1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9.

Size: px
Start display at page:

Download "1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9."

Transcription

1 .(6pts Find symmetric equations of the line L passing through the point (, 5, and perpendicular to the plane x + 3y z = 9. (a x = y = z (b x (c (x = ( 5(y 3 = z + (d x (e (x + 3(y 3 (z = 9 = y 3 5 = z + = y 3 5 = z + The symmetric equations of line are given by (x x 0 /a = (y y 0 /b = (z z 0 /c, where (x 0, y 0, z 0 is a point on the line and a, b, c is a direction vector. Since L is perpendicular to the plane x + 3y z = 9, then we can take the normal to the plane as the direction vector, this is,, 3, is a direction vector of L. Therefore, the symmetric equations are x = y + 5 = z 3. = 9.(6pts The two curves below intersect at the point (, 4, = r (0 = r (. Find the cosine of the angle of intersection ( r (t = e 3t i + 4 sin t + π j + (t k r (t = ti + 4j + (t k (a 5 (b 0 (c 5 (d e e + 4 (e 3 Note r (t = ( 3e 3t, 4 cos t + π, t r (t =, 0, t To compute the angle of intersection we find r (0 = 3, 0, 0 r ( =, 0, so that cos θ = r (0 r ( r (0 r ( = =. 5 3.(6pts Find the projection of the vector,, 5 onto the vector,, 4 (a,, 4 (b,, 5 (c 6, 3, (d 3, 3, 5 (e,, 5 5 proj,,4 (,, 5 =,, 4,, 5,, 4,, 4,, 4 =,, 4 =,, 4

2 4.(6pts Find Recall: r(xdx where sec x dx = tan x + C. r(x = (sec xi + e x k (a (tan x + C i + C j + (e x + C 3 k (b (tan x + C i + (e x + C k (c (tan xi + e x k (d tan x + e x + C (e (tan x + Ci + Cj + (e x + Ck ((sec r(xdx = xi + e x k dx ( ( = sec xdx i + ( 0dx j + e x dx k = (tan x + C i + C j + (e x + C 3 k 5.(6ptsThe curvature of the function y = sin x at x = π is (a (b 0 (c (d (e Does not exist. ( π Let r(t = t, sin t, 0. Then r (t =, cos t, 0, r (t = 0, sin t, 0, r = ( π, 0, 0, and r = 0,, 0. One of the formulas for curvature says that κ = r r r 3. But r r at t = π is 0 0 = 0, 0, and 0, 0, = (6pts What is the (approximate normal component of the acceleration for a car traveling 9 m/s around a curve with curvature κ = /3 m. (a 54.3 m/s (b.9 m/s (c m/s (d 400. m/s (e 40.3 m/s Using the formula that a N = κv. Plugging in the values from the problem we find that a N = (6pts Find the area of the triangle formed by the three points (, 0,, (, 0, and (3, 3, 3. (a 3 (b 0 (c 4 (d 3 (e.

3 Two vectors which form two sides of the triangle are, 0, =, 0,, 0, and, 3, = 3, 3, 3, 0,. Hence 0 = 3 0, (, 3 0 = 3, 0, 3 3 The area of the parallelogram is 3, 0, 3 = = 3 and the area of the triangle is half this. 8.(6pts Find the volume of the parallelepiped spanned by the three vectors,,, 0,, and 3,,. (a (b 3 (c 9 (d 3 (e 0 Answer is the absolute value of the triple product 0 3 = ( = = 9.(0pts Find an equation for the plane which goes through the point (,, 5 and contains the line,, t + 3, 4,. One vector in the plane is,,. A second is 3, 4,,, 5 =,, 4. Hence a normal vector for the plane is N = 4 = + 4, ( + 8, 4 =, 6, Hence an equation is, 6, x, y, z =, 6,,, 5 = 0 = 0 or x + 6y + z = 0 or x + 3y + z = 0. 0.(0pts Let Π be the plane passing through the point Q = (5, 0, 3 with normal vector n = 3,,. Let P be the point on Π which is closest to the origin. Let l be the line passing through the origin and P. Hint: parts (a and (b can be answered independently of each other. (a Find the co-ordinates of P. (b Find a vector equation for l. We find the position vector of P as OP. = Proj n OQ = OQ n n n n = 3,, = 6,, and so P = (6,,. The line l has direction n, and passes through the origin, so has vector equation 3,, x, y, z = 0

4 .(0pts Suppose the curve C has parametric equations: x(t = t 3 t, y(t = t, z(t = t + t (a Let P = (0,,. Find t 0 so that P = (x(t 0, y(t 0, z(t 0. (b Let r(t = t 3 t, t, t + t. Find r (t 0, the tangent vector to the above curve C at the point P = (0,,. (c Find the parametric equation for the tangent line to the above curve C at the point P = (0,,. (a 0 = t 3 0 t 0 = t 0 (t 0 (t 0 + implies t = 0,, or. = t 0 implies t 0 = i.e. t 0 =. (b r (t = 3t, t, t + r ( =,, 3 (c Let v(t =,, 3. Then the vector equation for the tangent line to C at P is given by tv( + 0,, = t, t, 3t + 0,, = t, t, 3t +. Then the parametric equation for the tangent line to C at P is given by x(t = t, y(t = t, z(t = 3t +.

5 .(0pts Suppose a particle has acceleration function a(t = j (sin tk for t 0. (t + Suppose that the initial position is r(0 = k and the initial velocity is v(0 = i + j + k. (a Find the velocity function. (b Find the position function. First find the velocity function as the integral of the acceleration function ( v(t = a(tdt = C i + t + + C j + (cos t + C 3 k Next we plug in t = 0 and compare with the initial velocity ( v(0 = C i C j + (cos 0 + C 3 k = C i + ( + C j + ( + C 3 k and by comparison to the given initial velocity, v(0 = i + j + k, we have C =, C = C 3 = 0 So, the velocity function is v(t = i + j + (cos tk t + The position function is the integral of the velocity function r(t = v(tdt = (t + D i + (ln(t + + D j + (sin t + D 3 k Next, we plug in t = 0 and compare with the initial position r(0 = (0 + D i + (ln(0 + + D j + (sin 0 + D 3 k = D i + D j + D 3 k and by comparison to the given initial position, r(0 = k, we have Thus, the position function is D = D = 0 D 3 = r(t = ti + ln(t + j + + sin tk OR using vector arithmetic v(t = 0, (t +, sin t dt = 0, Then v(0 = 0,, + C =,, so C =, 0, 0 and v(t =, t +, cos t t +, cos t + C Then r(t =, t +, cos t dt = t, ln t +, sin t + D Then r(0 = 0, 0, 0 + D = 0, 0, 0 so D = 0, 0, and r(t = t, ln t +, + sin t 3.(0pts Find an equation for the osculating plane of r(t = t, cos t, e t when t = 0. r (t =, sin t, e t, r (t = 0, cos t, e t, r(0 = 0,,, r (0 =, 0,, and r (0 = 0,,. The normal vector is, 0, 0,, =,,. So an equation is (x 0 (y (z = 0 or x y z =.

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

More information

Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

More information

Review Sheet for Test 1

Review Sheet for Test 1 Review Sheet for Test 1 Math 261-00 2 6 2004 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And

More information

( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those

( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those 1.(6pts) Which of the following vectors has the same direction as v 1,, but has length 6? (a), 4, 4 (b),, (c) 4,, 4 (d), 4, 4 (e) 0, 6, 0 The length of v is given by ( 1) + + 9 3 We would like to make

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

LINES AND PLANES CHRIS JOHNSON

LINES AND PLANES CHRIS JOHNSON LINES AND PLANES CHRIS JOHNSON Abstract. In this lecture we derive the equations for lines and planes living in 3-space, as well as define the angle between two non-parallel planes, and determine the distance

More information

Geometric description of the cross product of the vectors u and v. The cross product of two vectors is a vector! u x v is perpendicular to u and v

Geometric description of the cross product of the vectors u and v. The cross product of two vectors is a vector! u x v is perpendicular to u and v 12.4 Cross Product Geometric description of the cross product of the vectors u and v The cross product of two vectors is a vector! u x v is perpendicular to u and v The length of u x v is uv u v sin The

More information

Section 11.1: Vectors in the Plane. Suggested Problems: 1, 5, 9, 17, 23, 25-37, 40, 42, 44, 45, 47, 50

Section 11.1: Vectors in the Plane. Suggested Problems: 1, 5, 9, 17, 23, 25-37, 40, 42, 44, 45, 47, 50 Section 11.1: Vectors in the Plane Page 779 Suggested Problems: 1, 5, 9, 17, 3, 5-37, 40, 4, 44, 45, 47, 50 Determine whether the following vectors a and b are perpendicular. 5) a = 6, 0, b = 0, 7 Recall

More information

Equations Involving Lines and Planes Standard equations for lines in space

Equations Involving Lines and Planes Standard equations for lines in space Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity

More information

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors

More information

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v, 1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It

More information

Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155

Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155 Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate

More information

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0, Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We

More information

Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000)

Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000) Some Comments on the Derivative of a Vector with applications to angular momentum and curvature E. L. Lady (October 18, 2000) Finding the formula in polar coordinates for the angular momentum of a moving

More information

JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson

JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson JUST THE MATHS UNIT NUMBER 8.5 VECTORS 5 (Vector equations of straight lines) by A.J.Hobson 8.5.1 Introduction 8.5. The straight line passing through a given point and parallel to a given vector 8.5.3

More information

12.5 Equations of Lines and Planes

12.5 Equations of Lines and Planes Instructor: Longfei Li Math 43 Lecture Notes.5 Equations of Lines and Planes What do we need to determine a line? D: a point on the line: P 0 (x 0, y 0 ) direction (slope): k 3D: a point on the line: P

More information

Vector Algebra CHAPTER 13. Ü13.1. Basic Concepts

Vector Algebra CHAPTER 13. Ü13.1. Basic Concepts CHAPTER 13 ector Algebra Ü13.1. Basic Concepts A vector in the plane or in space is an arrow: it is determined by its length, denoted and its direction. Two arrows represent the same vector if they have

More information

MAT 1341: REVIEW II SANGHOON BAEK

MAT 1341: REVIEW II SANGHOON BAEK MAT 1341: REVIEW II SANGHOON BAEK 1. Projections and Cross Product 1.1. Projections. Definition 1.1. Given a vector u, the rectangular (or perpendicular or orthogonal) components are two vectors u 1 and

More information

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm. PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle

More information

Math 241 Lines and Planes (Solutions) x = 3 3t. z = 1 t. x = 5 + t. z = 7 + 3t

Math 241 Lines and Planes (Solutions) x = 3 3t. z = 1 t. x = 5 + t. z = 7 + 3t Math 241 Lines and Planes (Solutions) The equations for planes P 1, P 2 and P are P 1 : x 2y + z = 7 P 2 : x 4y + 5z = 6 P : (x 5) 2(y 6) + (z 7) = 0 The equations for lines L 1, L 2, L, L 4 and L 5 are

More information

Section 9.5: Equations of Lines and Planes

Section 9.5: Equations of Lines and Planes Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that

More information

Solutions for Review Problems

Solutions for Review Problems olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

More information

Section 1.1. Introduction to R n

Section 1.1. Introduction to R n The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

More information

5.3 The Cross Product in R 3

5.3 The Cross Product in R 3 53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or

More information

PROBLEM SET. Practice Problems for Exam #1. Math 2350, Fall 2004. Sept. 30, 2004 ANSWERS

PROBLEM SET. Practice Problems for Exam #1. Math 2350, Fall 2004. Sept. 30, 2004 ANSWERS PROBLEM SET Practice Problems for Exam #1 Math 350, Fall 004 Sept. 30, 004 ANSWERS i Problem 1. The position vector of a particle is given by Rt) = t, t, t 3 ). Find the velocity and acceleration vectors

More information

1.5 Equations of Lines and Planes in 3-D

1.5 Equations of Lines and Planes in 3-D 40 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from

More information

Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product

Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product Dot product and vector projections (Sect. 12.3) Two definitions for the dot product. Geometric definition of dot product. Orthogonal vectors. Dot product and orthogonal projections. Properties of the dot

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1982, 2008. This chapter originates from material used by author at Imperial College, University of London, between 1981 and 1990. It is available free to all individuals,

More information

Math 209 Solutions to Assignment 7. x + 2y. 1 x + 2y i + 2. f x = cos(y/z)), f y = x z sin(y/z), f z = xy z 2 sin(y/z).

Math 209 Solutions to Assignment 7. x + 2y. 1 x + 2y i + 2. f x = cos(y/z)), f y = x z sin(y/z), f z = xy z 2 sin(y/z). Math 29 Solutions to Assignment 7. Find the gradient vector field of the following functions: a fx, y lnx + 2y; b fx, y, z x cosy/z. Solution. a f x x + 2y, f 2 y x + 2y. Thus, the gradient vector field

More information

Section 13.5 Equations of Lines and Planes

Section 13.5 Equations of Lines and Planes Section 13.5 Equations of Lines and Planes Generalizing Linear Equations One of the main aspects of single variable calculus was approximating graphs of functions by lines - specifically, tangent lines.

More information

Practice Final Math 122 Spring 12 Instructor: Jeff Lang

Practice Final Math 122 Spring 12 Instructor: Jeff Lang Practice Final Math Spring Instructor: Jeff Lang. Find the limit of the sequence a n = ln (n 5) ln (3n + 8). A) ln ( ) 3 B) ln C) ln ( ) 3 D) does not exist. Find the limit of the sequence a n = (ln n)6

More information

10.5. Click here for answers. Click here for solutions. EQUATIONS OF LINES AND PLANES. 3x 4y 6z 9 4, 2, 5. x y z. z 2. x 2. y 1.

10.5. Click here for answers. Click here for solutions. EQUATIONS OF LINES AND PLANES. 3x 4y 6z 9 4, 2, 5. x y z. z 2. x 2. y 1. SECTION EQUATIONS OF LINES AND PLANES 1 EQUATIONS OF LINES AND PLANES A Click here for answers. S Click here for solutions. 1 Find a vector equation and parametric equations for the line passing through

More information

Parametric Curves, Vectors and Calculus. Jeff Morgan Department of Mathematics University of Houston

Parametric Curves, Vectors and Calculus. Jeff Morgan Department of Mathematics University of Houston Parametric Curves, Vectors and Calculus Jeff Morgan Department of Mathematics University of Houston jmorgan@math.uh.edu Online Masters of Arts in Mathematics at the University of Houston http://www.math.uh.edu/matweb/grad_mam.htm

More information

Problem set on Cross Product

Problem set on Cross Product 1 Calculate the vector product of a and b given that a= 2i + j + k and b = i j k (Ans 3 j - 3 k ) 2 Calculate the vector product of i - j and i + j (Ans ) 3 Find the unit vectors that are perpendicular

More information

13.4 THE CROSS PRODUCT

13.4 THE CROSS PRODUCT 710 Chapter Thirteen A FUNDAMENTAL TOOL: VECTORS 62. Use the following steps and the results of Problems 59 60 to show (without trigonometry) that the geometric and algebraic definitions of the dot product

More information

Lecture 14: Section 3.3

Lecture 14: Section 3.3 Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

More information

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors 1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number

More information

2.1 Three Dimensional Curves and Surfaces

2.1 Three Dimensional Curves and Surfaces . Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two- or three-dimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The

More information

Parametric Equations and the Parabola (Extension 1)

Parametric Equations and the Parabola (Extension 1) Parametric Equations and the Parabola (Extension 1) Parametric Equations Parametric equations are a set of equations in terms of a parameter that represent a relation. Each value of the parameter, when

More information

Chapter 2. Parameterized Curves in R 3

Chapter 2. Parameterized Curves in R 3 Chapter 2. Parameterized Curves in R 3 Def. A smooth curve in R 3 is a smooth map σ : (a, b) R 3. For each t (a, b), σ(t) R 3. As t increases from a to b, σ(t) traces out a curve in R 3. In terms of components,

More information

= y y 0. = z z 0. (a) Find a parametric vector equation for L. (b) Find parametric (scalar) equations for L.

= y y 0. = z z 0. (a) Find a parametric vector equation for L. (b) Find parametric (scalar) equations for L. Math 21a Lines and lanes Spring, 2009 Lines in Space How can we express the equation(s) of a line through a point (x 0 ; y 0 ; z 0 ) and parallel to the vector u ha; b; ci? Many ways: as parametric (scalar)

More information

A vector is a directed line segment used to represent a vector quantity.

A vector is a directed line segment used to represent a vector quantity. Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector

More information

Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product

Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product Geometrical definition Properties Expression in components. Definition in components Properties Geometrical expression.

More information

Vector Spaces; the Space R n

Vector Spaces; the Space R n Vector Spaces; the Space R n Vector Spaces A vector space (over the real numbers) is a set V of mathematical entities, called vectors, U, V, W, etc, in which an addition operation + is defined and in which

More information

Vectors, Gradient, Divergence and Curl.

Vectors, Gradient, Divergence and Curl. Vectors, Gradient, Divergence and Curl. 1 Introduction A vector is determined by its length and direction. They are usually denoted with letters with arrows on the top a or in bold letter a. We will use

More information

Vector has a magnitude and a direction. Scalar has a magnitude

Vector has a magnitude and a direction. Scalar has a magnitude Vector has a magnitude and a direction Scalar has a magnitude Vector has a magnitude and a direction Scalar has a magnitude a brick on a table Vector has a magnitude and a direction Scalar has a magnitude

More information

Math 113 HW #7 Solutions

Math 113 HW #7 Solutions Math 3 HW #7 Solutions 35 0 Given find /dx by implicit differentiation y 5 + x 2 y 3 = + ye x2 Answer: Differentiating both sides with respect to x yields 5y 4 dx + 2xy3 + x 2 3y 2 ) dx = dx ex2 + y2x)e

More information

Exam 1 Sample Question SOLUTIONS. y = 2x

Exam 1 Sample Question SOLUTIONS. y = 2x Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

More information

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were: Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that

More information

Vector Fields and Line Integrals

Vector Fields and Line Integrals Vector Fields and Line Integrals 1. Match the following vector fields on R 2 with their plots. (a) F (, ), 1. Solution. An vector, 1 points up, and the onl plot that matches this is (III). (b) F (, ) 1,.

More information

MA261-A Calculus III 2006 Fall Homework 3 Solutions Due 9/22/2006 8:00AM

MA261-A Calculus III 2006 Fall Homework 3 Solutions Due 9/22/2006 8:00AM MA6-A Calculus III 6 Fall Homework Solutions Due 9//6 :AM 9. # Find the parametric euation and smmetric euation for the line of intersection of the planes + + z = and + z =. To write down a line euation,

More information

Winter 2012 Math 255. Review Sheet for First Midterm Exam Solutions

Winter 2012 Math 255. Review Sheet for First Midterm Exam Solutions Winter 1 Math 55 Review Sheet for First Midterm Exam Solutions 1. Describe the motion of a particle with position x,y): a) x = sin π t, y = cosπt, 1 t, and b) x = cost, y = tant, t π/4. a) Using the general

More information

1. Vectors and Matrices

1. Vectors and Matrices E. 8.02 Exercises. Vectors and Matrices A. Vectors Definition. A direction is just a unit vector. The direction of A is defined by dir A = A, (A 0); A it is the unit vector lying along A and pointed like

More information

1 3 4 = 8i + 20j 13k. x + w. y + w

1 3 4 = 8i + 20j 13k. x + w. y + w ) Find the point of intersection of the lines x = t +, y = 3t + 4, z = 4t + 5, and x = 6s + 3, y = 5s +, z = 4s + 9, and then find the plane containing these two lines. Solution. Solve the system of equations

More information

THREE DIMENSIONAL GEOMETRY

THREE DIMENSIONAL GEOMETRY Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

More information

Figure 1.1 Vector A and Vector F

Figure 1.1 Vector A and Vector F CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

More information

Math 215 HW #6 Solutions

Math 215 HW #6 Solutions Math 5 HW #6 Solutions Problem 34 Show that x y is orthogonal to x + y if and only if x = y Proof First, suppose x y is orthogonal to x + y Then since x, y = y, x In other words, = x y, x + y = (x y) T

More information

This function is symmetric with respect to the y-axis, so I will let - /2 /2 and multiply the area by 2.

This function is symmetric with respect to the y-axis, so I will let - /2 /2 and multiply the area by 2. INTEGRATION IN POLAR COORDINATES One of the main reasons why we study polar coordinates is to help us to find the area of a region that cannot easily be integrated in terms of x. In this set of notes,

More information

Section 2.4: Equations of Lines and Planes

Section 2.4: Equations of Lines and Planes Section.4: Equations of Lines and Planes An equation of three variable F (x, y, z) 0 is called an equation of a surface S if For instance, (x 1, y 1, z 1 ) S if and only if F (x 1, y 1, z 1 ) 0. x + y

More information

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a 88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small

More information

Solutions to Exercises, Section 5.1

Solutions to Exercises, Section 5.1 Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle

More information

Given three vectors A, B, andc. We list three products with formula (A B) C = B(A C) A(B C); A (B C) =B(A C) C(A B);

Given three vectors A, B, andc. We list three products with formula (A B) C = B(A C) A(B C); A (B C) =B(A C) C(A B); 1.1.4. Prouct of three vectors. Given three vectors A, B, anc. We list three proucts with formula (A B) C = B(A C) A(B C); A (B C) =B(A C) C(A B); a 1 a 2 a 3 (A B) C = b 1 b 2 b 3 c 1 c 2 c 3 where the

More information

Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.

Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. Math 312, Fall 2012 Jerry L. Kazdan Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. In addition to the problems below, you should also know how to solve

More information

Section 8.8. 1. The given line has equations. x = 3 + t(13 3) = 3 + 10t, y = 2 + t(3 + 2) = 2 + 5t, z = 7 + t( 8 7) = 7 15t.

Section 8.8. 1. The given line has equations. x = 3 + t(13 3) = 3 + 10t, y = 2 + t(3 + 2) = 2 + 5t, z = 7 + t( 8 7) = 7 15t. . The given line has equations Section 8.8 x + t( ) + 0t, y + t( + ) + t, z 7 + t( 8 7) 7 t. The line meets the plane y 0 in the point (x, 0, z), where 0 + t, or t /. The corresponding values for x and

More information

Math 115 HW #8 Solutions

Math 115 HW #8 Solutions Math 115 HW #8 Solutions 1 The function with the given graph is a solution of one of the following differential equations Decide which is the correct equation and justify your answer a) y = 1 + xy b) y

More information

AP Calculus AB 2009 Scoring Guidelines

AP Calculus AB 2009 Scoring Guidelines AP Calculus AB 9 Scoring Guidelines The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in 19,

More information

This makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5

This makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5 1. (Line integrals Using parametrization. Two types and the flux integral) Formulas: ds = x (t) dt, d x = x (t)dt and d x = T ds since T = x (t)/ x (t). Another one is Nds = T ds ẑ = (dx, dy) ẑ = (dy,

More information

Module 8 Lesson 4: Applications of Vectors

Module 8 Lesson 4: Applications of Vectors Module 8 Lesson 4: Applications of Vectors So now that you have learned the basic skills necessary to understand and operate with vectors, in this lesson, we will look at how to solve real world problems

More information

Section 12.6: Directional Derivatives and the Gradient Vector

Section 12.6: Directional Derivatives and the Gradient Vector Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate

More information

Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1)

Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1) Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1) In discussing motion, there are three closely related concepts that you need to keep straight. These are: If x(t) represents the

More information

Figure 2.1: Center of mass of four points.

Figure 2.1: Center of mass of four points. Chapter 2 Bézier curves are named after their inventor, Dr. Pierre Bézier. Bézier was an engineer with the Renault car company and set out in the early 196 s to develop a curve formulation which would

More information

C relative to O being abc,, respectively, then b a c.

C relative to O being abc,, respectively, then b a c. 2 EP-Program - Strisuksa School - Roi-et Math : Vectors Dr.Wattana Toutip - Department of Mathematics Khon Kaen University 200 :Wattana Toutip wattou@kku.ac.th http://home.kku.ac.th/wattou 2. Vectors A

More information

Mark Howell Gonzaga High School, Washington, D.C.

Mark Howell Gonzaga High School, Washington, D.C. Be Prepared for the Calculus Exam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice exam contributors: Benita Albert Oak Ridge High School,

More information

Homework #1 Solutions

Homework #1 Solutions MAT 303 Spring 203 Homework # Solutions Problems Section.:, 4, 6, 34, 40 Section.2:, 4, 8, 30, 42 Section.4:, 2, 3, 4, 8, 22, 24, 46... Verify that y = x 3 + 7 is a solution to y = 3x 2. Solution: From

More information

1.7 Cylindrical and Spherical Coordinates

1.7 Cylindrical and Spherical Coordinates 56 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.7 Cylindrical and Spherical Coordinates 1.7.1 Review: Polar Coordinates The polar coordinate system is a two-dimensional coordinate system in which the

More information

CHAPTER FIVE. 5. Equations of Lines in R 3

CHAPTER FIVE. 5. Equations of Lines in R 3 118 CHAPTER FIVE 5. Equations of Lines in R 3 In this chapter it is going to be very important to distinguish clearly between points and vectors. Frequently in the past the distinction has only been a

More information

Lecture L6 - Intrinsic Coordinates

Lecture L6 - Intrinsic Coordinates S. Widnall, J. Peraire 16.07 Dynamics Fall 2009 Version 2.0 Lecture L6 - Intrinsic Coordinates In lecture L4, we introduced the position, velocity and acceleration vectors and referred them to a fixed

More information

Dr. Fritz Wilhelm, DVC,8/30/2004;4:25 PM E:\Excel files\ch 03 Vector calculations.doc Last printed 8/30/2004 4:25:00 PM

Dr. Fritz Wilhelm, DVC,8/30/2004;4:25 PM E:\Excel files\ch 03 Vector calculations.doc Last printed 8/30/2004 4:25:00 PM E:\Ecel files\ch 03 Vector calculations.doc Last printed 8/30/2004 4:25:00 PM Vector calculations 1 of 6 Vectors are ordered sequences of numbers. In three dimensions we write vectors in an of the following

More information

MA261-A Calculus III 2006 Fall Homework 2 Solutions Due 9/13/2006 8:00AM

MA261-A Calculus III 2006 Fall Homework 2 Solutions Due 9/13/2006 8:00AM MA6-A Calculus III 006 Fall Homework Solutions Due 9/3/006 8:00AM 93 #6 Find a b, where a hs; s; 3si and b ht; t; 5ti a b (s) (t) + (s) ( 93 #8 Find a b, where a 4j 3k and b i + 4j + 6k t) + (3s) (5t)

More information

Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables

Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables The Calculus of Functions of Several Variables Section 1.4 Lines, Planes, Hyperplanes In this section we will add to our basic geometric understing of R n by studying lines planes. If we do this carefully,

More information

Recall that two vectors in are perpendicular or orthogonal provided that their dot

Recall that two vectors in are perpendicular or orthogonal provided that their dot Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

More information

Mathematics Notes for Class 12 chapter 10. Vector Algebra

Mathematics Notes for Class 12 chapter 10. Vector Algebra 1 P a g e Mathematics Notes for Class 12 chapter 10. Vector Algebra A vector has direction and magnitude both but scalar has only magnitude. Magnitude of a vector a is denoted by a or a. It is non-negative

More information

Differentiation of vectors

Differentiation of vectors Chapter 4 Differentiation of vectors 4.1 Vector-valued functions In the previous chapters we have considered real functions of several (usually two) variables f : D R, where D is a subset of R n, where

More information

Section 11.4: Equations of Lines and Planes

Section 11.4: Equations of Lines and Planes Section 11.4: Equations of Lines and Planes Definition: The line containing the point ( 0, 0, 0 ) and parallel to the vector v = A, B, C has parametric equations = 0 + At, = 0 + Bt, = 0 + Ct, where t R

More information

Name: ID: Discussion Section:

Name: ID: Discussion Section: Math 28 Midterm 3 Spring 2009 Name: ID: Discussion Section: This exam consists of 6 questions: 4 multiple choice questions worth 5 points each 2 hand-graded questions worth a total of 30 points. INSTRUCTIONS:

More information

HSC Mathematics - Extension 1. Workshop E4

HSC Mathematics - Extension 1. Workshop E4 HSC Mathematics - Extension 1 Workshop E4 Presented by Richard D. Kenderdine BSc, GradDipAppSc(IndMaths), SurvCert, MAppStat, GStat School of Mathematics and Applied Statistics University of Wollongong

More information

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

More information

Two vectors are equal if they have the same length and direction. They do not

Two vectors are equal if they have the same length and direction. They do not Vectors define vectors Some physical quantities, such as temperature, length, and mass, can be specified by a single number called a scalar. Other physical quantities, such as force and velocity, must

More information

5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1

5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1 5 VECTOR GEOMETRY Chapter 5 Vector Geometry Objectives After studying this chapter you should be able to find and use the vector equation of a straight line; be able to find the equation of a plane in

More information

Apr 23, 2015. Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23, 2015 sketching 1 / and 19pa

Apr 23, 2015. Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23, 2015 sketching 1 / and 19pa Calculus with Algebra and Trigonometry II Lecture 23 Final Review: Curve sketching and parametric equations Apr 23, 2015 Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23,

More information

AP Calculus AB 2012 Scoring Guidelines

AP Calculus AB 2012 Scoring Guidelines AP Calculus AB Scoring Guidelines The College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in 9, the College

More information

Vector Functions. EXAMPLE 13.1.1 Describethecurves cost,sint,0, cost,sint,t,and cost,sint,2t.

Vector Functions. EXAMPLE 13.1.1 Describethecurves cost,sint,0, cost,sint,t,and cost,sint,2t. 13 Vector Functions ½ º½ ËÔ ÙÖÚ We have already seen that a convenient way to describe a line in three dimensions is to provide a vector that points to every point on the line as a parameter t varies,

More information

13 CALCULUS OF VECTOR-VALUED FUNCTIONS

13 CALCULUS OF VECTOR-VALUED FUNCTIONS CALCULUS OF VECTOR-VALUED FUNCTIONS. Vector-Valued Functions LT Section 4.) Preliminar Questions. Which one of the following does not parametrize a line? a) r t) 8 t,t,t b) r t) t i 7t j + t k c) r t)

More information

Equations of Lines and Planes

Equations of Lines and Planes Calculus 3 Lia Vas Equations of Lines and Planes Planes. A plane is uniquely determined by a point in it and a vector perpendicular to it. An equation of the plane passing the point (x 0, y 0, z 0 ) perpendicular

More information

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space 11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of

More information

AP Calculus BC 2006 Free-Response Questions

AP Calculus BC 2006 Free-Response Questions AP Calculus BC 2006 Free-Response Questions The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to

More information

Surface Normals and Tangent Planes

Surface Normals and Tangent Planes Surface Normals and Tangent Planes Normal and Tangent Planes to Level Surfaces Because the equation of a plane requires a point and a normal vector to the plane, nding the equation of a tangent plane to

More information

ON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE

ON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE i93 c J SYSTEMS OF CURVES 695 ON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE BY C H. ROWE. Introduction. A system of co 2 curves having been given on a surface, let us consider a variable curvilinear

More information

AP Calculus AB 2004 Scoring Guidelines

AP Calculus AB 2004 Scoring Guidelines AP Calculus AB 4 Scoring Guidelines The materials included in these files are intended for noncommercial use by AP teachers for course and eam preparation; permission for any other use must be sought from

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homework 5 1. Let z = f(x, y) be a twice continously differentiable function of x and y. Let x = r cos θ and y = r sin θ be the equations which transform polar coordinates into rectangular

More information