A STABILITY RESULT ON MUCKENHOUPT S WEIGHTS

Size: px
Start display at page:

Download "A STABILITY RESULT ON MUCKENHOUPT S WEIGHTS"

Transcription

1 Publicacions Matemàtiques, Vol 42 (998), A STABILITY RESULT ON MUCKENHOUPT S WEIGHTS Juha Kinnunen Abstract We prove that Muckenhoupt s A -weights satisfy a reverse Hölder inequality with an explicit and asymptotically sharp estimate for the exponent. As a by-product we get a new characterization of A -weights.. Introduction and statement of results Muckenhoupt s weights are important tools in harmonic analysis, partial differential equations and quasiconformal mappings. The selfimproving property of Muckenhoupt s weights is probably one of the most useful results in the field. The surprising fact that the weights are more regular than they seem to be a priori was observed already by Muckenhoupt [6]. The same phenomenon was studied by Gehring in [6] where he introduced the concept of reverse Hölder inequalites and proved that they improve themselves. Later Coifman and Fefferman [3] showed that Muckenhoupt s weights are exactly those weights which satisfy a reverse Hölder inequality. Since then reverse Hölder inequalities have had a vast number of applications in modern analysis. An excellent source for all the mentioned results and other properties of Muckenhoupt s weights is the monograph [7]. We are interested in a stability question related to Muckenhoupt s A -class and reverse Hölder inequalities. Suppose that w : R n [0, ] is a locally integrable function satisfying Muckenhoupt s A -condition, (.) w(x) dx c w ess inf B w(x), B Keywords. Muckenhoupt weight, reverse Hölder inequality. 99 Mathematics subject classifications: 42B26.

2 54 J. Kinnunen for all balls B R n with the constant c w independent of the ball B. Here B is the volume of B. Ifwbelongs to Muckenhoupt s class A,we denote w A ; the smallest constant c w for which (.) holds is called the A -constant of w. Condition (.) can be expressed in terms of the Hardy-Littlewood maximal function, defined by Mw(x) = sup B w(y) dy, where the supremum is over all balls B R n containing the point x. It is easy to see [7, p. 389] that (.) is equivalent to the requirement that Mw(x) c w w(x) almost everywhere with exactly the same c w as in (.). It is clear that (.) imposes a serious restriction on the function. If the A -constant is one, then 0 ( w(y) ess inf w(x)) dy ess inf w(x) ess inf w(x) =0 and hence w is constant. We are interested in the regularity of A -weights as the constant tends to one. It is well-known that A -weights satisfy the reverse Hölder inequality (.2) ( ) /p w(x) p dx c w(x) dx, for some p> and c independent of the ball B. Using (.2) and (.) we see that w p A and w is locally integrable to power p. The question is: how large can p be? If the A -constant is one, then the weight is essentially bounded and it seems reasonable to expect that the degree of the local integrablity increases as the A -constant tends to one. Questions related to the stability of reverse Hölder inequalities have obtained considerable attention in the last two decades, see [], [2], [9], [], [2], [3], [4], [5], [7], [8], [9], [20] and [2]. Our contribution is twofold. First, we present a new and a simple method which gives an explicit and asymptotically optimal bound for p. Second, our proof leads to a new characterization of A -weights (Corollary 2.) which may be of independent interest. Now we are ready to present our main result.

3 A stability result on Muckenhoupt s weights Theorem. If w A with the constant c w, then there is a constant ν depending only on the dimension such that w satisfies the reverse Hölder inequality (.2) whenever (.4) p<+ ν c w. In the one-dimensional case we may take ν = in (.4), see [2] and [], but our proof generally yields a small ν. Our method also allows us to replace balls in the A -condition by cubes. Observe that the bound (.4) for the local integrability of the weight is arbitrarily large provided c w is close enough to one. We remark that using factorization results of [0] and [4], our method gives similar estimates for Muckenhoupt s A p -weights as well. In the one-dimensional case this has been studied by Neugebauer [7]. 2. Characterization of A -weights We begin by showing that every A -weight can be approximated by smooth A -weights. 2.. Lemma. Suppose that w A with the constant c w and let ϕ C 0 (R n ), ϕ 0 with R n ϕdx =. Then w ϕ A with the constant c w. Proof: A direct calculation gives w ϕ(y) dy = w(y z)ϕ(z) dz dy B(x, r) B(x,r) B(x, r) B(x,r) R n = ϕ(z) w(y) dy dz R B(x z,r) n B(x z,r) (2.2) c w ϕ(z) ess inf w(y) dz R n y B(x z,r) = c w ϕ(z) ess inf w(y z) dz R n y B(x,r) c w ess inf w(y z)ϕ(z) dz y B(x,r) R n = c w ess inf w ϕ(y). y B(x,r) This completes the proof. We record a well-known covering theorem.

4 56 J. Kinnunen 2.3. Besicovitch s covering Theorem. Suppose that E is a bounded subset of R n and that B is a collection of balls such that each point of E is a center of some ball in B. Then there exists an integer N 2 (depending only on the dimension) and subcollections B,...,B N Bof at most countably many balls such that the balls B i,j, j =,2,..., in each family B i, i =,2,...,N, are pairwise disjoint and E N i= j= B i,j. For the proof of Besicovitch s covering Theorem we refer to [5, Theorem.]. Some estimates for the constant N are obtained in [8]. Now we show that A -weights satisfy a reverse Chebyshev inequality. This observation is a crucial ingredient in the proof of Theorem.3. For short we denote throughout the paper. E λ = {x R n : w(x) >λ}, λ > 0, 2.4. Lemma. Let B R n be a ball and suppose that w : R n [0, ] is an A -weight with the constant c w. Then there is a constant η, depending only on the dimension, so that (2.5) w(x) dx ( c w + η(c w ) ) λ E λ B, E λ B whenever ess inf w(x) λ<. Proof: Fix a ball B R n. Suppose first that w is a continuous A -weight with the constant c w and that λ inf w(x). Then E λ is open and for every x E λ we take the ball B(x, r x ) where r x is the distance from x to the boundary of E λ. Let B = {B(x, r x ):x E λ B}. The radii of the balls in B are bounded, because B \ E λ. By Besicovitch s covering Theorem, there are families B i = {B i,j : j =,2,...}, i=,2,...,n, of countably many balls, chosen from B, such that E λ B = N i= j= B i,j B and the balls in every B i, i =,2,...,N, are pairwise disjoint. denote the union of the pairwise disjoint balls by Eλ i = B i,j, i =,2,...,N. j= We

5 A stability result on Muckenhoupt s weights 57 The balls B i,j touch the boundary of E λ and, since w is continuous, using the A -condition we get (2.6) w(x) dx c inf w(x) cλ, B i,j B i,j i,j i =,2,...,N, j =,2,... The balls B i,j are not, in general, contained in B, but there is a constant γ>0, depending only on the dimension, so that B i,j \ B γ B i,j B, i =,2,...,N, j =,2,... To see this, let B i,j be the ball B(x, r x ) E λ with x E λ B. Then by geometry, there is a ball B(y, r x /2) B(x, r x ) B. This gives us the estimate B(x, r x ) \ B B(x, r x ) =2 n B(y, r x /2) 2 n B(x, r x ) B. Hence we may take γ =2 n. By observing that w(x) >λfor every x B i,j and recalling (2.6) we see that B i,j B w(x) dx c w λ B i,j B + c w λ B i,j \ B w(x) dx B i,j\b c w λ B i,j B +(c w )λ B i,j \ B ( c w + γ(c w ) ) λ B i,j B, i =,2,...,N, j=,2,... Since the balls in each B i, i =,2,...,N, are pairwise disjoint, we arrive at (2.7) E i λ B w(x) dx = j= B i,j B w(x) dx ( c w + γ(c w ) ) λ E i λ B, i =,2,...,N. Let µ be a measure. Then we use the elementary inequality N N (2.8) µ(e λ B) = µ(eλ i B) µ(fλ k B), i= k=2

6 58 J. Kinnunen where F k λ = {l,...,l k } {,...,N} ( E l λ E l k λ ), k =2,3,...,N. A simple computation using (2.8), (2.7) and the fact that w(x) >λin Fλ k B, k =2,...,N, gives E λ B w(x) dx = N i= E i λ B w(x) dx N k=2 F k λ B w(x) dx (2.9) ( c w + γ(c w ) ) N N λ Eλ i B λ Fλ k B i= k=2 = ( c w + γ(c w ) ) N λ E λ B +λ( + γ)(c w ) Fλ k B k=2 ( c w +γ(c w ) ) λ E λ B +(N )( + γ)(c w )λ E λ B = ( c w + η(c w ) ) λ E λ B, where η = Nγ +N and λ inf w(x). The general case follows from a standard approximation argument using Lemma 2.. Suppose that w A with the constant c w. Let ϕ C0 (R n ), ϕ 0 with ϕdx =. We define w R n ε = w ϕ ε, where ϕ ε (x) =ε n ϕ(x/ε) and ε>0. Lemma 2. shows that w ε is a continuous A -weight with the constant c w for every ε>0. Using (2.9) we see that w ε (x) dx ( c w + η(c w ) ) λ {w ε >λ} B, {w ε>λ} B Letting ε 0 we obtain (2.5). This completes the proof. inf w ε(x) λ< Remark. () Observe that the constant on the right side of (2.5) tends to one as c w tends to one. On the other hand, it blows up as c w increases. (2) We also remark that inequalities of type (2.5) appear already in the proof of Theorem 4 in [3]. However, their approach does not seem to give the correct behaviour as c w tends to one. We observe that (2.5) gives a characterization of A -weights.

7 A stability result on Muckenhoupt s weights Corollary. Suppose that w : R n [0, ] is a measurable function. Then w A if and only if there is a constant c, independent of the ball B, so that (2.2) w(x) dx cλ E λ B, ess inf w(x) λ<, E λ B for every ball B R n. Proof: Lemma 2.4 shows that every A -weight satisfies (2.2). To see the reverse implication suppose that (2.2) holds and let B be a ball in R n. Then w(x) dx = w(x) dx + w(x) dx B B\E λ E λ B λ B \ E λ + cλ B E λ cλ B, ess inf w(x) λ<. By inserting λ = ess inf w(x) weget w(x)dx c ess inf B w(x), B where the constant is independent of the ball and hence w A Remark. In the one-dimensional case we may take the constant in (2.2) equal to the A -constant of w, see []. Lemma 2.4 shows that w satisfies the assumptions of the following sharp version Muckenhoupt s Lemma 4 in [6]. See also Lemma 2 in [2]. The proof of the following lemma can be found in [], but we present it here for the sake of completeness Lemma. Suppose that w : R n [0, ] is a measurable function and let B R n be a ball. If there are 0 and c>such that (2.5) w(x) dx cλ E λ B, λ<, E λ B then for every p, <p<c/(c ), we have (2.6) w(x) p c dx c p (c ) p E B.

8 60 J. Kinnunen Proof: Let β>and denote w β = min(w, β). Then w(x) dx cλ {w β >λ} B, λ<. {w β >λ} B We multiply both sides by λ p 2 and integrate from to. This implies λ p 2 w(x) dx dλ c λ p {w β >λ} B dλ. {w β >λ} B Then we use the equality (2.7) w(x) p dµ = p λ p µ(e λ B) dλ + p µ(e B), where 0 <p<, with µ replaced by wdµ and p replaced by p, to get w β (x) p dx w β (x) p w(x) dx E B =(p ) λ p 2 w(x) dx dλ + p w(x) dx c(p ) {w β >λ} B λ p {w β >λ} B dλ + c p E B. Next we estimate the first integral on the right side using (2.7) and find λ p {w β >λ} dλ = ( ) w β (x) p dx p E B. p Hence we obtain w β (x) p dx c p w β (x) p dx + c p p p E B. Choosing p> such that c (p )/p < and using the fact that all terms in the previous inequality are finite, we conclude w β (x) p c dx c p (c ) p E B. Finally, as β, the monotone convergence theorem gives (2.6). This proves the lemma Remark. Both the bound for p and the constant in (2.6) are the best possible as is easily seen by taking B to be the unit ball and w : R n [0, ], w(x) = x n(/c ).

9 A stability result on Muckenhoupt s weights 6 3. Proof of Theorem.3 Let B be a ball in R n and suppose that w A with the constant c w. Using (2.5) we see that w(x) dx ( c w + η(c w ) ) λ E λ B, ess inf w(x) λ<, E λ B where η is the constant given by Lemma 2.4. This shows that w fulfills the assumptions of Lemma 2.4 and from (2.6) we conclude that w(x) p dx = B w(x) p dx + B\E w(x) p dx B E p B \ E + c p B E c p B, whenever ess inf w(x) < and p<+ (η+ )(c w ). In particular, we get ( ) /p w(x) p dx c w(x) dx. The constant c does not depend on B and hence we may repeat the same reasoning in every ball B and we see that w satisfies the reverse Hölder inequality for every p> such that (.4) holds if we take ν =(η+). This completes the proof of Theorem.3. Acknowledgements. I would like to thank Michael Korey for making valuable comments on early versions of this paper. References. B. Bojarski, Remarks on the stability of reverse Hölder inequalities and quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 0 (985), B. Bojarski, C. Sbordone and I. Wik, The Muckenhoupt class A (R), Studia Math. 0(2) (992),

10 62 J. Kinnunen 3. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 5 (974), D. Cruz-Uribe, SFO, and C. J. Neugebauer, The structure of the reverse Hölder classes, Trans. Amer. Math. Soc. 347 (995), M. de Guzmán, Differentiation of Integrals in R n, Lecture Notes in Mathematics 48, Springer-Verlag, F. W. Gehring, The L p integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 30 (973), J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North Holland Math. Studies 6, North Holland, Z. Füredi and P. A. Loeb, On the best constant for the Besicovitch covering Theorem, Proc. Amer. Math. Soc. 2 (994), T. Iwaniec, OnL p -integrability in PDE s and quasiregular mappings for large exponents, Ann. Acad. Sci. Fenn. Ser. A I Math. 7 (982), P. W. Jones, Factorization of A p weights, Ann. of Math. (980), J. Kinnunen, Sharp results on reverse Hölder inequalities, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 95 (994), A. A. Korenovskii, The exact continuation of a reverse Hölder inequality and Muckenhoupt s conditions, Math. Notes 52 (993), A. A. Korenovskiǐ, The reverse Hölder inequality, the Muckenhoupt condition, and equimeasurable rearrangements of functions, Russian Acad. Sci. Dokl. Math. 45 (992), M. B. Korey, Ideal weights: doubling and absolute continuity with asymptotically optimal bounds, Preprint, Max-Planck-Institut für Mathematik, Bonn (995). 5. L. Migliaccio, Some characterizations of Gehring G p -class, Houston J. Math. 9 (993), B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 65 (972), C. J. Neugebauer, The precise range of indices for the RH r -and A p -classes, Preprint (996). 8. A. Politis, Sharp results on the relation between weight spaces and BMO, Ph.D. Thesis, University of Chicago (995).

11 A stability result on Muckenhoupt s weights Y. G. Reshetnyak, Stability estimates in Liouville s theorem, and the L p -integrability of the derivatives of quasi-conformal mappings, Siberian Math. J. 7 (976), I. Wik, Note on a theorem by Reshetnyak-Gurov, Studia Math. 86 (987), I. Wik, Reverse Hölder inequalities with constant close to, Ricerche Mat. 39 (990), Department of Mathematics P.O.Box 4 University of Helsinki FIN-0004 FINLAND Primera versió rebuda el 7 de febrer de 997, darrera versió rebuda el 20 de maig de 997

Properties of BMO functions whose reciprocals are also BMO

Properties of BMO functions whose reciprocals are also BMO Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a non-negative BMO-function w, whose reciprocal is also in BMO, belongs to p> A p,and

More information

to appear in Birkäuser Advanced courses in Mathematics C.R.M. Barcelona A COURSE ON SINGULAR INTEGRALS AND WEIGHTS

to appear in Birkäuser Advanced courses in Mathematics C.R.M. Barcelona A COURSE ON SINGULAR INTEGRALS AND WEIGHTS to appear in Birkäuser Advanced courses in Mathematics C.R.M. Barcelona A COURSE ON SINGULAR INTEGRALS AND WEIGHTS CARLOS PÉREZ Abstract. This article is an expanded version of the material covered in

More information

Notes on weak convergence (MAT Spring 2006)

Notes on weak convergence (MAT Spring 2006) Notes on weak convergence (MAT4380 - Spring 2006) Kenneth H. Karlsen (CMA) February 2, 2006 1 Weak convergence In what follows, let denote an open, bounded, smooth subset of R N with N 2. We assume 1 p

More information

F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein)

F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein) Journal of Algerian Mathematical Society Vol. 1, pp. 1 6 1 CONCERNING THE l p -CONJECTURE FOR DISCRETE SEMIGROUPS F. ABTAHI and M. ZARRIN (Communicated by J. Goldstein) Abstract. For 2 < p

More information

About the inverse football pool problem for 9 games 1

About the inverse football pool problem for 9 games 1 Seventh International Workshop on Optimal Codes and Related Topics September 6-1, 013, Albena, Bulgaria pp. 15-133 About the inverse football pool problem for 9 games 1 Emil Kolev Tsonka Baicheva Institute

More information

MATH41112/61112 Ergodic Theory Lecture Measure spaces

MATH41112/61112 Ergodic Theory Lecture Measure spaces 8. Measure spaces 8.1 Background In Lecture 1 we remarked that ergodic theory is the study of the qualitative distributional properties of typical orbits of a dynamical system and that these properties

More information

1. Introduction. PROPER HOLOMORPHIC MAPPINGS BETWEEN RIGID POLYNOMIAL DOMAINS IN C n+1

1. Introduction. PROPER HOLOMORPHIC MAPPINGS BETWEEN RIGID POLYNOMIAL DOMAINS IN C n+1 Publ. Mat. 45 (2001), 69 77 PROPER HOLOMORPHIC MAPPINGS BETWEEN RIGID POLYNOMIAL DOMAINS IN C n+1 Bernard Coupet and Nabil Ourimi Abstract We describe the branch locus of proper holomorphic mappings between

More information

PETER HÄSTÖ, RIKU KLÉN, SWADESH KUMAR SAHOO, AND MATTI VUORINEN

PETER HÄSTÖ, RIKU KLÉN, SWADESH KUMAR SAHOO, AND MATTI VUORINEN GEOMETRIC PROPERTIES OF ϕ-uniform DOMAINS PETER HÄSTÖ, RIKU KLÉN, SWADESH KUMAR SAHOO, AND MATTI VUORINEN Abstract. We consider proper subdomains G of R n and their images G = f(g) under quasiconformal

More information

Set systems with union and intersection constraints

Set systems with union and intersection constraints Set systems with union and intersection constraints Dhruv Mubayi Reshma Ramadurai September 13, 2007 Abstract Let 2 d k be fixed and n be sufficiently large. Suppose that G is a collection of k-element

More information

Math Real Analysis I

Math Real Analysis I Math 431 - Real Analysis I Solutions to Homework due October 1 In class, we learned of the concept of an open cover of a set S R n as a collection F of open sets such that S A. A F We used this concept

More information

Compactness in metric spaces

Compactness in metric spaces MATHEMATICS 3103 (Functional Analysis) YEAR 2012 2013, TERM 2 HANDOUT #2: COMPACTNESS OF METRIC SPACES Compactness in metric spaces The closed intervals [a, b] of the real line, and more generally the

More information

NOTES ON MEASURE THEORY. M. Papadimitrakis Department of Mathematics University of Crete. Autumn of 2004

NOTES ON MEASURE THEORY. M. Papadimitrakis Department of Mathematics University of Crete. Autumn of 2004 NOTES ON MEASURE THEORY M. Papadimitrakis Department of Mathematics University of Crete Autumn of 2004 2 Contents 1 σ-algebras 7 1.1 σ-algebras............................... 7 1.2 Generated σ-algebras.........................

More information

Monotone maps of R n are quasiconformal

Monotone maps of R n are quasiconformal Monotone maps of R n are quasiconformal K. Astala, T. Iwaniec and G. Martin For Neil Trudinger Abstract We give a new and completely elementary proof showing that a δ monotone mapping of R n, n is K quasiconformal

More information

Mean Ramsey-Turán numbers

Mean Ramsey-Turán numbers Mean Ramsey-Turán numbers Raphael Yuster Department of Mathematics University of Haifa at Oranim Tivon 36006, Israel Abstract A ρ-mean coloring of a graph is a coloring of the edges such that the average

More information

ON TOPOLOGICAL SEQUENCE ENTROPY AND CHAOTIC MAPS ON INVERSE LIMIT SPACES. 1. Introduction

ON TOPOLOGICAL SEQUENCE ENTROPY AND CHAOTIC MAPS ON INVERSE LIMIT SPACES. 1. Introduction Acta Math. Univ. Comenianae Vol. LXVIII, 2(1999), pp. 205 211 205 ON TOPOLOGICAL SEQUENCE ENTROPY AND CHAOTIC MAPS ON INVERSE LIMIT SPACES J. S. CANOVAS Abstract. The aim of this paper is to prove the

More information

Math212a1010 Lebesgue measure.

Math212a1010 Lebesgue measure. Math212a1010 Lebesgue measure. October 19, 2010 Today s lecture will be devoted to Lebesgue measure, a creation of Henri Lebesgue, in his thesis, one of the most famous theses in the history of mathematics.

More information

In memory of Lars Hörmander

In memory of Lars Hörmander ON HÖRMANDER S SOLUTION OF THE -EQUATION. I HAAKAN HEDENMALM ABSTRAT. We explain how Hörmander s classical solution of the -equation in the plane with a weight which permits growth near infinity carries

More information

) + ˆf (n) sin( 2πnt. = 2 u x 2, t > 0, 0 < x < 1. u(0, t) = u(1, t) = 0, t 0. (x, 0) = 0 0 < x < 1.

) + ˆf (n) sin( 2πnt. = 2 u x 2, t > 0, 0 < x < 1. u(0, t) = u(1, t) = 0, t 0. (x, 0) = 0 0 < x < 1. Introduction to Fourier analysis This semester, we re going to study various aspects of Fourier analysis. In particular, we ll spend some time reviewing and strengthening the results from Math 425 on Fourier

More information

A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of Rou-Huai Wang

A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of Rou-Huai Wang A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS XAVIER CABRÉ, MANEL SANCHÓN, AND JOEL SPRUCK In memory of Rou-Huai Wang 1. Introduction In this note we consider semistable

More information

ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE. 1. Introduction

ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE. 1. Introduction ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE J.M. CALABUIG, J. RODRÍGUEZ, AND E.A. SÁNCHEZ-PÉREZ Abstract. Let m be a vector measure taking values in a Banach space X. We prove that

More information

Notes on metric spaces

Notes on metric spaces Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course.

More information

Set systems with union and intersection constraints

Set systems with union and intersection constraints Set systems with union and intersection constraints Dhruv Mubayi Reshma Ramadurai October 15, 2008 Abstract Let 2 d k be fixed and n be sufficiently large. Suppose that G is a collection of k-element subsets

More information

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results

More information

The degree, size and chromatic index of a uniform hypergraph

The degree, size and chromatic index of a uniform hypergraph The degree, size and chromatic index of a uniform hypergraph Noga Alon Jeong Han Kim Abstract Let H be a k-uniform hypergraph in which no two edges share more than t common vertices, and let D denote the

More information

International Journal of Information Technology, Modeling and Computing (IJITMC) Vol.1, No.3,August 2013

International Journal of Information Technology, Modeling and Computing (IJITMC) Vol.1, No.3,August 2013 FACTORING CRYPTOSYSTEM MODULI WHEN THE CO-FACTORS DIFFERENCE IS BOUNDED Omar Akchiche 1 and Omar Khadir 2 1,2 Laboratory of Mathematics, Cryptography and Mechanics, Fstm, University of Hassan II Mohammedia-Casablanca,

More information

Lipschitz classes of A-harmonic functions in Carnot groups

Lipschitz classes of A-harmonic functions in Carnot groups Lipschitz classes of A-harmonic functions in Carnot groups Craig A. Nolder Department of Mathematics Florida State University Tallahassee, FL 32306-4510, USA nolder@math.fsu.edu 30 October 2005 Abstract

More information

On the Union of Arithmetic Progressions

On the Union of Arithmetic Progressions On the Union of Arithmetic Progressions Shoni Gilboa Rom Pinchasi August, 04 Abstract We show that for any integer n and real ɛ > 0, the union of n arithmetic progressions with pairwise distinct differences,

More information

Math 563 Measure Theory Project 1 (Funky Functions Group) Luis Zerón, Sergey Dyachenko

Math 563 Measure Theory Project 1 (Funky Functions Group) Luis Zerón, Sergey Dyachenko Math 563 Measure Theory Project (Funky Functions Group) Luis Zerón, Sergey Dyachenko 34 Let C and C be any two Cantor sets (constructed in Exercise 3) Show that there exists a function F: [,] [,] with

More information

An example of a computable

An example of a computable An example of a computable absolutely normal number Verónica Becher Santiago Figueira Abstract The first example of an absolutely normal number was given by Sierpinski in 96, twenty years before the concept

More information

Reference: Introduction to Partial Differential Equations by G. Folland, 1995, Chap. 3.

Reference: Introduction to Partial Differential Equations by G. Folland, 1995, Chap. 3. 5 Potential Theory Reference: Introduction to Partial Differential Equations by G. Folland, 995, Chap. 3. 5. Problems of Interest. In what follows, we consider Ω an open, bounded subset of R n with C 2

More information

THE 0/1-BORSUK CONJECTURE IS GENERICALLY TRUE FOR EACH FIXED DIAMETER

THE 0/1-BORSUK CONJECTURE IS GENERICALLY TRUE FOR EACH FIXED DIAMETER THE 0/1-BORSUK CONJECTURE IS GENERICALLY TRUE FOR EACH FIXED DIAMETER JONATHAN P. MCCAMMOND AND GÜNTER ZIEGLER Abstract. In 1933 Karol Borsuk asked whether every compact subset of R d can be decomposed

More information

Limits and convergence.

Limits and convergence. Chapter 2 Limits and convergence. 2.1 Limit points of a set of real numbers 2.1.1 Limit points of a set. DEFINITION: A point x R is a limit point of a set E R if for all ε > 0 the set (x ε,x + ε) E is

More information

If the sets {A i } are pairwise disjoint, then µ( i=1 A i) =

If the sets {A i } are pairwise disjoint, then µ( i=1 A i) = Note: A standing homework assignment for students in MAT1501 is: let me know about any mistakes, misprints, ambiguities etc that you find in these notes. 1. measures and measurable sets If X is a set,

More information

MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION. Chapter 4: Fourier Series and L 2 ([ π, π], µ) ( 1 π

MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION. Chapter 4: Fourier Series and L 2 ([ π, π], µ) ( 1 π MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION Chapter 4: Fourier Series and L ([, π], µ) Square Integrable Functions Definition. Let f : [, π] R be measurable. We say that f

More information

CHAPTER 5. Product Measures

CHAPTER 5. Product Measures 54 CHAPTER 5 Product Measures Given two measure spaces, we may construct a natural measure on their Cartesian product; the prototype is the construction of Lebesgue measure on R 2 as the product of Lebesgue

More information

ON FIBER DIAMETERS OF CONTINUOUS MAPS

ON FIBER DIAMETERS OF CONTINUOUS MAPS ON FIBER DIAMETERS OF CONTINUOUS MAPS PETER S. LANDWEBER, EMANUEL A. LAZAR, AND NEEL PATEL Abstract. We present a surprisingly short proof that for any continuous map f : R n R m, if n > m, then there

More information

Error Bound for Classes of Polynomial Systems and its Applications: A Variational Analysis Approach

Error Bound for Classes of Polynomial Systems and its Applications: A Variational Analysis Approach Outline Error Bound for Classes of Polynomial Systems and its Applications: A Variational Analysis Approach The University of New South Wales SPOM 2013 Joint work with V. Jeyakumar, B.S. Mordukhovich and

More information

The Dirichlet Unit Theorem

The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

NON SINGULAR MATRICES. DEFINITION. (Non singular matrix) An n n A is called non singular or invertible if there exists an n n matrix B such that

NON SINGULAR MATRICES. DEFINITION. (Non singular matrix) An n n A is called non singular or invertible if there exists an n n matrix B such that NON SINGULAR MATRICES DEFINITION. (Non singular matrix) An n n A is called non singular or invertible if there exists an n n matrix B such that AB = I n = BA. Any matrix B with the above property is called

More information

5. Convergence of sequences of random variables

5. Convergence of sequences of random variables 5. Convergence of sequences of random variables Throughout this chapter we assume that {X, X 2,...} is a sequence of r.v. and X is a r.v., and all of them are defined on the same probability space (Ω,

More information

Stationary random graphs on Z with prescribed iid degrees and finite mean connections

Stationary random graphs on Z with prescribed iid degrees and finite mean connections Stationary random graphs on Z with prescribed iid degrees and finite mean connections Maria Deijfen Johan Jonasson February 2006 Abstract Let F be a probability distribution with support on the non-negative

More information

A COUNTEREXAMPLE FOR SUBADDITIVITY OF MULTIPLIER IDEALS ON TORIC VARIETIES

A COUNTEREXAMPLE FOR SUBADDITIVITY OF MULTIPLIER IDEALS ON TORIC VARIETIES Communications in Algebra, 40: 1618 1624, 2012 Copyright Taylor & Francis Group, LLC ISSN: 0092-7872 print/1532-4125 online DOI: 10.1080/00927872.2011.552084 A COUNTEREXAMPLE FOR SUBADDITIVITY OF MULTIPLIER

More information

11 Ideals. 11.1 Revisiting Z

11 Ideals. 11.1 Revisiting Z 11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(

More information

Analysis I. 1 Measure theory. Piotr Haj lasz. 1.1 σ-algebra.

Analysis I. 1 Measure theory. Piotr Haj lasz. 1.1 σ-algebra. Analysis I Piotr Haj lasz 1 Measure theory 1.1 σ-algebra. Definition. Let be a set. A collection M of subsets of is σ-algebra if M has the following properties 1. M; 2. A M = \ A M; 3. A 1, A 2, A 3,...

More information

Cacti with minimum, second-minimum, and third-minimum Kirchhoff indices

Cacti with minimum, second-minimum, and third-minimum Kirchhoff indices MATHEMATICAL COMMUNICATIONS 47 Math. Commun., Vol. 15, No. 2, pp. 47-58 (2010) Cacti with minimum, second-minimum, and third-minimum Kirchhoff indices Hongzhuan Wang 1, Hongbo Hua 1, and Dongdong Wang

More information

Double Sequences and Double Series

Double Sequences and Double Series Double Sequences and Double Series Eissa D. Habil Islamic University of Gaza P.O. Box 108, Gaza, Palestine E-mail: habil@iugaza.edu Abstract This research considers two traditional important questions,

More information

Math 317 HW #5 Solutions

Math 317 HW #5 Solutions Math 317 HW #5 Solutions 1. Exercise 2.4.2. (a) Prove that the sequence defined by x 1 = 3 and converges. x n+1 = 1 4 x n Proof. I intend to use the Monotone Convergence Theorem, so my goal is to show

More information

A Simple Proof of Duality Theorem for Monge-Kantorovich Problem

A Simple Proof of Duality Theorem for Monge-Kantorovich Problem A Simple Proof of Duality Theorem for Monge-Kantorovich Problem Toshio Mikami Hokkaido University December 14, 2004 Abstract We give a simple proof of the duality theorem for the Monge- Kantorovich problem

More information

1 Norms and Vector Spaces

1 Norms and Vector Spaces 008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)

More information

Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011

Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely

More information

CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC. 1. Introduction

CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC. 1. Introduction Acta Math. Univ. Comenianae Vol. LXXXI, 1 (2012), pp. 71 77 71 CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC E. BALLICO Abstract. Here we study (in positive characteristic) integral curves

More information

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,

More information

Course 421: Algebraic Topology Section 1: Topological Spaces

Course 421: Algebraic Topology Section 1: Topological Spaces Course 421: Algebraic Topology Section 1: Topological Spaces David R. Wilkins Copyright c David R. Wilkins 1988 2008 Contents 1 Topological Spaces 1 1.1 Continuity and Topological Spaces...............

More information

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem

More information

SOME TYPES OF CONVERGENCE OF SEQUENCES OF REAL VALUED FUNCTIONS

SOME TYPES OF CONVERGENCE OF SEQUENCES OF REAL VALUED FUNCTIONS Real Analysis Exchange Vol. 28(2), 2002/2003, pp. 43 59 Ruchi Das, Department of Mathematics, Faculty of Science, The M.S. University Of Baroda, Vadodara - 390002, India. email: ruchid99@yahoo.com Nikolaos

More information

Math 421, Homework #5 Solutions

Math 421, Homework #5 Solutions Math 421, Homework #5 Solutions (1) (8.3.6) Suppose that E R n and C is a subset of E. (a) Prove that if E is closed, then C is relatively closed in E if and only if C is a closed set (as defined in Definition

More information

( ) ( ) [2],[3],[4],[5],[6],[7]

( ) ( ) [2],[3],[4],[5],[6],[7] ( ) ( ) Lebesgue Takagi, - []., [2],[3],[4],[5],[6],[7].,. [] M. Hata and M. Yamaguti, The Takagi function and its generalization, Japan J. Appl. Math., (984), 83 99. [2] T. Sekiguchi and Y. Shiota, A

More information

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +... 6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence

More information

Real quadratic fields with class number divisible by 5 or 7

Real quadratic fields with class number divisible by 5 or 7 Real quadratic fields with class number divisible by 5 or 7 Dongho Byeon Department of Mathematics, Seoul National University, Seoul 151-747, Korea E-mail: dhbyeon@math.snu.ac.kr Abstract. We shall show

More information

BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBERT SPACE REVIEW BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

More information

Chap2: The Real Number System (See Royden pp40)

Chap2: The Real Number System (See Royden pp40) Chap2: The Real Number System (See Royden pp40) 1 Open and Closed Sets of Real Numbers The simplest sets of real numbers are the intervals. We define the open interval (a, b) to be the set (a, b) = {x

More information

Open and Closed Sets

Open and Closed Sets Open and Closed Sets Definition: A subset S of a metric space (X, d) is open if it contains an open ball about each of its points i.e., if x S : ɛ > 0 : B(x, ɛ) S. (1) Theorem: (O1) and X are open sets.

More information

6. Metric spaces. In this section we review the basic facts about metric spaces. d : X X [0, )

6. Metric spaces. In this section we review the basic facts about metric spaces. d : X X [0, ) 6. Metric spaces In this section we review the basic facts about metric spaces. Definitions. A metric on a non-empty set X is a map with the following properties: d : X X [0, ) (i) If x, y X are points

More information

Course 221: Analysis Academic year , First Semester

Course 221: Analysis Academic year , First Semester Course 221: Analysis Academic year 2007-08, First Semester David R. Wilkins Copyright c David R. Wilkins 1989 2007 Contents 1 Basic Theorems of Real Analysis 1 1.1 The Least Upper Bound Principle................

More information

A LOCAL MEAN OSCILLATION DECOMPOSITION AND SOME ITS APPLICATIONS

A LOCAL MEAN OSCILLATION DECOMPOSITION AND SOME ITS APPLICATIONS A LOCAL MEAN OSCILLATION DECOMPOSITION AND SOME ITS APPLICATIONS ANDREI K. LERNER 1. Introduction A recent result by the author [39] establishes a pointwise control of an arbitrary measurable function

More information

A NEW APPROACH TO THE CORONA THEOREM FOR DOMAINS BOUNDED BY A C 1+α CURVE

A NEW APPROACH TO THE CORONA THEOREM FOR DOMAINS BOUNDED BY A C 1+α CURVE Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 40, 2015, 767 772 A NEW APPROACH TO THE CORONA THEOREM FOR DOMAINS BOUNDED BY A C 1+α CURVE José Manuel Enríquez-Salamanca and María José González

More information

PROBLEM SET 7: PIGEON HOLE PRINCIPLE

PROBLEM SET 7: PIGEON HOLE PRINCIPLE PROBLEM SET 7: PIGEON HOLE PRINCIPLE The pigeonhole principle is the following observation: Theorem. Suppose that > kn marbles are distributed over n jars, then one jar will contain at least k + marbles.

More information

Finite speed of propagation in porous media. by mass transportation methods

Finite speed of propagation in porous media. by mass transportation methods Finite speed of propagation in porous media by mass transportation methods José Antonio Carrillo a, Maria Pia Gualdani b, Giuseppe Toscani c a Departament de Matemàtiques - ICREA, Universitat Autònoma

More information

Mathematical Methods of Engineering Analysis

Mathematical Methods of Engineering Analysis Mathematical Methods of Engineering Analysis Erhan Çinlar Robert J. Vanderbei February 2, 2000 Contents Sets and Functions 1 1 Sets................................... 1 Subsets.............................

More information

The Ideal Class Group

The Ideal Class Group Chapter 5 The Ideal Class Group We will use Minkowski theory, which belongs to the general area of geometry of numbers, to gain insight into the ideal class group of a number field. We have already mentioned

More information

An optimal transportation problem with import/export taxes on the boundary

An optimal transportation problem with import/export taxes on the boundary An optimal transportation problem with import/export taxes on the boundary Julián Toledo Workshop International sur les Mathématiques et l Environnement Essaouira, November 2012..................... Joint

More information

ON NONNEGATIVE SOLUTIONS OF NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS FOR TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS WITH ADVANCED ARGUMENTS

ON NONNEGATIVE SOLUTIONS OF NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS FOR TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS WITH ADVANCED ARGUMENTS ON NONNEGATIVE SOLUTIONS OF NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS FOR TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS WITH ADVANCED ARGUMENTS I. KIGURADZE AND N. PARTSVANIA A. Razmadze Mathematical Institute

More information

ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP. A. K. Das and R. K. Nath

ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP. A. K. Das and R. K. Nath International Electronic Journal of Algebra Volume 7 (2010) 140-151 ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP A. K. Das and R. K. Nath Received: 12 October 2009; Revised: 15 December

More information

ABSTRACT. For example, circle orders are the containment orders of circles (actually disks) in the plane (see [8,9]).

ABSTRACT. For example, circle orders are the containment orders of circles (actually disks) in the plane (see [8,9]). Degrees of Freedom Versus Dimension for Containment Orders Noga Alon 1 Department of Mathematics Tel Aviv University Ramat Aviv 69978, Israel Edward R. Scheinerman 2 Department of Mathematical Sciences

More information

LOW-DEGREE PLANAR MONOMIALS IN CHARACTERISTIC TWO

LOW-DEGREE PLANAR MONOMIALS IN CHARACTERISTIC TWO LOW-DEGREE PLANAR MONOMIALS IN CHARACTERISTIC TWO PETER MÜLLER AND MICHAEL E. ZIEVE Abstract. Planar functions over finite fields give rise to finite projective planes and other combinatorial objects.

More information

PROPERTIES OF SOME NEW SEMINORMED SEQUENCE SPACES DEFINED BY A MODULUS FUNCTION

PROPERTIES OF SOME NEW SEMINORMED SEQUENCE SPACES DEFINED BY A MODULUS FUNCTION STUDIA UNIV. BABEŞ BOLYAI, MATHEMATICA, Volume L, Number 3, September 2005 PROPERTIES OF SOME NEW SEMINORMED SEQUENCE SPACES DEFINED BY A MODULUS FUNCTION YAVUZ ALTIN AYŞEGÜL GÖKHAN HIFSI ALTINOK Abstract.

More information

Mathematics for Econometrics, Fourth Edition

Mathematics for Econometrics, Fourth Edition Mathematics for Econometrics, Fourth Edition Phoebus J. Dhrymes 1 July 2012 1 c Phoebus J. Dhrymes, 2012. Preliminary material; not to be cited or disseminated without the author s permission. 2 Contents

More information

CONTINUED FRACTIONS AND FACTORING. Niels Lauritzen

CONTINUED FRACTIONS AND FACTORING. Niels Lauritzen CONTINUED FRACTIONS AND FACTORING Niels Lauritzen ii NIELS LAURITZEN DEPARTMENT OF MATHEMATICAL SCIENCES UNIVERSITY OF AARHUS, DENMARK EMAIL: niels@imf.au.dk URL: http://home.imf.au.dk/niels/ Contents

More information

EXISTENCE AND NON-EXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION

EXISTENCE AND NON-EXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION Sixth Mississippi State Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference 5 (7), pp. 5 65. ISSN: 7-669. UL: http://ejde.math.txstate.edu

More information

ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION. E. I. Pancheva, A. Gacovska-Barandovska

ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION. E. I. Pancheva, A. Gacovska-Barandovska Pliska Stud. Math. Bulgar. 22 (2015), STUDIA MATHEMATICA BULGARICA ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION E. I. Pancheva, A. Gacovska-Barandovska Smirnov (1949) derived four

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

2.3 Convex Constrained Optimization Problems

2.3 Convex Constrained Optimization Problems 42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

More information

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH 31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,

More information

1. Introduction ON D -EXTENSION PROPERTY OF THE HARTOGS DOMAINS

1. Introduction ON D -EXTENSION PROPERTY OF THE HARTOGS DOMAINS Publ. Mat. 45 (200), 42 429 ON D -EXTENSION PROPERTY OF THE HARTOGS DOMAINS Do Duc Thai and Pascal J. Thomas Abstract A complex analytic space is said to have the D -extension property if and only if any

More information

Mathematics for Economics (Part I) Note 5: Convex Sets and Concave Functions

Mathematics for Economics (Part I) Note 5: Convex Sets and Concave Functions Natalia Lazzati Mathematics for Economics (Part I) Note 5: Convex Sets and Concave Functions Note 5 is based on Madden (1986, Ch. 1, 2, 4 and 7) and Simon and Blume (1994, Ch. 13 and 21). Concave functions

More information

THE REGULAR OPEN CONTINUOUS IMAGES OF COMPLETE METRIC SPACES

THE REGULAR OPEN CONTINUOUS IMAGES OF COMPLETE METRIC SPACES PACIFIC JOURNAL OF MATHEMATICS Vol 23 No 3, 1967 THE REGULAR OPEN CONTINUOUS IMAGES OF COMPLETE METRIC SPACES HOWARD H WICKE This article characterizes the regular T o open continuous images of complete

More information

Theorem (The division theorem) Suppose that a and b are integers with b > 0. There exist unique integers q and r so that. a = bq + r and 0 r < b.

Theorem (The division theorem) Suppose that a and b are integers with b > 0. There exist unique integers q and r so that. a = bq + r and 0 r < b. Theorem (The division theorem) Suppose that a and b are integers with b > 0. There exist unique integers q and r so that a = bq + r and 0 r < b. We re dividing a by b: q is the quotient and r is the remainder,

More information

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 J. Zhang Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing

More information

PART I. THE REAL NUMBERS

PART I. THE REAL NUMBERS PART I. THE REAL NUMBERS This material assumes that you are already familiar with the real number system and the representation of the real numbers as points on the real line. I.1. THE NATURAL NUMBERS

More information

Separation Properties for Locally Convex Cones

Separation Properties for Locally Convex Cones Journal of Convex Analysis Volume 9 (2002), No. 1, 301 307 Separation Properties for Locally Convex Cones Walter Roth Department of Mathematics, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam

More information

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization

More information

FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 3. BANACH SPACES

FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 3. BANACH SPACES FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 3. BANACH SPACES CHRISTOPHER HEIL 1. Elementary Properties and Examples Notation 1.1. Throughout, F will denote either the real line R or the complex plane C.

More information

Houston Journal of Mathematics. c 2012 University of Houston Volume 38, No. 4, Communicated by Charles Hagopian

Houston Journal of Mathematics. c 2012 University of Houston Volume 38, No. 4, Communicated by Charles Hagopian Houston Journal of Mathematics c 2012 University of Houston Volume 38, No. 4, 2012 ABSOLUTE DIFFERENTIATION IN METRIC SPACES W LODZIMIERZ J. CHARATONIK AND MATT INSALL Communicated by Charles Hagopian

More information

Chapter 6 Finite sets and infinite sets. Copyright 2013, 2005, 2001 Pearson Education, Inc. Section 3.1, Slide 1

Chapter 6 Finite sets and infinite sets. Copyright 2013, 2005, 2001 Pearson Education, Inc. Section 3.1, Slide 1 Chapter 6 Finite sets and infinite sets Copyright 013, 005, 001 Pearson Education, Inc. Section 3.1, Slide 1 Section 6. PROPERTIES OF THE NATURE NUMBERS 013 Pearson Education, Inc.1 Slide Recall that denotes

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

Infinite product spaces

Infinite product spaces Chapter 7 Infinite product spaces So far we have talked a lot about infinite sequences of independent random variables but we have never shown how to construct such sequences within the framework of probability/measure

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

DISINTEGRATION OF MEASURES

DISINTEGRATION OF MEASURES DISINTEGRTION OF MESURES BEN HES Definition 1. Let (, M, λ), (, N, µ) be sigma-finite measure spaces and let T : be a measurable map. (T, µ)-disintegration is a collection {λ y } y of measures on M such

More information

FACTORING CERTAIN INFINITE ABELIAN GROUPS BY DISTORTED CYCLIC SUBSETS

FACTORING CERTAIN INFINITE ABELIAN GROUPS BY DISTORTED CYCLIC SUBSETS International Electronic Journal of Algebra Volume 6 (2009) 95-106 FACTORING CERTAIN INFINITE ABELIAN GROUPS BY DISTORTED CYCLIC SUBSETS Sándor Szabó Received: 11 November 2008; Revised: 13 March 2009

More information

EXPONENTIAL DECAY ESTIMATES FOR SINGULAR INTEGRAL OPERATORS

EXPONENTIAL DECAY ESTIMATES FOR SINGULAR INTEGRAL OPERATORS EXPONENTIAL DECAY ESTIMATES FOR SINGULAR INTEGRAL OPERATORS CARMEN ORTIZ-CARABALLO, CARLOS PÉREZ, AND EZEUIEL RELA Abstract. The following subexponential estimate for commutators is proved {x : [b, T ]f(x)

More information