Statistics 2 (Version B: reference to new book)

MEI Structured Mathematics. Module Summary Sheets. Statistics 2 (Version B: reference to new book) MEI Mathematics i Educatio ad Idustry MEI Structured Mathematics Module Summary Sheets Statistics (Versio B: referece to ew book) Topic : The Poisso Distributio Topic : The Normal Distributio Topic 3:

More information

Power Factor in Electrical Power Systems with Non-Linear Loads

Power Factor in Electrical Power Systems with Non-Linear Loads Power Factor i Electrical Power Systems with No-Liear Loads By: Gozalo Sadoval, ARTECHE / INELAP S.A. de C.V. Abstract. Traditioal methods of Power Factor Correctio typically focus o displacemet power

More information

Section 7.2 Confidence Interval for a Proportion

Section 7.2 Confidence Interval for a Proportion Sectio 7.2 Cofidece Iterval for a Proportio Before ay ifereces ca be made about a proportio, certai coditios must be satisfied: 1. The sample must be a SRS from the populatio of iterest. 2. The populatio

More information

Hypergeometric Distributions

Hypergeometric Distributions 7.4 Hypergeometric Distributios Whe choosig the startig lie-up for a game, a coach obviously has to choose a differet player for each positio. Similarly, whe a uio elects delegates for a covetio or you

More information

23.3 Sampling Distributions

23.3 Sampling Distributions COMMON CORE Locker LESSON Commo Core Math Stadards The studet is expected to: COMMON CORE S-IC.B.4 Use data from a sample survey to estimate a populatio mea or proportio; develop a margi of error through

More information

Mann-Whitney U 2 Sample Test (a.k.a. Wilcoxon Rank Sum Test)

Mann-Whitney U 2 Sample Test (a.k.a. Wilcoxon Rank Sum Test) No-Parametric ivariate Statistics: Wilcoxo-Ma-Whitey 2 Sample Test 1 Ma-Whitey 2 Sample Test (a.k.a. Wilcoxo Rak Sum Test) The (Wilcoxo-) Ma-Whitey (WMW) test is the o-parametric equivalet of a pooled

More information

BASIC STATISTICS. Discrete. Mass Probability Function: P(X=x i ) Only one finite set of values is considered {x 1, x 2,...} Prob. t = 1.

BASIC STATISTICS. Discrete. Mass Probability Function: P(X=x i ) Only one finite set of values is considered {x 1, x 2,...} Prob. t = 1. BASIC STATISTICS 1.) Basic Cocepts: Statistics: is a sciece that aalyzes iformatio variables (for istace, populatio age, height of a basketball team, the temperatures of summer moths, etc.) ad attempts

More information

We have seen that the physically observable properties of a quantum system are represented

We have seen that the physically observable properties of a quantum system are represented Chapter 14 Probability, Expectatio Value ad Ucertaity We have see that the physically observable properties of a quatum system are represeted by Hermitea operators (also referred to as observables ) such

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

4.1 Sigma Notation and Riemann Sums

4.1 Sigma Notation and Riemann Sums 0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

More information

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean 1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

Stat 104 Lecture 2. Variables and their distributions. DJIA: monthly % change, 2000 to Finding the center of a distribution. Median.

Stat 104 Lecture 2. Variables and their distributions. DJIA: monthly % change, 2000 to Finding the center of a distribution. Median. Stat 04 Lecture Statistics 04 Lecture (IPS. &.) Outlie for today Variables ad their distributios Fidig the ceter Measurig the spread Effects of a liear trasformatio Variables ad their distributios Variable:

More information

Chapter 14 Nonparametric Statistics

Chapter 14 Nonparametric Statistics Chapter 14 Noparametric Statistics A.K.A. distributio-free statistics! Does ot deped o the populatio fittig ay particular type of distributio (e.g, ormal). Sice these methods make fewer assumptios, they

More information

A Mathematical Perspective on Gambling

A Mathematical Perspective on Gambling A Mathematical Perspective o Gamblig Molly Maxwell Abstract. This paper presets some basic topics i probability ad statistics, icludig sample spaces, probabilistic evets, expectatios, the biomial ad ormal

More information

COMPARISON OF THE EFFICIENCY OF S-CONTROL CHART AND EWMA-S 2 CONTROL CHART FOR THE CHANGES IN A PROCESS

COMPARISON OF THE EFFICIENCY OF S-CONTROL CHART AND EWMA-S 2 CONTROL CHART FOR THE CHANGES IN A PROCESS COMPARISON OF THE EFFICIENCY OF S-CONTROL CHART AND EWMA-S CONTROL CHART FOR THE CHANGES IN A PROCESS Supraee Lisawadi Departmet of Mathematics ad Statistics, Faculty of Sciece ad Techoology, Thammasat

More information

A probabilistic proof of a binomial identity

A probabilistic proof of a binomial identity A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two

More information

On The Comparison of Several Goodness of Fit Tests: With Application to Wind Speed Data

On The Comparison of Several Goodness of Fit Tests: With Application to Wind Speed Data Proceedigs of the 3rd WSEAS It Cof o RENEWABLE ENERGY SOURCES O The Compariso of Several Goodess of Fit Tests: With Applicatio to Wid Speed Data FAZNA ASHAHABUDDIN, KAMARULZAMAN IBRAHIM, AND ABDUL AZIZ

More information

Table of standard normal deviates for Z ß...31

Table of standard normal deviates for Z ß...31 Statistical Power Ad Sample Size Calculatios... 1 Whe Do You Need Statistical Power Calculatios, Ad Why?... 1 Preparatio For The Questio What Is Statistical Power?... 1 Statistical Hypothesis Testig...

More information

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5

More information

3.1 Measures of Central Tendency. Introduction 5/28/2013. Data Description. Outline. Objectives. Objectives. Traditional Statistics Average

3.1 Measures of Central Tendency. Introduction 5/28/2013. Data Description. Outline. Objectives. Objectives. Traditional Statistics Average 5/8/013 C H 3A P T E R Outlie 3 1 Measures of Cetral Tedecy 3 Measures of Variatio 3 3 3 Measuresof Positio 3 4 Exploratory Data Aalysis Copyright 013 The McGraw Hill Compaies, Ic. C H 3A P T E R Objectives

More information

Incremental calculation of weighted mean and variance

Incremental calculation of weighted mean and variance Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

More information

Forecasting techniques

Forecasting techniques 2 Forecastig techiques this chapter covers... I this chapter we will examie some useful forecastig techiques that ca be applied whe budgetig. We start by lookig at the way that samplig ca be used to collect

More information

Example Consider the following set of data, showing the number of times a sample of 5 students check their per day:

Example Consider the following set of data, showing the number of times a sample of 5 students check their  per day: Sectio 82: Measures of cetral tedecy Whe thikig about questios such as: how may calories do I eat per day? or how much time do I sped talkig per day?, we quickly realize that the aswer will vary from day

More information

CHAPTER 8. Confidence Interval Estimation LEARNING OBJECTIVES. USING Saxon Home Improvement

CHAPTER 8. Confidence Interval Estimation LEARNING OBJECTIVES. USING Saxon Home Improvement CHAPTER 8 Cofidece Iterval Estimatio USING STATISTICS @ Saxo Home Improvemet 8.1 CONFIDENCE INTERVAL ESTIMATION FOR THE MEAN (* KNOWN) 8.2 CONFIDENCE INTERVAL ESTIMATION FOR THE MEAN (* UNKNOWN) Studet

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

STA 2023 Practice Questions Exam 2 Chapter 7- sec 9.2. Case parameter estimator standard error Estimate of standard error

STA 2023 Practice Questions Exam 2 Chapter 7- sec 9.2. Case parameter estimator standard error Estimate of standard error STA 2023 Practice Questios Exam 2 Chapter 7- sec 9.2 Formulas Give o the test: Case parameter estimator stadard error Estimate of stadard error Samplig Distributio oe mea x s t (-1) oe p ( 1 p) CI: prop.

More information

This document contains a collection of formulas and constants useful for SPC chart construction. It assumes you are already familiar with SPC.

This document contains a collection of formulas and constants useful for SPC chart construction. It assumes you are already familiar with SPC. SPC Formulas ad Tables 1 This documet cotais a collectio of formulas ad costats useful for SPC chart costructio. It assumes you are already familiar with SPC. Termiology Geerally, a bar draw over a symbol

More information

Problem Set 1 Oligopoly, market shares and concentration indexes

Problem Set 1 Oligopoly, market shares and concentration indexes Advaced Idustrial Ecoomics Sprig 2016 Joha Steek 29 April 2016 Problem Set 1 Oligopoly, market shares ad cocetratio idexes 1 1 Price Competitio... 3 1.1 Courot Oligopoly with Homogeous Goods ad Differet

More information

Normal Distribution.

Normal Distribution. Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued

More information

Solving Inequalities

Solving Inequalities Solvig Iequalities Say Thaks to the Authors Click http://www.ck12.org/saythaks (No sig i required) To access a customizable versio of this book, as well as other iteractive cotet, visit www.ck12.org CK-12

More information