# Mean Ramsey-Turán numbers

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Mean Ramsey-Turán numbers Raphael Yuster Department of Mathematics University of Haifa at Oranim Tivon 36006, Israel Abstract A ρ-mean coloring of a graph is a coloring of the edges such that the average number of colors incident with each vertex is at most ρ. For a graph H and for ρ 1, the mean Ramsey- Turán number RT (n, H, ρ mean) is the maximum number of edges a ρ-mean colored graph with n vertices can have under the condition it does not have a monochromatic copy of H. It is conjectured that RT (n, K m, mean) = RT (n, K m, ) where RT (n, H, k) is the maximum number of edges a k edge-colored graph with n vertices can have under the condition it does not have a monochromatic copy of H. We prove the conjecture holds for K 3. We also prove that RT (n, H, ρ mean) RT (n, K χ(h), ρ mean) + o(n ). This result is tight for graphs H whose clique number equals their chromatic number. In particular we get that if H is a 3-chromatic graph having a triangle then RT (n, H, mean) = RT (n, K 3, mean) + o(n ) = RT (n, K 3, ) + o(n ) = 0.4n (1 + o(1)). 1 Introduction All graphs considered are finite, undirected and simple. For standard graph-theoretic terminology see [1]. Ramsey and Turán type problems are central problems in extremal graph theory. These two topics intersect in Ramsey-Turán Theory which is now a wide field of research with many interesting results and open problems. The survey of Simonovits and Sós [11] is an excellent reference for Ramsey-Turán Theory. The Ramsey number R(H, k) is the minimum integer n such that in any k-coloring of the edges of K n there is a monochromatic H. An edge coloring is called k-local if every vertex is incident with at most k colors. The local Ramsey number R(H, k loc) is the minimum integer n such that in any k-local coloring of the edges of K n there is a monochromatic H. An edge coloring is called ρ-mean if the average number of colors incident with each every vertex is at most ρ. The mean Ramsey number R(H, ρ mean) is the minimum integer n such that in any ρ-mean coloring of the edges of K n World Wide Web: raphy 1

2 there is a monochromatic H. Clearly, R(H, k) R(H, k loc) R(H, k mean). The relationship between these three parameters has been studied by various researchers. See, e.g., [, 4, 7, 10]. In particular, Gyárfás et. al. [7] proved that R(K m, ) = R(K m, loc). Caro and Tuza proved that R(K m, loc) = R(K m, mean) and Schelp [10] proved that R(K m, k loc) = R(K m, k mean). The Ramsey-Turán number RT (n, H, k) is the maximum number of edges a k-colored graph with n vertices can have under the condition it does not have a monochromatic copy of H. We analogously define the local and mean Ramsey-Turán numbers, denoted RT (n, H, k loc) and RT (n, H, ρ mean) respectively, to be the maximum number of edges a k-local (resp. ρ-mean) colored graph with n vertices can have under the condition it does not have a monochromatic copy of H. Clearly, RT (n, H, k) RT (n, H, k loc) RT (n, H, k mean). The relationship between RT (n, H, k), Ramsey numbers and Turán numbers is well-known. The Turán graph T (n, k) is the complete k-partite graph with n vertices whose vertex classes are as equal as possible. Let t(n, k) be the number of edges of T (n, k). Burr, Erdős and Lovász [3] introduced the Ramsey function r(h, k) which is the smallest integer r for which there exists a complete r-partite graph having the property that any k edge-coloring of it has a monochromatic H. For example, r(k m, k) = R(K m, k) and r(c 5, ) = 5. Clearly, RT (n, K m, k) = t(n, R(K m, k) 1). As shown in Theorem 13 in [11], it follows from the Erdős-Stone Theorem [6] that ( ) ( ) 1 n RT (n, H, k) = 1 + o(n ). r(h, k) 1 Clearly, a similar relationship holds between RT (n, H, k loc) and the analogous Ramsey function r(h, k loc). However, no such relationship is known for RT (n, H, k mean). We conjecture that such a relationship holds. Conjecture 1.1 RT (n, H, k mean) = ( 1 1 r(h, k mean) 1 ) ( ) n + o(n ). Combining this with the fact that R(K m, ) = R(K m, loc) = R(K m, mean) we have the following stronger conjecture for complete graphs and k =. Conjecture 1. RT (n, K m, mean) = RT (n, K m, ) = t(n, R(K m, ) 1). For non-integral values of ρ is is not even clear what the right conjecture for RT (n, H, ρ mean) should be. The first result of this paper shows that Conjecture 1. holds for K 3. Theorem 1.3 RT (n, K 3, mean) = RT (n, K 3, ) = t(n, R(K 3, ) 1) = t(n, 5) = 0.4n.

3 The second result of this paper asserts that RT (n, H, ρ mean) is bounded by a function of the chromatic number of H. In fact, for graphs whose clique number equals their chromatic number, RT (n, H, ρ mean) is essentially determined by the chromatic number of H. Theorem 1.4 For all ρ 1 and for all graphs H, RT (n, H, ρ mean) RT (n, K χ(h), ρ mean)+ o(n ). In particular, if the chromatic number of H equals its clique number then RT (n, H, ρ mean) = RT (n, K χ(h), ρ mean) + o(n ). The proof of Theorem 1.4 uses a colored version of Szemerédi s Regularity Lemma together with several additional ideas. Notice that the trivial case ρ = 1 in Theorem 1.4 is equivalent to the Erdős-Stone Theorem. Combining Theorem 1.3 with Theorem 1.4 we obtain: Corollary 1.5 Let H be a 3-chromatic graph. Then, RT (n, H, mean) 0.4n (1 + o(1)). If H contains a triangle then RT (n, H, mean) = 0.4n (1 + o(1)). The next section contains the proof of Theorem 1.3. Section 3 contains the proof of Theorem 1.4. Proof of Theorem 1.3 We need to prove that RT (n, K 3, mean) = t(n, 5). Since K 5 has a -coloring with no monochromatic triangle, so does T (n, 5). Hence, RT (n, K 3, mean) t(n, 5). We will show that RT (n, K 3, mean) t(n, 5). Clearly, the result is trivially true for n < 6, so we assume n 6. Our proof proceeds by induction on n. Let G have n 6 vertices and more than t(n, 5) edges. Clearly we may assume that G has precisely t(n, 5) + 1 edges. Consider any given -mean coloring of G. If n = 6 then G = K 6. Recall from the introduction that R(K 3, mean) = R(K 3, ) = 6. As a -mean coloring of K 6 contains a monochromatic triangle this base case of the induction holds. If n = 7 then G is K7. Again, it is trivial to check that any -mean coloring of K 7 contains a monochromatic triangle. Similarly, if n = 8 then G is a K 8 missing two edges and it is straightforward to verify that any -mean coloring of such a G contains a monochromatic triangle. Assume the theorem holds for all 6 n < n and n 9. For a vertex v, let c(v) denote the number of colors incident with v and let d(v) denote the degree of v. If some v has c(v) and d(v) 4n/5 then G v is also -mean colored and has more than t(n 1, 5) edges. Hence, by the induction hypothesis, G v has a monochromatic triangle. Otherwise, if some v has c(v) = 1 and d(v) 3n/5 then let w be a vertex with maximum c(w). Then, G {v, w} is also -mean colored and has more than t(n, 5) edges. Hence, by the induction hypothesis, G {v, w} has a monochromatic triangle. Otherwise, if v is an isolated vertex of G then let u and w be two distinct vertices having maximum c(u) + c(w). Then, G {v, u, w} is -mean colored and has more than t(n 3, 5) edges. Hence, by the induction hypothesis, G {v, u, w} has a monochromatic triangle. 3

4 We are left with the case where δ(g) > 3n/5 and whenever c(v) then also d(v) > 4n/5. Let v be with c(v) = 1 (if no such v exists then the graph is -local colored and hence contains a monochromatic triangle as, trivially, RT (n, K 3, loc) = t(n, 5)). We may assume that 3n/5 < d(v) 4n/5, since otherwise we would have δ(g) > 4n/5 which is impossible for a graph with t(n, 5) + 1 edges. Consider the neighborhood of v, denoted N(v). Clearly, if w N(v) then c(w) > 1 otherwise (because d(w) > 3n/5) there must be some w N(v) for which (v, w, w ) is a monochromatic triangle and we are done. Thus, the minimum degree of G[N(v)] is greater than d(v) n/5. Since d(v) > 3n/5 it follows that G[N(v)] has minimum degree greater than N(v) /3. If N(v) is divisible by 3 then the theorem of Corrádi and Hajnal [5] implies that G[N(v)] has a triangle factor. If N(v) 1 is divisible by 3 then the theorem of Hajnal and Szemerédi [8] implies that G[N(v)] has a factor into ( N(v) 4)/3 triangles and one K 4. If N(v) is divisible by 3 then, similarly, G[N(v)] has a factor into ( N(v) 8)/3 triangles and two K 4 or ( N(v) 5)/3 triangles and one K 5. Assume that G has no monochromatic triangle. The sum of colors incident with the vertices of any non-monochromatic triangle is at least 5 = 3 (5/3). The sum of colors incident with the vertices of any K 4 having no monochromatic triangle is at least 8 > 4 (5/3). The sum of colors incident with the vertices of any K 5 having no monochromatic triangle is at least 10 > 5 (5/3). Thus, a contradiction. n v V c(v) n d(v) > n n = n 3 Proof of Theorem 1.4 Before we prove Theorem 1.4 we need several to establish several lemmas. Lemma 3.1 For every ɛ > 0 there exists α = α(ɛ) > 0 such that for all m sufficiently large, if a graph has m vertices and more than RT (m, K s, ρ mean) + ɛm /4 edges and is (ρ + α)-mean colored, then it has a monochromatic K s. Proof: Pick α such that ɛm /4 > (αm+1)(m 1) for all sufficiently large m. Given a graph G with m vertices and more than RT (m, K s, ρ mean) + ɛm /4 edges, consider a (ρ + α)-mean coloring of G. By picking αm non-isolated vertices of G and deleting all edges incident with them we obtain a spanning subgraph of G with m vertices, more than RT (m, K s, ρ mean)+ɛm /4 (αn+1)(n 1) RT (m, K s, ρ mean) edges, and which is ρ-mean colored. By definition, it has a monochromatic K s. Lemma 3. If n is a multiple of m then RT (n, K s, ρ mean) RT (m, K s, ρ mean)n /m. 4

5 Proof: Let G be a graph with m vertices and RT (m, K s, ρ mean) edges having a ρ-mean coloring without a monochromatic K s. Let G be obtained from G by replacing each vertex v with an independent set X v of size n/m. For u v, we connect a vertex from X u with a vertex from X v if and only if uv is an edge of G, and we color this edge with the same color of uv. Clearly, G has RT (m, K s, ρ mean)n /m edges, the corresponding coloring is also ρ-mean, and there is no monochromatic K s in G. As G has n vertices we have that RT (n, K s, ρ mean) RT (m, K s, ρ mean)n /m. As mentioned in the introduction, our main tool in proving Theorem 1.4 is a colored version of Szemerédi s Regularity Lemma. We now give the necessary definitions and the statement of the lemma. Let G = (V, E) be a graph, and let A and B be two disjoint subsets of V. If A and B are non-empty, let e(a, B) denote the number of edges with one endpoint in A and another endpoint in B and define the density of edges between A and B by d(a, B) = e(a, B) A B. For γ > 0 the pair (A, B) is called γ-regular if for every X A and Y B satisfying X > γ A and Y > γ B we have d(x, Y ) d(a, B) < γ. An equitable partition of a set V is a partition of V into pairwise disjoint classes V 1,..., V m of almost equal size, i.e., V i V j 1 for all i, j. An equitable partition of the set of vertices V of G into the classes V 1,..., V m is called γ-regular if V i < γ V for every i and all but at most γ ( ) m of the pairs (V i, V j ) are γ-regular. Szemerédi [1] proved the following. Lemma 3.3 For every γ > 0, there is an integer M(γ) > 0 such that for every graph G of order n > M there is a γ-regular partition of the vertex set of G into m classes, for some 1/γ < m < M. To prove Theorem 1.4 we will need a colored version of the Regularity Lemma. straightforward modification of the proof of the original result (see, e.g., [9] for details). Its proof is a Lemma 3.4 For every γ > 0 and integer r, there exists an M(γ, r) such that if the edges of a graph G of order n > M are r-colored E(G) = E 1 E r, then there is a partition of the vertex set V (G) = V 1 V m, with 1/γ < m < M, which is γ-regular simultaneously with respect to all graphs G i = (V, E i ) for 1 i r. A useful notion associated with a γ-regular partition is that of a cluster graph. Suppose that G is a graph with a γ-regular partition V = V 1 V m, and η > 0 is some fixed constant (to be thought of as small, but much larger than γ.) The cluster graph C(η) is defined on the vertex 5

6 set {1,..., m} by declaring ij to be an edge if (V i, V j ) is a γ-regular pair with edge density at least η. From the definition, one might expect that if a cluster graph contains a copy of a fixed clique then so does the original graph. This is indeed the case, as established in the following well-known lemma (see [9]), which says more generally that if the cluster graph contains a K s then, for any fixed t, the original graph contains the Turán graph T (st, s). Lemma 3.5 For every η > 0 and positive integers s, t there exist a positive γ = γ(η, s, t) and a positive integer n 0 = n 0 (η, s, t) with the following property. Suppose that G is a graph of order n > n 0 with a γ-regular partition V = V 1 V m. Let C(η) be the cluster graph of the partition. If C(η) contains a K s then G contains a T (st, s). Proof of Theorem 1.4: Fix an s-chromatic graph H and fix a real ρ 1. We may assume s 3 as the theorem is trivially true (and meaningless) for bipartite graphs. Let ɛ > 0. We prove that there exists N = N(H, ρ, ɛ) such that for all n > N, if G is a graph with n vertices and more than RT (n, K s, ρ mean) + ɛn edges then any ρ-mean coloring of G contains a monochromatic copy of H. We shall use the following parameters. Let t be the smallest integer for which T (st, s) contains H. Let r = 18ρ /ɛ. In the proof we shall choose η to be sufficiently small as a function of ɛ alone. Let α = α(ɛ) be as in lemma 3.1. Let γ be chosen such that (i) γ < η/r, (ii) ρ/(1 γr) < ρ + α, (iii) 1/γ is larger than the minimal m for which Lemma 3.1 holds. (iv) γ < γ(η, s, t) where γ(η, s, t) is the function from Lemma 3.5. In the proof we shall assume, whenever necessary, that n is sufficiently large w.r.t. all of these constants, and hence N = N(H, ρ, ɛ) exists. In particular, N > n 0 (η, s, t) where n 0 (η, s, t) is the function from Lemma 3.5 and also N > M(γ, r) where M(γ, r) is the function from Lemma 3.4. Let G = (V, E) be a graph with n vertices and with E > RT (n, K s, ρ mean) + ɛn. Notice that since s 3 and since RT (n, K s, ρ mean) RT (n, K 3, 1) = t(n, ) = n /4 we have that n / > E > n /4. Fix a ρ-mean coloring of G. Assume the colors are {1,..., q} for some q and let c i denote the number of edges colored with i. Without loss of generality we assume that c i c i+1. We first show that the first r colors already satisfy c 1 + c + + c r E ɛn /. Indeed, assume otherwise. Since, trivially, c r+1 E /r, let us partition the colors {r + 1,..., q} into parts such that for each part (except, perhaps, the last part) the total number of edges colored with a color belonging to the part is between E /r and E /r. The number of edges colored by a color from the last part is at most E /r. The number of parts is, therefore, at least ɛ n E r > ɛ r. 6

7 Since any set of z edges is incident with at least z vertices we have that the total number of vertices incident with colors r + 1 and higher is at least ( ɛ r 1 ) E /r > ɛ 3 r n r = ɛ r 18 n > ρn, a contradiction to the fact that G is ρ-mean colored. Let E i be the set of edges colored i, let G i = (V, E i ), let E = E 1 E r and let G = (V, E ). By the argument above, E > RT (n, K s, ρ mean) + ɛn / and G is ρ-mean colored. It suffices to show that G has a copy of H. We apply Lemma 3.4 to G and obtain a partition of V into m classes V 1 V m where 1/γ < m < M which is γ-regular simultaneously with respect to all graphs G i = (V, E i ) for 1 i r. Consider the cluster graph C(η). By choosing η sufficiently small as a function of ɛ we are guaranteed that C(η) has at least RT (m, K s, ρ mean) + ɛm /4 edges. To see this, notice that if C(η) had less edges then, by Lemma 3., by the definition of γ-regularity and by the definition of C(η), the number of edges of G would have been at most (RT (m, K s, ρ mean) + ɛ 4 m ) n m + η n m ( ) m + γ ( ) m n m + ( n/m < RT (m, K s, ρ mean) n m + ɛ n RT (n, K s, ρ mean) + ɛ n contradicting the cardinality of E. In the last inequality we assume each color class has size n/m precisely. This may clearly be assumed since floors and ceilings may be dropped due to the asymptotic nature of our result. We define a coloring of the edges of C(η) as follows. The edge ij is colored by the color whose frequency in E (V i, V j ) is maximal. Notice that this frequency is at least (n /m )η/r. Let ρ be the average number of colors incident with each vertex in this coloring of C(η). We will show that ρ ρ + α. For i = 1,..., m let c(j) denote the number of colors incident with vertex j in our coloring of C(η). Clearly, c(1) + + c(m) = ρ m. For v V, let c(v) denote the number of colors incident with vertex v in the coloring of G. Clearly, v V c(v) ρn. We will show that almost all vertices v V j have c(v) c(j). Assume that color i appears in vertex j of C(η). Let V j,i V j be the set of vertices of V j incident with color i in G. We claim that V j V j,i < γn/m. Indeed, if this was not the case then by letting Y = V j V j,i and letting X = V j ) m where j is any class for which jj is colored i we have that d(x, Y ) = 0 with respect to color i, while d(v j, V j ) η/r with respect to color i. Since η/r > γ this contradicts the γ-regularity of the pair (V j, V j ) with respect to color i. Now, let W j = {v V j : c(v) c(j)}. We have therefore shown that W j V j γrn/m. Hence, ρn v V c(v) m j=1 v W j c(v) m c(j) n m (1 γr) = ρ n(1 γr). j=1 7

8 It follows that ρ ρ 1 γr ρ + α. We may now apply Lemma 3.1 to C(η) and obtain that C(η) has a monochromatic K s, say with color j. By Lemma 3.5 (applied to the spanning subgraph of C(η) induced by the edges colored j) this implies that G j = (V, E j ) contains a copy of T (st, s). In particular, there is a monochromatic copy of H in G. We have therefore proved that RT (n, H, ρ mean) RT (n, K s, ρ mean) + ɛn. Now, if H contains a K s then we also trivially have RT (n, H, ρ mean) RT (n, K s, ρ mean). This completes the proof of Theorem Acknowledgment The author thanks Y. Caro for useful discussions. References [1] B. Bollobás, Extremal Graph Theory, Academic Press, [] B. Biollobás, A. Kostochka and R. Schelp, Local and mean Ramsey numbers for trees, J. Combin. Theory Ser. B 79 (000), [3] S. Burr, P. Erdős and L. Lovász, On graphs of Ramsey type, Ars Combin. 1 (1976), [4] Y. Caro and Z. Tuza, On k-local and k-mean colorings of graphs and hypergraphs, Q. J. Math., Oxf. II. Ser. 44, No.176 (1993), [5] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963), [6] P. Erdős and A.H. Stone On the structure of linear graphs, Bull. Amer. Math. Soc. 5 (1946), [7] A. Gyárfás, J. Lehel, R. Schelp and Z. Tuza, Ramsey numbers for local colorings. Graphs Combin. 3 (1987), no. 3, [8] A. Hajnal and E. Szemerédi, Proof of a conjecture of Erdös, in: Combinatorial Theory and its Applications, Vol. II (P. Erdös, A. Renyi and V. T. Sós eds.), Colloq. Math. Soc. J. Bolyai 4, North Holland, Amsterdam 1970, [9] J. Komlós and M. Simonovits, Szemerédi Regularity lemma and its application in Graph Theory, in: Paul Erdős is 80, Proc. Coll. Bolyai Math. Soc. Vol. (Keszthely, 1993),

9 [10] R. Schelp, Local and mean k-ramsey numbers for complete graphs, J. Graph Theory 4 (1997), [11] M. Simonovits and V.T. Sós, Ramsey-Turán theory, Discrete Math. 9, No.1-3 (001), [1] E. Szemerédi, Regular partitions of graphs, in: Proc. Colloque Inter. CNRS 60, CNRS, Paris, 1978,

### A Turán Type Problem Concerning the Powers of the Degrees of a Graph

A Turán Type Problem Concerning the Powers of the Degrees of a Graph Yair Caro and Raphael Yuster Department of Mathematics University of Haifa-ORANIM, Tivon 36006, Israel. AMS Subject Classification:

### Ramsey numbers for bipartite graphs with small bandwidth

Ramsey numbers for bipartite graphs with small bandwidth Guilherme O. Mota 1,, Gábor N. Sárközy 2,, Mathias Schacht 3,, and Anusch Taraz 4, 1 Instituto de Matemática e Estatística, Universidade de São

### The degree, size and chromatic index of a uniform hypergraph

The degree, size and chromatic index of a uniform hypergraph Noga Alon Jeong Han Kim Abstract Let H be a k-uniform hypergraph in which no two edges share more than t common vertices, and let D denote the

### Large induced subgraphs with all degrees odd

Large induced subgraphs with all degrees odd A.D. Scott Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, England Abstract: We prove that every connected graph of order

### Generalizing the Ramsey Problem through Diameter

Generalizing the Ramsey Problem through Diameter Dhruv Mubayi Submitted: January 8, 001; Accepted: November 13, 001. MR Subject Classifications: 05C1, 05C15, 05C35, 05C55 Abstract Given a graph G and positive

### Partitioning edge-coloured complete graphs into monochromatic cycles and paths

arxiv:1205.5492v1 [math.co] 24 May 2012 Partitioning edge-coloured complete graphs into monochromatic cycles and paths Alexey Pokrovskiy Departement of Mathematics, London School of Economics and Political

### On an anti-ramsey type result

On an anti-ramsey type result Noga Alon, Hanno Lefmann and Vojtĕch Rödl Abstract We consider anti-ramsey type results. For a given coloring of the k-element subsets of an n-element set X, where two k-element

### ON INDUCED SUBGRAPHS WITH ALL DEGREES ODD. 1. Introduction

ON INDUCED SUBGRAPHS WITH ALL DEGREES ODD A.D. SCOTT Abstract. Gallai proved that the vertex set of any graph can be partitioned into two sets, each inducing a subgraph with all degrees even. We prove

### THE 0/1-BORSUK CONJECTURE IS GENERICALLY TRUE FOR EACH FIXED DIAMETER

THE 0/1-BORSUK CONJECTURE IS GENERICALLY TRUE FOR EACH FIXED DIAMETER JONATHAN P. MCCAMMOND AND GÜNTER ZIEGLER Abstract. In 1933 Karol Borsuk asked whether every compact subset of R d can be decomposed

### On-line Ramsey numbers

On-line Ramsey numbers David Conlon Abstract Consider the following game between two players, Builder and Painter Builder draws edges one at a time and Painter colours them, in either red or blue, as each

### Best Monotone Degree Bounds for Various Graph Parameters

Best Monotone Degree Bounds for Various Graph Parameters D. Bauer Department of Mathematical Sciences Stevens Institute of Technology Hoboken, NJ 07030 S. L. Hakimi Department of Electrical and Computer

### SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH

31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,

### Rational exponents in extremal graph theory

Rational exponents in extremal graph theory Boris Bukh David Conlon Abstract Given a family of graphs H, the extremal number ex(n, H) is the largest m for which there exists a graph with n vertices and

### On three zero-sum Ramsey-type problems

On three zero-sum Ramsey-type problems Noga Alon Department of Mathematics Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv, Israel and Yair Caro Department of Mathematics

### SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS. Nickolay Khadzhiivanov, Nedyalko Nenov

Serdica Math. J. 30 (2004), 95 102 SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS Nickolay Khadzhiivanov, Nedyalko Nenov Communicated by V. Drensky Abstract. Let Γ(M) where M V (G) be the set of all vertices

### A 2-factor in which each cycle has long length in claw-free graphs

A -factor in which each cycle has long length in claw-free graphs Roman Čada Shuya Chiba Kiyoshi Yoshimoto 3 Department of Mathematics University of West Bohemia and Institute of Theoretical Computer Science

### Finding and counting given length cycles

Finding and counting given length cycles Noga Alon Raphael Yuster Uri Zwick Abstract We present an assortment of methods for finding and counting simple cycles of a given length in directed and undirected

### The chromatic spectrum of mixed hypergraphs

The chromatic spectrum of mixed hypergraphs Tao Jiang, Dhruv Mubayi, Zsolt Tuza, Vitaly Voloshin, Douglas B. West March 30, 2003 Abstract A mixed hypergraph is a triple H = (X, C, D), where X is the vertex

### Cycles in a Graph Whose Lengths Differ by One or Two

Cycles in a Graph Whose Lengths Differ by One or Two J. A. Bondy 1 and A. Vince 2 1 LABORATOIRE DE MATHÉMATIQUES DISCRÉTES UNIVERSITÉ CLAUDE-BERNARD LYON 1 69622 VILLEURBANNE, FRANCE 2 DEPARTMENT OF MATHEMATICS

### Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Week 9 Lecture Notes Graph Theory For completeness I have included the definitions from last week s lecture which we will be using in today s lecture along with

### Triangle deletion. Ernie Croot. February 3, 2010

Triangle deletion Ernie Croot February 3, 2010 1 Introduction The purpose of this note is to give an intuitive outline of the triangle deletion theorem of Ruzsa and Szemerédi, which says that if G = (V,

### Every tree contains a large induced subgraph with all degrees odd

Every tree contains a large induced subgraph with all degrees odd A.J. Radcliffe Carnegie Mellon University, Pittsburgh, PA A.D. Scott Department of Pure Mathematics and Mathematical Statistics University

### Minimum degree condition forcing complete graph immersion

Minimum degree condition forcing complete graph immersion Matt DeVos Department of Mathematics Simon Fraser University Burnaby, B.C. V5A 1S6 Jacob Fox Department of Mathematics MIT Cambridge, MA 02139

### DO NOT RE-DISTRIBUTE THIS SOLUTION FILE

Professor Kindred Math 04 Graph Theory Homework 7 Solutions April 3, 03 Introduction to Graph Theory, West Section 5. 0, variation of 5, 39 Section 5. 9 Section 5.3 3, 8, 3 Section 7. Problems you should

### Total colorings of planar graphs with small maximum degree

Total colorings of planar graphs with small maximum degree Bing Wang 1,, Jian-Liang Wu, Si-Feng Tian 1 Department of Mathematics, Zaozhuang University, Shandong, 77160, China School of Mathematics, Shandong

### An inequality for the group chromatic number of a graph

An inequality for the group chromatic number of a graph Hong-Jian Lai 1, Xiangwen Li 2 and Gexin Yu 3 1 Department of Mathematics, West Virginia University Morgantown, WV 26505 USA 2 Department of Mathematics

### On Integer Additive Set-Indexers of Graphs

On Integer Additive Set-Indexers of Graphs arxiv:1312.7672v4 [math.co] 2 Mar 2014 N K Sudev and K A Germina Abstract A set-indexer of a graph G is an injective set-valued function f : V (G) 2 X such that

### Exponential time algorithms for graph coloring

Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A k-labeling of vertices of a graph G(V, E) is a function V [k].

### Lecture 4: The Chromatic Number

Introduction to Graph Theory Instructor: Padraic Bartlett Lecture 4: The Chromatic Number Week 1 Mathcamp 2011 In our discussion of bipartite graphs, we mentioned that one way to classify bipartite graphs

### Ph.D. Thesis. Judit Nagy-György. Supervisor: Péter Hajnal Associate Professor

Online algorithms for combinatorial problems Ph.D. Thesis by Judit Nagy-György Supervisor: Péter Hajnal Associate Professor Doctoral School in Mathematics and Computer Science University of Szeged Bolyai

### On Total Domination in Graphs

University of Houston - Downtown Senior Project - Fall 2012 On Total Domination in Graphs Author: David Amos Advisor: Dr. Ermelinda DeLaViña Senior Project Committee: Dr. Sergiy Koshkin Dr. Ryan Pepper

### Chapter 4. Trees. 4.1 Basics

Chapter 4 Trees 4.1 Basics A tree is a connected graph with no cycles. A forest is a collection of trees. A vertex of degree one, particularly in a tree, is called a leaf. Trees arise in a variety of applications.

### On the Union of Arithmetic Progressions

On the Union of Arithmetic Progressions Shoni Gilboa Rom Pinchasi August, 04 Abstract We show that for any integer n and real ɛ > 0, the union of n arithmetic progressions with pairwise distinct differences,

### All trees contain a large induced subgraph having all degrees 1 (mod k)

All trees contain a large induced subgraph having all degrees 1 (mod k) David M. Berman, A.J. Radcliffe, A.D. Scott, Hong Wang, and Larry Wargo *Department of Mathematics University of New Orleans New

### NON-CANONICAL EXTENSIONS OF ERDŐS-GINZBURG-ZIV THEOREM 1

NON-CANONICAL EXTENSIONS OF ERDŐS-GINZBURG-ZIV THEOREM 1 R. Thangadurai Stat-Math Division, Indian Statistical Institute, 203, B. T. Road, Kolkata 700035, INDIA thanga v@isical.ac.in Received: 11/28/01,

### Graphs without proper subgraphs of minimum degree 3 and short cycles

Graphs without proper subgraphs of minimum degree 3 and short cycles Lothar Narins, Alexey Pokrovskiy, Tibor Szabó Department of Mathematics, Freie Universität, Berlin, Germany. August 22, 2014 Abstract

### Extremal Graphs without Three-Cycles or Four-Cycles

Extremal Graphs without Three-Cycles or Four-Cycles David K. Garnick Department of Computer Science Bowdoin College Brunswick, Maine 04011 Y. H. Harris Kwong Department of Mathematics and Computer Science

### Basic Notions on Graphs. Planar Graphs and Vertex Colourings. Joe Ryan. Presented by

Basic Notions on Graphs Planar Graphs and Vertex Colourings Presented by Joe Ryan School of Electrical Engineering and Computer Science University of Newcastle, Australia Planar graphs Graphs may be drawn

### Characterizations of Arboricity of Graphs

Characterizations of Arboricity of Graphs Ruth Haas Smith College Northampton, MA USA Abstract The aim of this paper is to give several characterizations for the following two classes of graphs: (i) graphs

### Homework MA 725 Spring, 2012 C. Huneke SELECTED ANSWERS

Homework MA 725 Spring, 2012 C. Huneke SELECTED ANSWERS 1.1.25 Prove that the Petersen graph has no cycle of length 7. Solution: There are 10 vertices in the Petersen graph G. Assume there is a cycle C

### Intersection Dimension and Maximum Degree

Intersection Dimension and Maximum Degree N.R. Aravind and C.R. Subramanian The Institute of Mathematical Sciences, Taramani, Chennai - 600 113, India. email: {nraravind,crs}@imsc.res.in Abstract We show

### Coloring Eulerian triangulations of the projective plane

Coloring Eulerian triangulations of the projective plane Bojan Mohar 1 Department of Mathematics, University of Ljubljana, 1111 Ljubljana, Slovenia bojan.mohar@uni-lj.si Abstract A simple characterization

### Odd induced subgraphs in graphs of maximum degree three

Odd induced subgraphs in graphs of maximum degree three David M. Berman, Hong Wang, and Larry Wargo Department of Mathematics University of New Orleans New Orleans, Louisiana, USA 70148 Abstract A long-standing

### ON DEGREES IN THE HASSE DIAGRAM OF THE STRONG BRUHAT ORDER

Séminaire Lotharingien de Combinatoire 53 (2006), Article B53g ON DEGREES IN THE HASSE DIAGRAM OF THE STRONG BRUHAT ORDER RON M. ADIN AND YUVAL ROICHMAN Abstract. For a permutation π in the symmetric group

### Induced subgraphs of Ramsey graphs with many distinct degrees

Journal of Combinatorial Theory, Series B 97 (2007) 62 69 www.elsevier.com/locate/jctb Induced subgraphs of Ramsey graphs with many distinct degrees Boris Bukh a, Benny Sudakov a,b a Department of Mathematics,

### Set systems with union and intersection constraints

Set systems with union and intersection constraints Dhruv Mubayi Reshma Ramadurai September 13, 2007 Abstract Let 2 d k be fixed and n be sufficiently large. Suppose that G is a collection of k-element

### An inequality for the group chromatic number of a graph

Discrete Mathematics 307 (2007) 3076 3080 www.elsevier.com/locate/disc Note An inequality for the group chromatic number of a graph Hong-Jian Lai a, Xiangwen Li b,,1, Gexin Yu c a Department of Mathematics,

### Sparse halves in dense triangle-free graphs

Sparse halves in dense triangle-free graphs Sergey Norin a,1 Liana E. Yepremyan b, a Department of Mathematics and Statistics McGill University Montréal, Canada b School of Computer Science McGill University

### ABOUT UNIQUELY COLORABLE MIXED HYPERTREES

Discussiones Mathematicae Graph Theory 20 (2000 ) 81 91 ABOUT UNIQUELY COLORABLE MIXED HYPERTREES Angela Niculitsa Department of Mathematical Cybernetics Moldova State University Mateevici 60, Chişinău,

### Set systems with union and intersection constraints

Set systems with union and intersection constraints Dhruv Mubayi Reshma Ramadurai October 15, 2008 Abstract Let 2 d k be fixed and n be sufficiently large. Suppose that G is a collection of k-element subsets

### ONLINE VERTEX COLORINGS OF RANDOM GRAPHS WITHOUT MONOCHROMATIC SUBGRAPHS

ONLINE VERTEX COLORINGS OF RANDOM GRAPHS WITHOUT MONOCHROMATIC SUBGRAPHS MARTIN MARCINISZYN AND RETO SPÖHEL Abstract. Consider the following generalized notion of graph colorings: a vertex coloring of

### On-line Ramsey Theory for Bounded Degree Graphs

On-line Ramsey Theory for Bounded Degree Graphs Jane Butterfield Tracy Grauman William B. Kinnersley Kevin G. Milans Christopher Stocker Douglas B. West University of Illinois Urbana IL, U.S.A. Submitted:

### A maximum degree theorem for diameter-2-critical graphs

Cent. Eur. J. Math. 1(1) 01 188-1889 DOI: 10.78/s11533-01-09-3 Central European Journal of Mathematics A maximum degree theorem for diameter--critical graphs Research Article Teresa W. Haynes 1,, Michael

### Labeling outerplanar graphs with maximum degree three

Labeling outerplanar graphs with maximum degree three Xiangwen Li 1 and Sanming Zhou 2 1 Department of Mathematics Huazhong Normal University, Wuhan 430079, China 2 Department of Mathematics and Statistics

### CONTRIBUTIONS TO ZERO SUM PROBLEMS

CONTRIBUTIONS TO ZERO SUM PROBLEMS S. D. ADHIKARI, Y. G. CHEN, J. B. FRIEDLANDER, S. V. KONYAGIN AND F. PAPPALARDI Abstract. A prototype of zero sum theorems, the well known theorem of Erdős, Ginzburg

### The minimum number of monochromatic 4-term progressions

The minimum number of monochromatic 4-term progressions Rutgers University May 28, 2009 Monochromatic 3-term progressions Monochromatic 4-term progressions 1 Introduction Monochromatic 3-term progressions

### Degree-associated reconstruction parameters of complete multipartite graphs and their complements

Degree-associated reconstruction parameters of complete multipartite graphs and their complements Meijie Ma, Huangping Shi, Hannah Spinoza, Douglas B. West January 23, 2014 Abstract Avertex-deleted subgraphofagraphgisacard.

### Week 5 Integral Polyhedra

Week 5 Integral Polyhedra We have seen some examples 1 of linear programming formulation that are integral, meaning that every basic feasible solution is an integral vector. This week we develop a theory

### Computer Science Department. Technion - IIT, Haifa, Israel. Itai and Rodeh [IR] have proved that for any 2-connected graph G and any vertex s G there

- 1 - THREE TREE-PATHS Avram Zehavi Alon Itai Computer Science Department Technion - IIT, Haifa, Israel Abstract Itai and Rodeh [IR] have proved that for any 2-connected graph G and any vertex s G there

### High degree graphs contain large-star factors

High degree graphs contain large-star factors Dedicated to László Lovász, for his 60th birthday Noga Alon Nicholas Wormald Abstract We show that any finite simple graph with minimum degree d contains a

### Graph Theory Notes. Vadim Lozin. Institute of Mathematics University of Warwick

Graph Theory Notes Vadim Lozin Institute of Mathematics University of Warwick 1 Introduction A graph G = (V, E) consists of two sets V and E. The elements of V are called the vertices and the elements

### Chapter 8 Independence

Chapter 8 Independence Section 8.1 Vertex Independence and Coverings Next, we consider a problem that strikes close to home for us all, final exams. At the end of each term, students are required to take

### Cycles and clique-minors in expanders

Cycles and clique-minors in expanders Benny Sudakov UCLA and Princeton University Expanders Definition: The vertex boundary of a subset X of a graph G: X = { all vertices in G\X with at least one neighbor

### Clique coloring B 1 -EPG graphs

Clique coloring B 1 -EPG graphs Flavia Bonomo a,c, María Pía Mazzoleni b,c, and Maya Stein d a Departamento de Computación, FCEN-UBA, Buenos Aires, Argentina. b Departamento de Matemática, FCE-UNLP, La

### Strong Ramsey Games: Drawing on an infinite board

Strong Ramsey Games: Drawing on an infinite board Dan Hefetz Christopher Kusch Lothar Narins Alexey Pokrovskiy Clément Requilé Amir Sarid arxiv:1605.05443v2 [math.co] 25 May 2016 May 26, 2016 Abstract

### Tree-representation of set families and applications to combinatorial decompositions

Tree-representation of set families and applications to combinatorial decompositions Binh-Minh Bui-Xuan a, Michel Habib b Michaël Rao c a Department of Informatics, University of Bergen, Norway. buixuan@ii.uib.no

### (a) (b) (c) Figure 1 : Graphs, multigraphs and digraphs. If the vertices of the leftmost figure are labelled {1, 2, 3, 4} in clockwise order from

4 Graph Theory Throughout these notes, a graph G is a pair (V, E) where V is a set and E is a set of unordered pairs of elements of V. The elements of V are called vertices and the elements of E are called

### On the Randić index and Diameter of Chemical Graphs

On the Rić index Diameter of Chemical Graphs Dragan Stevanović PMF, University of Niš, Niš, Serbia PINT, University of Primorska, Koper, Slovenia (Received January 4, 008) Abstract Using the AutoGraphiX

### 9.1. Vertex colouring. 9. Graph colouring. Vertex colouring.

Vertex colouring. 9. Graph colouring k-vertex-critical graphs Approximation algorithms Upper bounds for the vertex chromatic number Brooks Theorem and Hajós Conjecture Chromatic Polynomials Colouring of

### Colored Saturation Parameters for Bipartite Graphs

Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 5-19-016 Colored Saturation Parameters for Bipartite Graphs Christine van Oostendorp cxv1075@rit.edu Follow this

### A Study of Sufficient Conditions for Hamiltonian Cycles

DeLeon 1 A Study of Sufficient Conditions for Hamiltonian Cycles Melissa DeLeon Department of Mathematics and Computer Science Seton Hall University South Orange, New Jersey 07079, U.S.A. ABSTRACT A graph

### Graph Theory. Introduction. Distance in Graphs. Trees. Isabela Drămnesc UVT. Computer Science Department, West University of Timişoara, Romania

Graph Theory Introduction. Distance in Graphs. Trees Isabela Drămnesc UVT Computer Science Department, West University of Timişoara, Romania November 2016 Isabela Drămnesc UVT Graph Theory and Combinatorics

### About the inverse football pool problem for 9 games 1

Seventh International Workshop on Optimal Codes and Related Topics September 6-1, 013, Albena, Bulgaria pp. 15-133 About the inverse football pool problem for 9 games 1 Emil Kolev Tsonka Baicheva Institute

### The positive minimum degree game on sparse graphs

The positive minimum degree game on sparse graphs József Balogh Department of Mathematical Sciences University of Illinois, USA jobal@math.uiuc.edu András Pluhár Department of Computer Science University

### On the independence number of graphs with maximum degree 3

On the independence number of graphs with maximum degree 3 Iyad A. Kanj Fenghui Zhang Abstract Let G be an undirected graph with maximum degree at most 3 such that G does not contain any of the three graphs

### 136 CHAPTER 4. INDUCTION, GRAPHS AND TREES

136 TER 4. INDUCTION, GRHS ND TREES 4.3 Graphs In this chapter we introduce a fundamental structural idea of discrete mathematics, that of a graph. Many situations in the applications of discrete mathematics

### Generalized Induced Factor Problems

Egerváry Research Group on Combinatorial Optimization Technical reports TR-2002-07. Published by the Egrerváry Research Group, Pázmány P. sétány 1/C, H 1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres.

### Edge looseness of plane graphs

Also available at http://amc-journal.eu ISSN 1855-966 (printed edn.), ISSN 1855-974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 9 (015) 89 96 Edge looseness of plane graphs Július Czap Department of

### A DIRAC TYPE RESULT ON HAMILTON CYCLES IN ORIENTED GRAPHS

A DIRAC TYPE RESULT ON HAMILTON CYCLES IN ORIENTED GRAPHS LUKE KELLY, DANIELA KÜHN AND DERYK OSTHUS Abstract. We show that for each α > every sufficiently large oriented graph G with δ + (G), δ (G) 3 G

### Extremal Graph Theory

Extremal Graph Theory Instructor: Asaf Shapira Scribed by Guy Rutenberg Fall 013 Contents 1 First Lecture 1.1 Mantel s Theorem........................................ 3 1. Turán s Theorem.........................................

### COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH ZACHARY ABEL 1. Introduction In this survey we discuss properties of the Higman-Sims graph, which has 100 vertices, 1100 edges, and is 22 regular. In fact

### The number of generalized balanced lines

The number of generalized balanced lines David Orden Pedro Ramos Gelasio Salazar Abstract Let S be a set of r red points and b = r + 2δ blue points in general position in the plane, with δ 0. A line l

### 2.3 Scheduling jobs on identical parallel machines

2.3 Scheduling jobs on identical parallel machines There are jobs to be processed, and there are identical machines (running in parallel) to which each job may be assigned Each job = 1,,, must be processed

### Solutions to Exercises 8

Discrete Mathematics Lent 2009 MA210 Solutions to Exercises 8 (1) Suppose that G is a graph in which every vertex has degree at least k, where k 1, and in which every cycle contains at least 4 vertices.

### Graph theoretic techniques in the analysis of uniquely localizable sensor networks

Graph theoretic techniques in the analysis of uniquely localizable sensor networks Bill Jackson 1 and Tibor Jordán 2 ABSTRACT In the network localization problem the goal is to determine the location of

### MIX-DECOMPOSITON OF THE COMPLETE GRAPH INTO DIRECTED FACTORS OF DIAMETER 2 AND UNDIRECTED FACTORS OF DIAMETER 3. University of Split, Croatia

GLASNIK MATEMATIČKI Vol. 38(58)(2003), 2 232 MIX-DECOMPOSITON OF THE COMPLETE GRAPH INTO DIRECTED FACTORS OF DIAMETER 2 AND UNDIRECTED FACTORS OF DIAMETER 3 Damir Vukičević University of Split, Croatia

### UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE

UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE ANDREW LUM ADVISOR: DAVID GUICHARD ABSTRACT. L(2,1)-labeling was first defined by Jerrold Griggs [Gr, 1992] as a way to use graphs

### On end degrees and infinite cycles in locally finite graphs

On end degrees and infinite cycles in locally finite graphs Henning Bruhn Maya Stein Abstract We introduce a natural extension of the vertex degree to ends. For the cycle space C(G) as proposed by Diestel

### Introduction to Graph Theory

Introduction to Graph Theory Allen Dickson October 2006 1 The Königsberg Bridge Problem The city of Königsberg was located on the Pregel river in Prussia. The river divided the city into four separate

### 2-partition-transitive tournaments

-partition-transitive tournaments Barry Guiduli András Gyárfás Stéphan Thomassé Peter Weidl Abstract Given a tournament score sequence s 1 s s n, we prove that there exists a tournament T on vertex set

### 8. Matchings and Factors

8. Matchings and Factors Consider the formation of an executive council by the parliament committee. Each committee needs to designate one of its members as an official representative to sit on the council,

### (Vertex) Colorings. We can properly color W 6 with. colors and no fewer. Of interest: What is the fewest colors necessary to properly color G?

Vertex Coloring 2.1 33 (Vertex) Colorings Definition: A coloring of a graph G is a labeling of the vertices of G with colors. [Technically, it is a function f : V (G) {1, 2,...,l}.] Definition: A proper

### The Independence Number in Graphs of Maximum Degree Three

The Independence Number in Graphs of Maximum Degree Three Jochen Harant 1 Michael A. Henning 2 Dieter Rautenbach 1 and Ingo Schiermeyer 3 1 Institut für Mathematik, TU Ilmenau, Postfach 100565, D-98684

### Math 443/543 Graph Theory Notes 4: Connector Problems

Math 443/543 Graph Theory Notes 4: Connector Problems David Glickenstein September 19, 2012 1 Trees and the Minimal Connector Problem Here is the problem: Suppose we have a collection of cities which we

### Resource Allocation with Time Intervals

Resource Allocation with Time Intervals Andreas Darmann Ulrich Pferschy Joachim Schauer Abstract We study a resource allocation problem where jobs have the following characteristics: Each job consumes

### Embedding nearly-spanning bounded degree trees

Embedding nearly-spanning bounded degree trees Noga Alon Michael Krivelevich Benny Sudakov Abstract We derive a sufficient condition for a sparse graph G on n vertices to contain a copy of a tree T of

### Diameter of paired domination edge-critical graphs

AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 40 (2008), Pages 279 291 Diameter of paired domination edge-critical graphs M. Edwards R.G. Gibson Department of Mathematics and Statistics University of Victoria

### Degree Hypergroupoids Associated with Hypergraphs

Filomat 8:1 (014), 119 19 DOI 10.98/FIL1401119F Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Degree Hypergroupoids Associated