# Scaling and Biasing Analog Signals

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Scaling and Biasing Analog Signals November 2007 Introduction Scaling and biasing the range and offset of analog signals is a useful skill for working with a variety of electronics. Not only can it interface equipment with different input and output voltage ranges together, it is also useful for designing circuits such as discrete transistor amplifiers. If you have a signal in one part of your circuit with a particular voltage range and offset, and need to map it to another range and offset, scaling and biasing will help. Several methods are presented here, including passive resistor designs and basic op amp techniques. To begin, suppose you have an analog input signal V in (t), where V in is a time dependent voltage. Scaling and biasing simply means computing a new signal V out (t): V out (t) = s V in (t) + b (1) where the parameter s is called the scale and the parameter b the bias. The goal is to construct an analog electronic circuit that produces this linear transformation of V in to V out. Effectively, the circuit will be an analog computer for equation (1). In elementary algebra, the parameters s and b are called the slope and offset of a straight line. The words scale and bias as used in electronics are synonyms for slope and offset. Setting aside for the moment that V in and V out depend on t, and focusing instead on V out as a function of V in, equation (1) is the graph of a straight line. In fact, given two (V in, V out ) pairs on the straight line, we can compute s and b with: s = V out / V in (2) b = V out s V in (3) where either one of the (V in, V out ) pairs can be used to compute b. The parameter s is dimensionless having the units (volts/volts), while b has the dimensions of volts. 1

2 With these equations in hand, specifying the input and output ranges is equivalent to specifying s and b. For example, suppose you have a signal ranging from -100 to +100 volts, and you would like to map it into a (0,5) volt range. This is a common data acquisition problem where a sensor may not match an A/D input range. In this example, since we have V in = 200 and V out = 5, equation (2) gives: s = V out / V in = 5/200 = and with V out = 0 when V in = 100, equation (3) gives: b = V out s V in = 0 s ( 100) = = 2.5 so the final transformation between V out and V in for this case would be: V out = V in By testing various values in this equation you can verify it linearly maps voltages in the range of (-100,100) into (0,5) volts. Note that not only is the scale of the input voltage reduced by this particular transformation, negative inputs are mapped into a positive range as well. Those familiar with oscilloscopes already know scaling and biasing. Scopes typically have one knob s to set the amplitude of the trace, and another knob b to translate it vertically up and down the display. Internally the scope has scaling and biasing circuits that can be set with the knobs. This paper is about designing scaling and biasing circuits. Given s and b we would like to find a combination of resistors and other components to produce the transformation in equation (1). While not particularly difficult, the equations to compute component values are not trivial either. We will even find mathematical techniques such as projective transformations play an interesting role. 2

3 Two resistor circuits Two resistor dividers are a convenient starting point for scaling and biasing. This section reviews the basic scaling divider, and then shows how to add a bias. We will find even though two resistor circuits have limitations regarding their bias, they are still useful for many applications. The next section, Three resistor circuits, will show how to implement designs which are even more flexible. Consider the following two resistor scaling divider, where V in is the input, V out is the output, and (R a, R b ) are the resistor values. Note that the labels V in and V out can be confusing because V in is probably the output from some device on the left, and at the same time is the input to the divider. Don t confuse the meaning of the words in and out when working with the equations below. This paper assigns labels from the divider s point of view. Figure 1: Basic two resistor scaling divider Using Kirchoff s and Ohm s laws, and assuming no loading on V out, the output voltage of this circuit is: V out = [ R b /(R a + R b ) ] V in (4) The usual steps to derive this are: by Ohm s law, the current through the series combination (R a, R b ) is: V in /(R a + R b ). Then, since this is the same current flowing through R b, the final output voltage is: R b [V in /(R a + R b )]. Deriving this equation should become automatic if you are working with these types of circuits. Equation (4) can also be derived formally by applying Kirchoff s and Ohm s laws to each node and leg of the circuit and solving the resulting simultaneous equations. 3

4 Note that equation (4) can be written as: V out = [ (B/A) / (1 + (B/A)) ] V in (5) where two changes have been made. First, the resistor values have been denoted by capital letters, A = R a and B = R b to reduce the number of subscripts. We will follow that pattern in the rest of this this paper. Second, the top and bottom of equation (4) have been multiplied by 1/A to show it is only the ratio B/A that determines the output voltage. Sometimes, if B is much less than A, it may even be possible to approximate the output as (B/A)V in, however here we will keep the equation exact so it is applicable to precision work. The simple divider in Figure 1 is suitable for applications where only scaling is required. Note equation (4) or (5) is the same as equation (1) with s = B/(A + B) and b = 0. That is to say it is a transformation with no bias or offset. As a specific example, suppose you have a sensor with an output range of 0 to 50 volts and wish to map that into a 0 to 5 volt range. Choosing A = 90K ohms and B = 10K would scale the input by 10/( ) = 0.10, and the (0,50) volt sensor would be divided down to (0,5) volts. The circuit is: Figure 2: Scaling (0,50) into (0,5) with no bias If you build this circuit, be careful the high input voltage is never accidentally connected directly to V out, because you might damage any downstream equipment. A 6 volt zener across the output would be a reasonable first step towards protection. Even though it is only the ratio B/A that determines the output in equation (4), also keep in mind that there are currents flowing in the resistors. With a 90K and 10K 4

5 pair, a maximum current of 50v/100K = 1/2 milliamp will flow in the divider. This is good, the resistors will not overheat, and hopefully the input source can provide that amount of current. Do not use a 9 ohm and 1 ohm resistor in Figure 2. While the simple scaling divider is fine for applications requiring only scaling, it does not add any bias. Negative voltages going into the divider come out negative, while you may require such voltages to be biased into the positive range. This can be done by modifying the basic divider as shown in Figure 3. The circuit is the same as the simple scaling divider except the end of resistor B is held at a nonzero voltage and not at ground. Figure 3: Biased two resistor divider The output of the biased divider in Figure 3 is: V out = [B/(A + B)] V in + [A/(A + B)] V bias (6) With practice, equations like (6) can be written down at sight. Here is how: from Kirchoff s and Ohm s laws we know V out must be a linear homogeneous function of V in and V bias. Because of that we can solve for V out with V in and V bias alternately set to zero and then add the partial results together to form the complete answer. The partial results for V in and V bias are easy to write down because they are each the same as the simple scaling resistor divider without bias. This decomposition is indicated with the subdiagrams in Figure 3. Comparing the biased divider equation (6) with equation (1), we can see it is a full linear transformation with scaling and biasing given by: 5

6 s = [ B/(A + B) ] (7) b = [ A/(A + B) ] V bias (8) where b is now a nonzero value. Progress! We have a linear transformation including bias. Note the value of b is not the same as the V bias bias voltage. The resistors A and B scale not only the input signal, but also the bias voltage. Because of this, the equations between (s, b) and (A, B, V bias ) are coupled. Despite this, a simple circuit for equation (1) results and is very useful. As a forward example with equation (6), suppose we try B = A and V bias = 5.0, then: V out = V in / (9) and an input range of (-5,+5) volts is mapped into (0,5). We have successfully mapped an input range including negative voltages into a purely positive range, and only required a single positive bias voltage to do it! The corresponding circuit is: Figure 4: Scaling and biasing (-5,+5) into (0,5) with V bias = +5.0 You can breadboard this in any convenient fashion and measure the input and output with a scope. A sine wave generator makes a good input signal for testing, and an adjustable lab power supply can provide the bias voltage. This simple circuit can be quite useful for interfacing various types of equipment together. Of course, in actual practice the design goal is to go the other way with equation (6). Given the ranges for V in and V out, the problem is to determine the required values of 6

7 (A, B, V bias ). To do that, follow a two step design process. First start with the V in and V out ranges, and use equations (2) and (3) to determine s and b. Then use the value of s with equation (7) to determine the ratio r = B/A, followed by equation (8) to determine the required V bias. Combining the algebra into one set of equations arrives at: r = V out / ( V in V out ) (10) V bias = V out r (V in V out ) (11) where r = B/A, and (V in, V out ) is any pair of input/output values. As usual, while any resistors with the ratio r will work, use values large enough to keep the divider currents small. Also note the value of V bias is fixed by the design process. With these equations in hand, the design steps for a biased two resistor divider in Figure 3 are: Step 1: Determine the required input and output ranges from spec sheets or experiment: V in = divider input span ( = sensor output range ) V out = divider output span ( = A/D input range ) Step 2: Compute the resulting resistor ratio: r = B/A = V out /( V in V out ) Step 3: and, compute the required bias voltage: V bias = V out r (V in V out ) where the V in and V out in step 3 are any convenient pair of input and output voltages. Note that when working by hand, these computations are often best done as fractions which are easy to write down with no loss of precision. Let s see if these design steps work with the above example that started with B = A and V bias = 5.0, but going in the reverse direction instead. Beginning with the input and output ranges, (-5,+5) and (0,5), we first compute V in = 10 and V out = 5. Then applying step 2 gives: r = 5 / (10 5) = 1 7

8 or B = A, and computing step 3 with V in = 5.0 mapping into V out = 0.0 gives: V bias = 0 1( 5 0) = 5.0 volts all agreeing with the results we should get. The table in Figure 5 computes the values of (A, B, V bias ) required to map a variety of bipolar input ranges into a (0,5) output, a popular range for A/D equipment. Note the (A, B) values have been scaled so A is always a 10K ohm resistor. You can scale to other values as appropriate, just keep the divider currents in the low milliamp range. Regardless of what scaled resistor values are used, V bias must be as shown. The line marked with a is the same as the circuit in Figure 4. Bipolar input V in V out A(Kohm) B(Kohm) V bias (+/-) (0,5) (+/-) (0,5) (+/-) (0,5) (+/-) (0,5) (+/-) (0,5) (+/-) (0,5) (+/-) (0,5) (+/-) (0,5) (+/-) (0,5) (+/-) (0,5) (+/-) (0,5) (+/-) (0,5) (+/-) (0,5) Figure 5: (A, B, V bias ) values for mapping various input ranges into (0,5) Note that the (A, B, V bias ) values in the table above are for input ranges balanced evenly around 0. In fact, the design steps work equally well for unbalanced inputs. Balanced input is only the most common case. As an example of unbalanced input, consider mapping the input range of (-5,+10) into the range (0,5). Using the design steps, the calculation in Figure 6 results. To build a circuit for this example, choose any two resistors with the ratio 1/2. The values 8

9 B = 10K and A = 20K would be appropriate. If you don t have a 20K resistor on hand, build one from two 10K resistors in series. Use a lab power supply or op amp to generate the required 2.5 volt bias voltage and you are done. Unbalanced input design example: Sensor range = (-5,+10) A/D range = (0,5) -> Divider input span = 15 volts -> Divider output span = 5 volts r = 5/(15-5) = 1/2 ( = B/A resistor ratio ) Vbias = 0-1/2 * (-5-0) = 2.5 volts Figure 6: Scaling and biasing an unbalanced (-5,+10) into (0,5) with V bias = +2.5 When working with biased resistor dividers, V bias must be constant. This is crucial. Any change in V bias will become a variation or noise on V out. You must have access to a bias voltage that is low impedance, well regulated, and noise free. Often such a voltage is available from an A/D reference voltage on the data acquisition equipment, or perhaps from a power supply. Also note for two resistor circuits, the required bias voltages are a result of the design steps, and odd values of V bias may be required. If you need to map (-6,+6) into (0,5) and don t have access to a bias voltage like 4.29 volts, the next section reviews three resistor circuits allowing the bias to be specified as part of the design. Do not use a resitive divider to generate odd bias voltages. The output from such a divider will not stay constant as V in varies. It is easier to use the circuits discussed in the next section or op amp techniques. Generally, scaling and biasing with resistor dividers achieves good results. Besides being simple, if metal film resistors with a low TC and a well regulated low impedance bias voltage are used, such circuits add little noise to a signal. Sometimes, the input impedance of a resistive divider may be a concern. However, for applications with active sensors, this is usually not a problem because such sensors typically have output amplifiers capable of driving resistor dividers. When input impedance is an issue consider the techniques in the op amp section. 9

10 Three resistor circuits For the two resistor designs in the previous section, the required bias voltage is fixed by the input and output ranges, and may not be a convenient value. With the addition of one resistor, the bias voltage may be specified as part of the design process. Figure 7 shows the three resistor circuit, where the additional resistor C is connected from the V out node to ground. Figure 7: Biased three resistor divider Using linearity and superposition of partial results, the output voltage for this circuit can be written down at sight as: V out = [ (B C) / (A + (B C)) ] V in + [ (A C) / (B + (A C)) ] V bias (12) where denotes the parallel combination of two resistors: (B C) = (B C)/(B + C). In equation (12) the additional degree of freedom C beyond the two resistor equation (6) allows for the value of V bias to be specified rather than fixed by the design process. Comparing equation (12) with equation (1) we can see it is a full linear transformation with: s = [ (B C) / (A + (B C)) ] (13) b = [ (A C) / (B + (A C)) ] V bias (14) 10

11 where our design goal is: given (s, b, V bias ) to compute (A, B, C). Clearly the relationship between (s, b) and the resistors is more complicated than the two resistor equations (7) and (8), and one might even wonder if it is nonlinear. Actually, things are simpler than they appear at first. To see this, start over with Kirchoff s and Ohm s law at the V out node in Figure 7: (V out V in )/A + (V out V bias )/B + V out /C = 0 (15) Assuming no external loading at V out, this equation specifies the sum of the currents is conserved. The current flowing into the node is matched by that flowing out. Of course with algebra equation (15) can be derived from equation (12), but starting from first principles is more direct. Sometimes this circuit is redrawn and referred to as a Y connection for three resistors as in Figure 8. Figure 8: Y connection Rearranging (15) into transfer equation form results in: or V out (1/A + 1/B + 1/C) = V in /A + V bias /B (16) V out = V in /(A (1/A + 1/B + 1/C)) + V bias /(B (1/A + 1/B + 1/C)) (17) Equation (15) is linear in the conductances (1/A, 1/B, 1/C). We won t make much use of that fact here. However, these equations are also homogeneous in (A, B, C). 11

12 That is to say, multiplying (A, B, C) all by the same constant λ results in another set of resistors that solve the equations equally well. This mapping of one solution into another will be useful. Comparing equation (17) with equation (1), we see the values for (s, b) are: s = ( 1 / [ A (1/A + 1/B + 1/C) ] ) (18) b = ( 1 / [ B (1/A + 1/B + 1/C) ] ) V bias (19) These are of course the same as equations (13) and (14), just in different algebraic form. Given (s, b, V bias ), we d like to solve these two equations for the three unknowns (A, B, C). At first it might seem as if there are fewer equations than unknowns in (18) and (19), and the system is under determined. But, multiplying the top and bottom of each equation by C, the pair can be rewritten as: s = ( (C/A) / (C/A + C/B + 1) ) b = ( (C/B) / (C/A + C/B + 1) ) V bias to show there are really only two equations in the two unknown ratios (C/A) and (C/B), which could then be solved. Rather than solving these equations directly, here is an even easier way to proceed: From equation (15) we know any multiple λ(a, B, C) (A λ, B λ, C λ ) of a given solution is also solution. For a particularly convenient scaling, choose: λ = (1/A + 1/B + 1/C) and then the pair (18) and (19) becomes: s = 1/A λ (20) b = V bias /B λ (21) This decoupled pair for (A λ, B λ ) is easy to solve and combine with equations (2) and (3) for s and b in terms of the input and output voltage ranges giving: A λ = V in / V out (22) B λ = V bias /(V out V in /A λ ) (23) C λ = 1/(1 1/A λ 1/B λ ) (24) 12

13 The last equation for C λ reflects the scaling λ we have chosen. To see this start with: 1/A λ + 1/B λ + 1/C λ = (1/λ) (1/A + 1/B + 1/C) = 1 and solve the left for C λ in terms of (A λ, B λ ), yielding equation (24). To summarize, the linear homogeneous symmetry of equation (15) has been used to find one particularly easy solution, and now other solutions can be obtained by simply scaling (A λ, B λ, C λ ) as needed. This type of symmetry is known as a projective transformation. Such transformations have a long and fascinating history, often achieving surprising results as in the photo at the end of this paper. With these equations in hand, the general design steps for the biased three resistor circuit in Figure 7 are: Step 1: Determine the input and output ranges from spec sheets or experiment: V in = divider input span ( = sensor output range ) V out = divider output span ( = A/D input range) Step 2: Compute (A λ, B λ, C λ ) from: A λ = V in / V out B λ = V bias /(V out V in /A λ ) C λ = A λ B λ /(A λ B λ A λ B λ ) where V out and V in in the B λ equation are any convenient input and output pair. When computing by hand, it may be easiest to carry the calculation as fractions. Step 3: Scale (A λ, B λ, C λ ) to the desired values. For example, if A = 10K ohm is desired then compute: A = (10K/A λ ) A λ = 10K B = (10K/A λ ) B λ C = (10K/A λ ) C λ The table in Figure 9 gives the three resistor values (A, B, C) to map a variety of bipolar input ranges into the output range V out = (0,5) using V bias = 5.0 volts. These values should be used with the circuit in Figure 7. The resistor values have been scaled 13

14 so A is 10K ohms. Multiply (A, B, C) all by the same constant to scale to other values, where for safe divider currents, keep the resistors in the Kohm range. Of course the thing to note about this table is all the mappings use the same bias voltage, 5.0 volts in the last column. This should be compared with the two resistor table. Bipolar input V in V out A(Kohm) B(Kohm) C(Kohm) V bias (+/-) (0,5) ****** 5.00 (+/-) (0,5) (+/-) (0,5) (+/-) (0,5) (+/-) (0,5) (+/-) (0,5) (+/-) (0,5) (+/-) (0,5) (+/-) (0,5) (+/-) (0,5) (+/-) (0,5) (+/-) (0,5) (+/-) (0,5) (+/-) (0,5) (+/-) (0,5) (+/-) (0,5) Figure 9: Three resistor values for mapping various input ranges into (0,5) The case of a (-10,+10) input range marked with a in the table is of particular interest for many applications. The circuit for this is shown in the following figure. A/D references can provide the bias voltage, as well as power supplies in some cases. If you don t have a 5K resistor on hand, build it from two 10K resistors in parallel. Figure 10: Three resistor scaling and biasing (-10,+10) into (0,5) with V bias =

15 By comparison, a two resistor divider requiring a less convenient 3.3 volt bias is shown in the following figure. However, we will see in the next section even this is reasonably easy to use when combined with an op amp. Figure 11: Two resistor scaling and biasing (-10,+10) into (0,5) with V bias = +3.3 It is worth noting the projective transformations used in this section can be applied to more complicated networks with additional resistors, as well as the analysis of circuits involving complex impedances with sinusoidal AC voltages. Sometimes difficult phase relationships can be reduced to decoupled equations when scaled properly. The scaling factor λ may itself become complex, but the algebraic structure remains the same as with purely resistive elements. 15

16 Op Amp techniques Adding op amps to scaling and biasing circuits provides possibilities beyond the passive resistor dividers already covered. For example, op amps can be used to increase the input impedance of a resistor divider, lower the output impedance of a resistor divider, add gain to signals, and perform other circuit functions. This section will review a few circuit examples, but does not give full design steps as in the previous sections. A good feature of op amps is their naturally high input impedance. Passive resistor dividers have the input impedance of their resistors. For applications where a very high input impedance is required, an op amp can buffer a resistive divider input into the high Mohm range. However, keep in mind high input impedance can increase noise pickup on long input cables and consider working with lower input impedances if you anticipate noise problems. Besides buffering the input impedance, op amps can also drive significant loads and be used to lower the output impedance of passive resistor networks. A bad feature of op amps is they require a power supply. Not only that, if the op amp must handle bipolar input signals, then a split +/- supply will be probably be required. Often something like +/-12 volts. Providing a split supply increases the complexity of implementing op amp circuits. For this discussion, we assume users are familiar with these issues and have their own preferred solutions. Power supply and ground connections are not shown in the circuit fragments reviewed here but are essential for proper operation. Circuits involving op amps can be as simple as unity gain buffers: Figure 12: Op amp unity gain buffer with scaling 16

17 This circuit buffers a (-10,+10) signal with a unity gain amplifier on the left to provide high input impedance. The output of the input buffer is then scaled and biased with a two resistor divider. For +/-10 input to be scaled to (0,5) output, the two resistor divider requires a 3.3 volt bias, as listed in the two resistor table in Figure 5. Here, the bias is formed from a 5 volt reference and a resistor divider which is then buffered with its own unity gain amplifier so the 3.3 volts has low output impedance and will not vary. Finally, the signal output is also buffered for a low output impedance. When implementing this circuit, you will have to provide power for the op amps. For the resistors, you can build a 3.3K resistor from three 10K resistors in parallel. Although simple, this circuit is capable of good performance. The circuit in Figure 13 makes further modifications to give the front end a gain of 10. With this configuration, the full scale input range becomes (+/-500mV). Here, for scaling and biasing after the gain stage, a two resistor divider is used with 5 volts as the bias source. Figure 13: Op amp buffer with gain of 10 Generic bipolar op amps are often good choices for the amplifiers in these circuits. Parts such as the LM324 provide four amps at an exceptionally low price with good noise and other specs. Don t worry too much about op amp V io input offset when using reasonable gains. In the above circuit, a LM324 with a typical 7mV V io would result in 70mV of V out offset. While you could use a higher grade amplifier, if the application is an interface to an A/D system the LM324 offset can often be removed as a calibration correction in software. Of course, temperature sensitive applications may require higher grade amps with less V io TC. One area of caution when using op amps, particularly as unity gain buffers, is in driving capacitive loads. Capacitive loading directly on the output of an op amp may cause the 17

18 amp to oscillate. For example, the capacitance of long cables can be enough to create trouble. Check your signals with an oscilloscope to make sure all is well. For those cases where driving a capacitive load is unavoidable, the circuit shown in Figure 14 is reasonable. If you are driving loads of varying capacitance, such as cables of varying lengths, you may wish to put a large cap on the output to swamp out the variations and make component values insensitive to the various loads. Do not assume you will be lucky: op amps with capacitive loads will oscillate. Typical values for DC and low frequency applications are shown in the circuit fragment. The design equations for Figure 14 go beyond the scope of this paper. Figure 14: Op amp output circuit for capacitive loads Besides using op amps to buffer passive resistor dividers as in the circuits above, it is also possible to bias signals by adjusting the operating point of the op amp itself. With this approach, the number of op amps required can sometimes be reduced. A popular circuit along these lines is the biased inverting amp: Figure 15: Biased inverting op amp circuit 18

19 The transfer function for this circuit is: V out = (B/A) V in + (1 + B/A) V bias (25) This equation is derived using the fact that the negative feedback drives the - input to match the + input, and the op amp input currents are negligible. As an example, if A = 2B and V bias = 5/3, then the transfer equation for Figure 15 is: V out = V in / (26) and an input range of (-5,+5) is mapped into an output range of (5,0). This result should be compared with equation (9) for a two resistor passive design, as well as comparing equations (25) and (6). The op amp circuit adds an inversion, but otherwise the design steps for various input and output ranges are comparable. As with a two resistor divider, odd bias voltages like 5/3 may be required. However, here you can generate the bias with a simple unbuffered resistor divider because the high input impedance of the op amp + input will not load the divider. Taking this approach Figure 15 becomes: Figure 16: General difference op amp circuit The transfer function for this is simply an extension to equation (25): V out = (B/A) V 1 + (1 + B/A) (D/(C + D)) V 2 (27) where the inputs have been labeled V 1 and V 2 for generality. By selectively choosing (V 1, V 2 ) and (A, B, C, D) with this circuit, a surprising number of circuit variations are possible. A few special cases are given on the next page. 19

20 Special cases of equation (27) are: Description : standard Inverting amplifier with bias, (Figure 15) (V 1, V 2 ) (A, B, C, D) : V 1 = V input, V 2 = V bias, C = 0, D = Transfer function : V out = (B/A) V input + (1 + B/A) V bias Description : standard Non Inverting amplifier with bias and gain >= 1 (V 1, V 2 ) (A, B, C, D) : V 1 = V bias, V 2 = V input, C = 0, D = Transfer function : V out = (1 + B/A) V input + (B/A) V bias Description : Non Inverting amplifier with gain = 1/2 (V 1, V 2 ) (A, B, C, D) : V 1 = V 2 = V input, A = B, D = 3C Transfer function : V out = (1/2) V input Description : standard Difference amplifier with unity gain (V 1, V 2 ) (A, B, C, D) : A = B = C = D Transfer function : V out = V 2 V 1 Despite the many special cases possible with Figure 16 and equation (27), the standard inverting amplifier with bias has several advantages. In particular, the following is often a good match for mapping (-5,+5) into (5,0) with V bias = +5 volts: Figure 17: (-5,+5) to (5,0) inverting op amp circuit with bias This circuit is particularly attractive because the inverting stage inputs are maintained 20

21 at a constant voltage by the negative feedback and do not see much common mode stress. Furthermore, with the inverting stage inputs at a constant voltage, the bias source does not see any load variation with input signal. This makes it much easier to maintain a precision constant bias. Finally, this configuration requires only a positive bias voltage. By contrast, for a non-inverting circuit, the inputs would see full range common mode stress, a varying load would be placed on the bias source, and a negative bias would be required. Of course, a downside to the inverting amplifier is it does not have high input impedance. So a unity gain buffer has been added in Figure 17. This a reasonable tradeoff with many generic op amps optimized for unity gain performance. When constructing this circuit in the lab it is reasonable to make A = C = 10K and build the (A/2, C/2) resistors with pairs of 10K resistors in parallel. Depending on the op amp selection, it may even be possible to run the inverting stage from a single positive power supply. Beyond op amps, instrument amps can also be used to perform scaling and biasing. This is usually done by applying the desired bias to the instrument amp reference pin. An instrument amp is typically several op amps on a single integrated circuit with a difference amp at its core. Instrument amps have good and bad points. A good point is they have matched resistor pairs as part of the integrated circuit substrate. This can be help improve common mode rejection for some differential applications. On the bad side, they are not as available as op amps, they do not have as wide a range of performance specs, they are more expensive, and they do not have standardized pin outs. The standardized pin outs of dual and quad op amps makes it easy to try a variety of parts with different specs in the same circuit. For instrument amp designs, manufacturer spec sheets should be consulted. 21

22 Summary Several simple scaling and biasing techniques have been reviewed, along with the design equations for computing exact results. While other designs are certainly possible, the circuits presented here have proven simple and reliable for many applications. Among the most popular are: mapping (-5,+5) into (0,5) with a two resistor network mapping (-10,+10) into (0,5) with a three resistor network mapping (-5,+5) into (5,0) with a biased inverting op amp circuit These circuits are capable of precision low noise performance with inexpensive components. If your input or output ranges differ from the specific examples given here, use the design steps or tables presented in the sections above to compute custom component values. 22

23 Parallel lines never meet Caliente, Nevada, 2006 Scaling and Biasing Analog Signals Copyright c, Symmetric Research, (2007/11/24) This material can only be reproduced in whole or part with the written permission of Symmetric Research No guarantee of suitability for any application is made with this document All liabilities are the responsibility of the user K. Wyss Web: 23

### MAS.836 HOW TO BIAS AN OP-AMP

MAS.836 HOW TO BIAS AN OP-AMP Op-Amp Circuits: Bias, in an electronic circuit, describes the steady state operating characteristics with no signal being applied. In an op-amp circuit, the operating characteristic

### EE 1202 Experiment #7 Signal Amplification

EE 1202 Experiment #7 Signal Amplification 1. Introduction and Goal: s increase the power (amplitude) of an electrical signal. They are used in audio and video systems and appliances. s are designed to

### Operational Amplifiers

Operational Amplifiers Introduction The operational amplifier (op-amp) is a voltage controlled voltage source with very high gain. It is a five terminal four port active element. The symbol of the op-amp

### BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-4 SOME USEFUL LAWS IN BASIC ELECTRONICS

BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-4 SOME USEFUL LAWS IN BASIC ELECTRONICS Hello everybody! In a series of lecture on basic electronics, learning by doing, we now

### Operational Amplifier - IC 741

Operational Amplifier - IC 741 Tabish December 2005 Aim: To study the working of an 741 operational amplifier by conducting the following experiments: (a) Input bias current measurement (b) Input offset

### The output signal may be of the same form as the input signal, i.e. V in produces V out

What is an amplifier? Operational Amplifiers A device that takes an input (current, voltage, etc.) and produces a correlated output Input Signal Output Signal Usually the output is a multiple of the input

### Operational Amplifiers

perational Amplifiers. perational Amplifiers perational amplifiers (commonly known as opamps) are integrated circuits designed to amplify small voltages (or currents) to usable levels. The physical packaging

### EXPERIMENT 1.2 CHARACTERIZATION OF OP-AMP

1.17 EXPERIMENT 1.2 CHARACTERIZATION OF OPAMP 1.2.1 OBJECTIVE 1. To sketch and briefly explain an operational amplifier circuit symbol and identify all terminals 2. To list the amplifier stages in a typical

### LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

### ELECTRONICS. EE 42/100 Lecture 8: Op-Amps. Rev C 2/8/2012 (9:54 AM) Prof. Ali M. Niknejad

A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 8 p. 1/23 EE 42/100 Lecture 8: Op-Amps ELECTRONICS Rev C 2/8/2012 (9:54 AM) Prof. Ali M. Niknejad University of California, Berkeley

### Lab 7: Operational Amplifiers Part I

Lab 7: Operational Amplifiers Part I Objectives The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op amp circuits,

### Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment.

Op-Amp Simulation EE/CS 5720/6720 Read Chapter 5 in Johns & Martin before you begin this assignment. This assignment will take you through the simulation and basic characterization of a simple operational

### SINGLE-SUPPLY OPERATION OF OPERATIONAL AMPLIFIERS

SINGLE-SUPPLY OPERATION OF OPERATIONAL AMPLIFIERS One of the most common applications questions on operational amplifiers concerns operation from a single supply voltage. Can the model OPAxyz be operated

### Designing a Poor Man s Square Wave Signal Generator. EE-100 Lab: Designing a Poor Man s Square Wave Signal Generator - Theory

EE-100 Lab: - Theory 1. Objective The purpose of this laboratory is to introduce nonlinear circuit measurement and analysis. Your measurements will focus mainly on limiters and clamping amplifiers. During

### Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

### Operational Amplifiers: Part 2. Non-ideal Behavior of Feedback Amplifiers DC Errors and Large-Signal Operation

Operational Amplifiers: Part 2 Non-ideal Behavior of Feedback Amplifiers DC Errors and Large-Signal Operation by Tim J. Sobering Analog Design Engineer & Op Amp Addict Summary of Ideal Op Amp Assumptions

### Transistor Amplifiers

Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input

### Op amp DC error characteristics and the effect on high-precision applications

Op amp DC error characteristics and the effect on high-precision applications Srudeep Patil, Member of Technical Staff, Maxim Integrated - January 01, 2014 This article discusses the DC limitations of

### Reading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189-212, 222 224)

6 OP AMPS II 6 Op Amps II In the previous lab, you explored several applications of op amps. In this exercise, you will look at some of their limitations. You will also examine the op amp integrator and

### ELEC 2020 EXPERIMENT 6 Zener Diodes and LED's

ELEC 2020 EXPERIMENT 6 Zener Diodes and LED's Objectives: The experiments in this laboratory exercise will provide an introduction to diodes. You will use the Bit Bucket breadboarding system to build and

### Bipolar Transistor Amplifiers

Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must

### Basic DACs for Electronic Engineers

No. AN9741 July 1997 Intersil Linear Basic DACs for Electronic Engineers Author: Ronald Mancini Why and Where are DACs Used? The name is digital-to-analog converter, and the function of a DAC, as the name

### Frequency response of a general purpose single-sided OpAmp amplifier

Frequency response of a general purpose single-sided OpAmp amplifier One configuration for a general purpose amplifier using an operational amplifier is the following. The circuit is characterized by:

### Lab 9: Op Amps Lab Assignment

3 class days 1. Differential Amplifier Source: Hands-On chapter 8 (~HH 6.1) Lab 9: Op Amps Lab Assignment Difference amplifier. The parts of the pot on either side of the slider serve as R3 and R4. The

### AN-581 APPLICATION NOTE

a AN-58 APPLICATION NOTE One Technology Way P.O. Box 906 Norwood, MA 02062-906 Tel: 78/329-4700 Fax: 78/326-8703 www.analog.com Biasing and Decoupling Op Amps in Single Supply Applications by Charles Kitchin

### Chapter No. 3 Differential Amplifiers

Chapter No. 3 Differential Amplifiers Operational Amplifiers: The operational amplifier is a direct-coupled high gain amplifier usable from 0 to over 1MH Z to which feedback is added to control its overall

### The Electronic Scale

The Electronic Scale Learning Objectives By the end of this laboratory experiment, the experimenter should be able to: Explain what an operational amplifier is and how it can be used in amplifying signal

### Chapter 19 Operational Amplifiers

Chapter 19 Operational Amplifiers The operational amplifier, or op-amp, is a basic building block of modern electronics. Op-amps date back to the early days of vacuum tubes, but they only became common

### Lab 4: BJT Amplifiers Part I

Lab 4: BJT Amplifiers Part I Objectives The objective of this lab is to learn how to operate BJT as an amplifying device. Specifically, we will learn the following in this lab: The physical meaning of

### Solving for Voltage and Current

Chapter 3 Solving for Voltage and Current Nodal Analysis If you know Ohm s Law, you can solve for all the voltages and currents in simple resistor circuits, like the one shown below. In this chapter, we

### Application Report. Mixed Signal Products SLAA067

Application Report July 1999 Mixed Signal Products SLAA067 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product

### Current vs. Voltage Feedback Amplifiers

Current vs. ltage Feedback Amplifiers One question continuously troubles the analog design engineer: Which amplifier topology is better for my application, current feedback or voltage feedback? In most

### EE320L Electronics I. Laboratory. Laboratory Exercise #5. Clipping and Clamping Circuits. Angsuman Roy

EE320L Electronics I Laboratory Laboratory Exercise #5 Clipping and Clamping Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective: The purpose

### Generating Common Waveforms Using the LM555, Operational Amplifiers, and Transistors

Generating Common Waveforms Using the LM555, Operational Amplifiers, and Transistors Kenneth Young November 16, 2012 I. Abstract The generation of precise waveforms may be needed within any circuit design.

### BASICS OF BJT BIAS DESIGN AND SOME STABILITY

BASICS OF BJT BIAS DESIGN AND SOME STABILITY CONSIDERATIONS November 18, 2015 J.L. 1 A BJT AMPLIFIER WITH VOLTAGE DIVIDER BIAS 1 In this context a few practical examples are given to demonstrate strategies

### BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS

BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-12 TRANSISTOR BIASING Emitter Current Bias Thermal Stability (RC Coupled Amplifier) Hello everybody! In our series of lectures

### Content Map For Career & Technology

Content Strand: Applied Academics CT-ET1-1 analysis of electronic A. Fractions and decimals B. Powers of 10 and engineering notation C. Formula based problem solutions D. Powers and roots E. Linear equations

### FILTER CIRCUITS. A filter is a circuit whose transfer function, that is the ratio of its output to its input, depends upon frequency.

FILTER CIRCUITS Introduction Circuits with a response that depends upon the frequency of the input voltage are known as filters. Filter circuits can be used to perform a number of important functions in

### LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common

### BJT AC Analysis. by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008

by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008 Introduction This note will discuss AC analysis using the beta, re transistor model shown in Figure 1 for the three types of amplifiers: common-emitter,

### Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1

Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment

### Peggy Alavi Application Engineer September 3, 2003

Op-Amp Basics Peggy Alavi Application Engineer September 3, 2003 Op-Amp Basics Part 1 Op-Amp Basics Why op-amps Op-amp block diagram Input modes of Op-Amps Loop Configurations Negative Feedback Gain Bandwidth

### Application Report SLOA030

Application Report October 1999 Mixed Signal Products SLOA030 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product

### BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS

BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-11 TRANSISTOR BIASING (Common Emitter Circuits, Fixed Bias, Collector to base Bias) Hello everybody! In our series of lectures

### Material and Equipment NI ELVIS 741 Op Amp, 5k pot, Assorted Resistors (10k, 100k, 220k (2), 100 (2), 560 )

Lab 8 Operational Amplifier Characteristics Purpose The purpose of this lab is to study the non-ideal characteristics of the operational amplifier. The characteristics that will be investigated include

### Series and Parallel Resistive Circuits

Series and Parallel Resistive Circuits The configuration of circuit elements clearly affects the behaviour of a circuit. Resistors connected in series or in parallel are very common in a circuit and act

### OPERATIONAL AMPLIFIERS. o/p

OPERATIONAL AMPLIFIERS 1. If the input to the circuit of figure is a sine wave the output will be i/p o/p a. A half wave rectified sine wave b. A fullwave rectified sine wave c. A triangular wave d. A

### The 2N3393 Bipolar Junction Transistor

The 2N3393 Bipolar Junction Transistor Common-Emitter Amplifier Aaron Prust Abstract The bipolar junction transistor (BJT) is a non-linear electronic device which can be used for amplification and switching.

### Multi-Stage Amplifiers

Experiment-4 Multi-Stage Amplifiers Introduction The objectives of this experiment are to examine the characteristics of several multi-stage amplifier configurations. Several of these will be breadboarded

### The OP AMP -, Figure 1

The OP AMP Amplifiers, in general, taking as input, one or more electrical signals, and produce as output, one or more variations of these signals. The most common use of an amplifier is to accept a small

### DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems

### Use and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135)

Use and Application of Output Limiting Amplifiers (HFA111, HFA110, HFA11) Application Note November 1996 AN96 Introduction Amplifiers with internal voltage clamps, also known as limiting amplifiers, have

### OPERATIONAL AMPLIFIERS

INTRODUCTION OPERATIONAL AMPLIFIERS The student will be introduced to the application and analysis of operational amplifiers in this laboratory experiment. The student will apply circuit analysis techniques

### CMOY Headphone Project Electronic Lab Phys 318

Project Overview There are two kinds of circuits that need to be built for the headphone amplifier project. ) A power circuit 2) Two amplifier circuits You will build one of each of these circuits on a

### The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering

The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering Final Design Report Dual Channel Stereo Amplifier By: Kristen Gunia Prepared

### Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-2 Transistor

### PHYSICS 326 LAB #2: The Voltage Divider Page 1

PHYSICS 326 LAB #2: The Voltage Divider Page 1 PURPOSES: to gain some experience with soldering to introduce the concept and jargon of voltage dividers to introduce the use of the Thevenin equivalent method

### Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

### CHAPTER 16 OSCILLATORS

CHAPTER 16 OSCILLATORS 16-1 THE OSCILLATOR - are electronic circuits that generate an output signal without the necessity of an input signal. - It produces a periodic waveform on its output with only the

### EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS

1 EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides

### Basic Op Amp Circuits

Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of

### Lab 3. Transistor and Logic Gates

Lab 3. Transistor and Logic Gates Laboratory Instruction Today you will learn how to use a transistor to amplify a small AC signal as well as using it as a switch to construct digital logic circuits. Introduction

### DIODE CIRCUITS CHAPTER 2

CHAPTER 2 DIODE CIRCUITS As discussed in the previous section, diodes are essentially one-way valves. They carry current in one direction, but block current in the other. In addition, in the forward conduction

### Lab 1: The Digital Oscilloscope

PHYSICS 220 Physical Electronics Lab 1: The Digital Oscilloscope Object: To become familiar with the oscilloscope, a ubiquitous instrument for observing and measuring electronic signals. Apparatus: Tektronix

### LAB ELEC 25.CALC From Physics with Calculators, Vernier Software & Technology, 2003

OHM S LAW LAB ELEC 25.CALC From Physics with Calculators, Vernier Software & Technology, 2003 INTRODUCTION The fundamental relationship among the three important electrical quantities current, voltage,

### Differential Op Amp Single-Supply Design Techniques

Application Note SLOA07 September 00 Differential Op Amp Single-Supply Design Techniques Bruce Carter High Performance Linear ABSTRACT There is a lot of confusion about how to operate a fully differential

### Technical Note #3. Error Amplifier Design and Applications. Introduction

Technical Note #3 Error Amplifier Design and Applications Introduction All regulating power supplies require some sort of closed-loop control to force the output to match the desired value. Both digital

### Zen I/V Converter. By Nelson Pass

Zen I/V Converter By Nelson Pass Thirteen years ago Pass Labs launched the D1, a dedicated Digital to Analog converter for high end audio. It was based on balanced PCM63 DAC chips with a current source

### PH 210 Electronics Laboratory I Instruction Manual

PH 210 Electronics Laboratory I Instruction Manual Index Page No General Instructions 2 Experiment 1 Common Emitter (CE) Amplifier 4 Experiment 2 Multistage amplifier: Cascade of two CE stages 7 Experiment

### " = R # C. Create your sketch so that Q(t=τ) is sketched above the delineated tic mark. Your sketch. 1" e " t & (t) = Q max

Physics 241 Lab: Circuits DC Source http://bohr.physics.arizona.edu/~leone/ua/ua_spring_2010/phys241lab.html Name: Section 1: 1.1. Today you will investigate two similar circuits. The first circuit is

### Chapter 12: The Operational Amplifier

Chapter 12: The Operational Amplifier 12.1: Introduction to Operational Amplifier (Op-Amp) Operational amplifiers (op-amps) are very high gain dc coupled amplifiers with differential inputs; they are used

### CIRCUITS LABORATORY EXPERIMENT 9. Operational Amplifiers

CIRCUITS LABORATORY EXPERIMENT 9 Operational Amplifiers 9.1 INTRODUCTION An operational amplifier ("op amp") is a direct-coupled, differential-input, highgain voltage amplifier, usually packaged in the

### ECE201 Laboratory 1 Basic Electrical Equipment and Ohm s and Kirchhoff s Laws (Created by Prof. Walter Green, Edited by Prof. M. J.

ECE201 Laboratory 1 Basic Electrical Equipment and Ohm s and Kirchhoff s Laws (Created by Prof. Walter Green, Edited by Prof. M. J. Roberts) Objectives The objectives of Laboratory 1 are learn to operate

### Tutorial #5: Designing a Common-Emitter Amplifier

SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Tutorial #5: Designing a Common-Emitter Amplifier BACKGROUND There

### Operational Amplifiers - Configurations and Characteristics

Operational Amplifiers - Configurations and Characteristics What is an Op Amp An Op Amp is an integrated circuit that can be used to amplify both DC and AC signals. One of the most common Op Amps available

### V out. Figure 1: A voltage divider on the left, and potentiometer on the right.

Living with the Lab Fall 202 Voltage Dividers and Potentiometers Gerald Recktenwald v: November 26, 202 gerry@me.pdx.edu Introduction Voltage dividers and potentiometers are passive circuit components

### EE105 Fall 2014 Microelectronic Devices and Circuits. Operational Amplifier Error Sources: dc Current and Output Range Limitations

EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 Operational Amplifier Error Sources: dc Current and Output Range Limitations dc error

### Charge and Discharge of a Capacitor

Charge and Discharge of a Capacitor INTRODUCTION Capacitors 1 are devices that can store electric charge and energy. Capacitors have several uses, such as filters in DC power supplies and as energy storage

### Log Amp Basics X = 1. Figure 1: Graph of Y = log (X)

MT077 TUTORIAL Log Amp Basics BASIC LOG AMP CONCEPTS AND TERMINOLOGY The term "Logarithmic Amplifier" (generally abbreviated to "log amp") is something of a misnomer, and "Logarithmic Converter" would

### Figure 1. Diode circuit model

Semiconductor Devices Non-linear Devices Diodes Introduction. The diode is two terminal non linear device whose I-V characteristic besides exhibiting non-linear behavior is also polarity dependent. The

### Eðlisfræði 2, vor 2007

[ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 31. Alternating Current Circuits Assignment is due at 2:00am on Wednesday, March 21, 2007 Credit for problems submitted late will decrease to 0% after the

### Electrical Resonance

Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION

### Comparator and Schmitt Trigger

Comparator and Schmitt Trigger Comparator circuits find frequent application in measurement and instrumentation systems. Learning Objectives Understand the Op-Amp Comparator with and without an offset

### Resistors in Series and Parallel

Resistors in Series and Parallel INTRODUCTION Direct current (DC) circuits are characterized by the quantities current, voltage and resistance. Current is the rate of flow of charge. The SI unit is the

### Fully Differential Op Amps Made Easy

Application Report SLOA099 - May 2002 Fully Differential Op Amps Made Easy Bruce Carter High Performance Linear ABSTRACT Fully differential op amps may be unfamiliar to some designers. This application

### Precision Diode Rectifiers

by Kenneth A. Kuhn March 21, 2013 Precision half-wave rectifiers An operational amplifier can be used to linearize a non-linear function such as the transfer function of a semiconductor diode. The classic

### EXPERIMENT 4:- MEASUREMENT OF REACTANCE OFFERED BY CAPACITOR IN DIFFERENT FREQUENCY FOR R-C CIRCUIT

Kathmandu University Department of Electrical and Electronics Engineering BASIC ELECTRICAL LAB (ENGG 103) EXPERIMENT 4:- MEASUREMENT OF REACTANCE OFFERED BY CAPACITOR IN DIFFERENT FREQUENCY FOR R-C CIRCUIT

### ECE 2201 PRELAB 2 DIODE APPLICATIONS

ECE 2201 PRELAB 2 DIODE APPLICATIONS P1. Review this experiment IN ADVANCE and prepare Circuit Diagrams, Tables, and Graphs in your notebook, prior to coming to lab. P2. Hand Analysis: (1) For the zener

### EE320L Electronics I. Laboratory. Laboratory Exercise #10. Frequency Response of BJT Amplifiers. Angsuman Roy

EE320L Electronics I Laboratory Laboratory Exercise #10 Frequency Response of BJT Amplifiers By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective:

### Buffer Op Amp to ADC Circuit Collection

Application Report SLOA098 March 2002 Buffer Op Amp to ADC Circuit Collection Bruce Carter High Performance Linear Products ABSTRACT This document describes various techniques that interface buffer op

### EXERCISES in ELECTRONICS and SEMICONDUCTOR ENGINEERING

Department of Electrical Drives and Power Electronics EXERCISES in ELECTRONICS and SEMICONDUCTOR ENGINEERING Valery Vodovozov and Zoja Raud http://learnelectronics.narod.ru Tallinn 2012 2 Contents Introduction...

### DC Circuits: Operational Amplifiers Hasan Demirel

DC Circuits: Operational Amplifiers Hasan Demirel Op Amps: Introduction Op Amp is short form of operational amplifier. An op amp is an electronic unit that behaves like a voltage controlled voltage source.

### IGFET Transistors. Biasing, Gain, Input and Output. James K Beard, Ph.D. Assistant Professor Rowan University

IGFET Transistors Biasing, Gain, Input and Output James K Beard, Ph.D. Assistant Professor Rowan University beard@rowan.edu Table of Contents IGFET Transistors...i Biasing, Gain, Input and Output... i

### Dual High Speed, Implanted BiFET Op Amp AD644

a FEATURES Matched Offset Voltage Matched Offset Voltage Over Temperature Matched Bias Currents Crosstalk 124 db at 1 khz Low Bias Current: 35 pa max Warmed Up Low Offset Voltage: 500 V max Low Input Voltage

### Negative Feedback with Capacitors

Negative Feedback with Capacitors http://gaussmarkov.net January 8, 008 The web page Op-Amps 4: Negative Feedback, describes several characteristics of the gain of a circuit like this one. This document

### More Op-Amp Circuits; Temperature Sensing

ECE 2A Lab #5 Lab 5 More OpAmp Circuits; Temperature Sensing Overview In this lab we will continue our exploration of opamps but this time in the context of a specific application: temperature sensing.

### BIASING MMIC AMPLIFIERS (e.g., ERA SERIES) (AN )

Introduction BIASING MMIC AMPLIFIERS (e.g., ERA SERIES) (AN-60-010) The Mini-Circuits family of microwave monolithic integrated circuit (MMIC) Darlington amplifiers offers the RF designer multi-stage performance