Introduction to Integration Part 2: The Definite Integral

Size: px
Start display at page:

Download "Introduction to Integration Part 2: The Definite Integral"

Transcription

1 Mthemtics Lerning Centre Introduction to Integrtion Prt : The Definite Integrl Mr Brnes c 999 Universit of Sdne

2 Contents Introduction. Objectives Finding Ares 3 Ares Under Curves 4 3. Wht is the point of ll this? Note bout summtion nottion The Definition of the Definite Integrl 7 4. Notes The Fundmentl Theorem of the Clculus 8 6 Properties of the Definite Integrl 7 Some Common Misunderstndings 4 7. Arbitrr constnts Dumm vribles Another Look t Ares 5 9 The Are Between Two Curves 9 Other Applictions of the Definite Integrl Solutions to Eercises 3

3 Mthemtics Lerning Centre, Universit of Sdne Introduction This unit dels with the definite integrl. Iteplins how it is defined, how it is clculted nd some of the ws in which it is used. We shll ssume tht ou re lred fmilir with the process of finding indefinite integrls or primitive functions (sometimes clled nti-differentition) nd re ble to ntidifferentite rnge of elementr functions. If ou re not, ou should work through Introduction to Integrtion Prt I: Anti-Differentition, nd mke sure ou hve mstered the ides in it before ou begin work on this unit.. Objectives B the time ou hve worked through this unit ou should: Be fmilir with the definition of the definite integrl s the limit of sum; Understnd the rule for clculting definite integrls; Know the sttement of the Fundmentl Theorem of the Clculus nd understnd wht it mens; Be ble to use definite integrls to find res such s the re between curve nd the -is nd the re between two curves; Understnd tht definite integrls cn lso be used in other situtions where the quntit required cn be epressed s the limit of sum.

4 Mthemtics Lerning Centre, Universit of Sdne Finding Ares Ares of plne (i.e. flt!) figures re firl es to clculte if the re bounded b stright lines. The re of rectngle is clerl the length times the bredth. The re of right-ngled tringle cn be seen to be hlf the re of rectngle (see the digrm) nd so is hlf the bse times the height. The res of other tringles cn be found b epressing them s the sum or the difference of the res of right ngled tringles, nd from this it is cler tht for n tringle this re is hlf the bse times the height. Are of rectngle length bredth A B D C Are of tringle re of rectngle length bredth A B C D Are of ABC Are of ABC re of ABD re of ABD + re of ACD re of ACD Using this, we cn find the re of n figure bounded b stright lines, b dividing it up into tringles (s shown). Ares bounded b curved lines re much more difficult problem, however. In fct, lthough we ll feel we know intuitivel wht we men b the re of curviliner figure, it is ctull quite difficult to define precisel. The re of figure is quntified b sking how mn units of re would be needed to cover it? We need to hve some unit of re in mind (e.g. one squre centimetre or one squre millimetre) nd imgine tring to cover the figure with little squre tiles. We cn lso imgine cutting these tiles in hlves, qurters etc. In this w rectngle, nd hence n figure bounded b stright lines, cn be delt with, but curviliner figure cn never be covered ectl. We re therefore forced to rel on the notion of limit in order to define res of curviliner figures. To do this, we mke some simple ssumptions which most people will ccept s intuitivel obvious. These re:-. If one figure is subset of second figure, then the re of the first will be less thn or equl to tht of the second.

5 Mthemtics Lerning Centre, Universit of Sdne 3. If figure is divided up into non-overlpping pieces, the re of the whole will be the sum of the res of the pieces. Using these ssumptions, we cn pproimte to curved figures b mens of polgons (figures with stright line boundries), nd hence define the re of the curved figure s the limit of the res of the polgons s the pproch the curved figure (in some sense et to be mde precise).

6 Mthemtics Lerning Centre, Universit of Sdne 4 3 Ares Under Curves Let us suppose tht we re given positive function f() nd we wnt to find the re enclosed between the curve f(), the -is nd the lines nd b. (The shded re in the digrm.) If the grph of f() isnot stright line we do not, t the moment, know how to clculte the re precisel. f() Are b We cn, however, pproimte to the re s follows: First we divide the re up into strips s shown, b dividing the intervl from to b into equl subintervls, nd drwing verticl lines t these points. f() subdivisions b Net we choose the lest vlue of f() inech subintervl nd construct rectngle with tht s its height (s in the digrm). The sum of the res of these rectngles is clerl less thn the re we re tring to find. This sum is clled lower sum. lower sum b Then we choose the gretest vlue of f() inech subintervl nd construct rectngle with tht s its height (s in the digrm opposite). The sum of the res of these rectngles is clerl greter thn the re we re tring to find. This sum is clled n upper sum. upper sum b Thus we hve sndwiched the re we wnt to find in between n upper sum nd lower sum. Both the upper sum nd the lower sum re esil clculted becuse the re sums of res of rectngles.

7 Mthemtics Lerning Centre, Universit of Sdne 5 Although we still cn t s precisel wht the re under the curve is, we know between wht limits it lies. If we now increse the number of strips the re is divided into, we will get new upper nd lower sums, which will be closer to one nother in size nd so closer to the re which we re tring to find. In fct, the lrger the number of strips we tke, the smller will be the difference between the upper nd lower sums, nd so the better pproimtion either sum will be to the re under the curve. division into nrrower strips It cn be shown tht if f() is nice function (for emple, continuous function) the difference between the upper nd lower sums pproches zero s the number of strips the re is subdivided into pproches infinit. We cn thus define the re under the curve to be: the limit of either the upper sum or the lower sum, s the number of subdivisions tends to infinit (nd the width of ech subdivision tends to zero). Thus finding the re under curve boils down to finding the limit of sum. Now let us introduce some nottion so tht we cn tlk more precisel bout these concepts. Let us suppose tht the intervl [, b] is divided into n equl subintervls ech of width. Suppose lso tht the gretest vlue of f() in the ith subintervl is f( i ) nd the lest vlue is f( i). Then the upper sum cn be written s: f() f(*) f(') f( ) + f( ) f( n) or, using summtion nottion: n i f( i ). Similrl, the lower sum cn be written s: b f( ) + f( ) f( n) or, using summtion nottion: n i f( i). With this nottion, nd letting A stnd for the re under the curve f() from to b, we cn epress our erlier conclusions in smbolic form. The re lies between the lower sum nd the upper sum nd cn be written s follows: n n f( i) A f( i ). i i

8 Mthemtics Lerning Centre, Universit of Sdne 6 The re is equl to the limit of the lower sum or the upper sum s the number of subdivisions tends to infinit nd cn be written s follows: or n A lim f( n i) i n A n lim f( i ). i 3. Wht is the point of ll this? Well, firstl it enbles us to define precisel wht up till now hs onl been n imprecise intuitive concept, nmel, the re of region with curved lines forming prt of its boundr. Secondl it indictes how we m clculte pproimtions to such n re. B tking firl lrge vlue of n nd finding upper or lower sums we get n pproimte vlue for the re. The difference between the upper nd lower sums tells us how ccurte this pproimtion is. This, unfortuntel, is not ver good or ver prcticl w of pproimting to the re under curve. If ou do course in Numericl Methods ou will lern much better ws, such s the Trpezoidl Rule nd Simpson s Rule. Thirdl it enbles us to clculte res precisel, provided we know how to find finite sums nd evlute limits. This however cn be difficult nd tedious, so we need to look for better ws of finding res. This will be done in Section 5. At this stge, mn books sk students to do eercises clculting upper nd lower sums nd using these to estimte res. Frequentl students re lso sked to find the limits of these sums s the number of subdivisions pproches infinit, nd so find ect res. We shll not sk ou to do this, s it involves gret del of computtion. 3. Note bout summtion nottion The smbol (pronounced sigm ) is the cpitl letter S in the Greek lphbet, nd stnds for sum. The epression 4 i f(i) isred the sum of f(i) from i toi 4, or sigm from i to4off(i). In other words, we substitute,, 3 nd 4 in turn for i nd dd the resulting epressions. Thus, 4i i stnds for , 5i i stnds for , nd i f( ) stnds for f( ) + f( ).

9 Mthemtics Lerning Centre, Universit of Sdne 7 4 The Definition of the Definite Integrl The discussion in the previous section led to n epression of the form n A n lim f( i ) () i where the intervl [, b] hs been divided up into n equl subintervls ech of width nd where i is point in the ith subintervl. This is ver clums epression, nd mthemticins hve developed simpler nottion for such epressions. We denote them b f()d which is red s the integrl from to b of f()d. The sign is n elongted s nd stnds for sum, just s the did previousl. The difference is tht in this cse it mens the limit of sum rther thn finite sum. The d comes from the s we pss to the limit, just s hppened in the definition of d. d Thus the definite integrl is defined s the limit of prticulr tpe of sum i.e. sums like tht given in () bove, s the width of ech subintervl pproches zero nd the number of subintervls pproches infinit. 4. Notes. Although we used the re under curve s the motivtion for mking this definition, the definite integrl is not defined to be the re under curve but simpl the limit of the sum ().. Initill, when discussing res under curves, we introduced the restriction tht f() hd to be positive function. This restriction is not necessr for the definition of definite integrl. 3. The definition cn be mde more generl, b removing the requirement tht ll the subintervls hve to be of equl widths, but we shll not bother with such generlistions here. 4. Sums such s () re clled Riemnn sums fter the mthemticin Georg Riemnn who first gve rigorous definition of the definite integrl. 5. The definition of definite integrl requires tht f() should be defined everwhere in the intervl [, b] nd tht the limit of the Riemnn sums should eist. This will lws be the cse if f is continuous function.

10 Mthemtics Lerning Centre, Universit of Sdne 8 5 The Fundmentl Theorem of the Clculus So fr, we hve defined definite integrls but hve not given n prcticl w of clculting them. Nor hve we shown n connection between definite integrls nd differentition. Let us consider the specil cse where f(t) iscontinuous positive function, nd let us consider the re under the curve f(t) from some fied point t c up to the vrible point t. For different vlues of we will get different res. This mens tht the re is function of. Let us denote the re b A(). Clerl, A() increses s increses. Let us tr to find the rte t which it increses, tht is, the derivtive of A() with respect to. c A() f(t) t At this point, recll how we find derivtives from first principles: Given function f(), we let chnge b n mount, sotht f()chnges to f(+ ). The derivtive of f() isthe limit of P Q f( + ) f() s. We shll go through this process with A() in plce of f(). c S R + t When we increse b, A() increses b the re of the figure PQRS. Tht is, (see the digrm) A( + ) A() re PQRS. Now tht the re PQRS is bounded b curved line t the top, but it cn be seen to lie in between the res of two rectngles: T P Q U re PURS < re PQRS < re TQRS. Both of these rectngles hve width. Let the height of the lrger rectngle be f( ) nd the height of the smller rectngle f( ). (In other words, nd re the vlues of t which f() ttins its mimum nd minimum vlues in the intervl from to +.) f(') f(*) Thus re PURS f( ) nd re TQRS f( ). So, f( ) A( + ) A() f( ). S R

11 Mthemtics Lerning Centre, Universit of Sdne 9 Now if we divide these inequlities ll through b, we obtin f( ) A( + ) A() f( ). Finll, if we let, both f( ) nd f( ) pproch f(), nd so the epression in the middle must lso pproch f(), tht is, the derivtive of A(), da f(). d This result provides the link we need between differentition nd the definite integrl. If we recll tht the re under the curve f(t) from t to t is equl to f(t)dt, the result we hve just proved cn be stted s follows: d f(t)dt f(). () d In words This is the Fundmentl Theorem of the Clculus. If we differentite definite integrl with respect to the upper limit of integrtion, the result is the function we strted with. Youm not ctull use this result ver often, but it is importnt becuse we cn derive from it the rule for clculting definite integrls: Let us suppose tht F () isnnti-derivtive of f(). Tht is, it is function whose derivtive is f(). If we nti-differentite both sides of the eqution () we obtin f(t)dt F ()+c. Now we cn find the vlue of c b substituting in this epression. Since Thus f(t)dt is clerl equl to zero, we obtin F ()+c, nd so c F (). f(t)dt F () F (), or, letting b, f(t)dt F (b) F (). This tells us how to evlute definite integrl first, find n nti-derivtive of the function then, substitute the upper nd lower limits of integrtion into the result nd subtrct. Note A convenient short-hnd nottion for F (b) F () is[f ()] b.

12 Mthemtics Lerning Centre, Universit of Sdne To see how this works in prctice, let us look t few emples: i Find d. An nti-derivtive of is 3 3,sowewrite [ ] d ()3 3 ()3 3. ii Find π sin tdt. π sin tdt [ cos t] π cos(π)+ cos ( )+. iii Find the re enclosed between the -is, the curve 3 +5 nd the ordintes nd. In question like this it is lws good ide to drw rough sketch of the grph of the function nd the re ou re sked to find. (See below) If the required re is A squre units, then ( A 3 +5 ) d [ ] ( ) (4 4+) Eercises 5.. [ 3] 4 [ ] 3 b. c. [ ] 6 9 d. [ln ] 4.. b. 9 4 π π d cos tdt

13 Mthemtics Lerning Centre, Universit of Sdne c. d. d (s +s +)ds 3. Find the re of the shded region in ech of the digrms below:. b. + / 3 c. d. v sint v (4 u) 4 u π t 4. Evlute. e d b. c. d. π 5 3 d sin d t 4+t dt

14 Mthemtics Lerning Centre, Universit of Sdne 6 Properties of the Definite Integrl Some simple properties of definite integrls cn be derived from the bsic definition, or from the Fundmentl Theorem of the Clculus. We shll not give forml proofs of these here but ou might like to think bout them, nd tr to eplin, to ourself or someone else, wh the re true.. f()d. If the upper nd lower limits of the integrl re the sme, the integrl is zero. This becomes obvious if we hve positive function nd cn interpret the integrl in terms of the re under curve. b. If b c, c f()d f()d + c b f()d. This ss tht the integrl of function over the union of two intervls is equl to the sum of the integrls over ech of the intervls. The digrm opposite helps to mke this cler if f() is positive function. b c c. d. cf()d c f()d for n constnt c. This tells us tht we cn move constnt pst the integrl sign, but bewre: wecn onl do this with constnts, never with vribles! (f()+g())d f()d + g()d. Tht is, the integrl of sum is equl to the sum of the integrls. e. If f() g() in[, b] then f()d g()d. Tht is, integrtion preserves inequlities between functions. The digrm opposite eplins this result if f() nd g() re positive functions. g() f() b

15 Mthemtics Lerning Centre, Universit of Sdne 3 f. cd c(b ). This tells us tht the integrl of constnt is equl to the product of the constnt nd the rnge of integrtion. It becomes obvious when we look t the digrm with c>, since the re represented b the integrl is just rectngle of height c nd width b. c c b b g. We cn combine (e) nd (f) to give the result tht, if M is n upper bound nd m n lower bound for f() inthe intervl [, b], so tht m f() M, then m(b ) f()d M(b ). This, too, becomes cler when f() is positive function nd we cn interpret the integrl s the re under the curve. M m f() b h. Finll we etend the definition of the definite integrl slightl, to remove the restriction tht the lower limit of the integrl must be smller number thn the upper limit. We do this b specifing tht f()d f()d. For emple, b f()d f()d.

16 Mthemtics Lerning Centre, Universit of Sdne 4 7 Some Common Misunderstndings 7. Arbitrr constnts When ou first lerned how to find indefinite integrls (nti-derivtives), ou probbl lso lerned tht it ws importnt to remember lws to dd n rbitrr constnt to the nswer. There is no rbitrr constnt in definite integrl. If we interpret definite integrl s n re, it is cler tht its vlue is fied number (the number of units of re in the region). There is no mbiguit, nd so no need to dd n rbitrr constnt - in fct, it is wrong to do so. When we ppl the Fundmentl Theorem of the Clculus to finding definite integrl, however, the possibilit of n rbitrr constnt ppers to rise. For emple, in clculting d, wehve to find n nti-derivtive for. The most nturl choice would be 3 3, but insted of tht we could choose c, where c is n constnt. Then, [ d c] ( ) ( ) 3 ()3 + c 3 ()3 + c 3. Note tht the constnts cncel one nother out, nd we get the sme nswer s we did before. Thus we might s well tke the simplest course, nd forget bout rbitrr constnts when we re clculting definite integrls. 7. Dumm vribles Wht is the difference between f()d nd Let s work them both out in specil cse. 4 4 f(t)dt? d [ln ]4 ln4 ln. t dt [ln t]4 ln4 ln. So both integrls give the sme nswer. It is cler tht the vlue of definite integrl depends on the function nd the limits of integrtion but not on the ctul vrible used. In the process of evluting the integrl, we substitute the upper nd lower limits for the vrible nd so the vrible doesn t pper in the nswer. For this reson we cll the vrible in definite integrl dumm vrible -wecn replce it with n other vrible without chnging thing. Thus, f()d f()d f(t)dt f(θ)dθ.

17 Mthemtics Lerning Centre, Universit of Sdne 5 8 Another Look t Ares We hve defined the definite integrl f()d s the limit of prticulr tpe of sum, without plcing n restrictions on whether the function f() ispositive or negtive. We know tht, if f() ispositive, f()d is equl to the re between the curve f(), the -is nd the ordintes nd b, (which we refer to s the re under the curve ). The nturl question to sk now is: wht does f()d equl if f() is negtive? Cn we represent it s n re in this cse too; perhps the re bove the curve? If we go bck to the definition of f()d s the limit of sum, we cn see clerl tht if f() islws negtive then ech of the terms f( i ) will lso be negtive (since is positive). f() f() n So the sum f( i ) will be sum of negtive terms nd so will be negtive too. And i when we let n pproch infinit nd pss to the limit, tht will be negtive lso. Thus, if f() isnegtive for between nd b, f()d will lso be negtive. Now res re, b definition, positive. Remember tht, in section, we eplined tht we cn mesure the re of region b counting the number of little squre tiles (ech of unit re) needed to cover it. Since we cn t cover region with negtive number of tiles (it doesn t mke sense to tlk of it) we cn t hve negtive re. On the other hnd, if we ignore the fct tht ech of the terms f() is negtive, nd consider its numericl vlue onl, we cn see tht it is numericll equl to the re of the rectngle shown. And, if we go through the usul process, dding up the res of ll the little rectngles nd tking the limit, we find tht f()d is numericll equl to the re between the curve nd the -is. So to find the re, we clculte tke its numericl (i.e. bsolute) vlue. f()d, which will turn out to be negtive, nd then

18 Mthemtics Lerning Centre, Universit of Sdne 6 To see this more clerl, let s look t n emple. Consider the curve, ( ). This is cubic curve, nd cuts the -is t, nd. A sketch of the curve is shown below. Let us find the shded re. First we clculte the definite integrl ( )d. ( )d ( 3 )d [ 4 4 ] ( 4 ( ) ) 4. Since ( ) is negtive when lies between nd, the definite integrl is lso negtive, s epected. We cn conclude tht the re required is squre units. 4 As check, let us find the re of the other loop of the curve, i.e. the re between the curve nd the -is from to. Since ( ) is positive for this rnge of vlues of, the re will be given b ( )d [ 4 4 ] ( ( ) 4 ) 4. This is the nswer we would epect, since glnce t the digrm shows tht the curve hs point smmetr bout the origin. If we were to rotte the whole grph through 8, the prt of the curve to the left of the origin would fit ectl on top of the prt to the right of the origin, nd the unshded loop would fit on top of the shded loop. So the res of the two loops re the sme. Now let us clculte ( )d. ( )d [ 4 4 ] ( 4 ( ) 4 ). This mkes it ver cler tht definite integrl does not lws represent the re under curve.

19 Mthemtics Lerning Centre, Universit of Sdne 7 We hve found tht. If f() ispositive between nd b, then the curve.. If f() isnegtive between nd b, then curve, since the vlue of f()d is negtive. f()d does represent the re under f()d represents the re bove the 3. If f() issometimes positive nd sometimes negtive between nd b, then f()d mesures the difference in re between the prt bove the -is nd the prt below the -is. (In the emple bove, the two res were equl, nd so the difference cme out to be zero.) Let s look t nother emple. Consider the function ( + )( )( ) 3 +. This is cubic function, nd the grph crosses the -is t, nd. A sketch of the grph is shown. A B The re mrked A is given b ( 3 +)d [ ] ( 4 3 ) ( ) So the re of A is squre units. 3 The re mrked B cn be found b evluting ( 3 + ) d. This works out s 5. (The detils of the clcultion re left to ou.) So the re of B is 5 squre units.

20 Mthemtics Lerning Centre, Universit of Sdne 8 If we clculte ( 3 +)d the nswer will be the difference between the re of A nd the re of B, tht is, squre units. (Check it out for ourself.) 4 If we wnt the totl re enclosed between the curve nd the -is we must dd the re of A nd the re of B. i.e squre units. WARNING In working out re problems ou should lws sketch the curve first. If the function is sometimes positive nd sometimes negtive in the rnge ou re interested in, it m be necessr to divide the re into two or more prts, s shown below. c b The re between the curve nd the -is from to b is NOT equl to f()d. c Insted, it is f()d + f()d. c Before ou cn clculte this, ou must find the vlue of c, i.e. find the point where the curve f() crosses the -is. Eercises 8. Find the re enclosed b the grph of 3 ( 4) nd the -is.. i Find the vlue of π sin d. ii Find the re enclosed between the grph of sin nd the -is from to π. 3. Find the totl re enclosed between the grph of ( + )( ) nd the -is.

21 Mthemtics Lerning Centre, Universit of Sdne 9 9 The Are Between Two Curves Sometimes we wnt to find, not the re between curve nd the -is, but the re enclosed between two curves, s between f() nd g(). We cn pproch this problem in the sme w s before b dividing the re up into strips nd pproimting the re of ech strip b rectngle. The lower sum is found b clculting the re of the interior rectngles s shown in the digrm. f() g() The height of ech interior rectngle is equl to the difference between the lest vlue of f(), f( ), nd the gretest vlue of g(), g( ), in the rectngle. The re of the ith rectngle is (f( i) g( i )). n The lower sum (f( i) g( i )). i The upper sum cn be found in the sme w. The re enclosed between the curves is sndwiched between the lower sum nd the upper sum. f(') i g(*) i f() g() When we pss to the limit s, we get Are enclosed between the curves (f() g())d. Note tht the height is lws f() g(), even when one or both of the curves lie below the -is. For emple, if for some vlue of, f() nd g() 3, the distnce between the curves is f() g() ( 3) 5, or, if f() nd g() 3, the distnce between the curves is ( ) ( 3) (see the digrm). (,) (4, ) (, 3) (4, 3) So, to find the re enclosed between two curves, we must:. Find where the curves intersect.. Find which is the upper curve in the region we re interested in.

22 Mthemtics Lerning Centre, Universit of Sdne 3. Integrte the function (upper curve lower curve) between the pproprite limits. In other words, if two curves f() nd g() intersect t nd b, nd f() g() for b, then Eercises 9 Are enclosed between the curves (f() g())d. (Remember to drw digrm first, before beginning n problem.). Find the re enclosed between the prbol ( ) nd the line +.. Find the re enclosed between the two prbols 4 +nd. 3. Check tht the curves sin nd cos intersect t π nd 5π, nd find the 4 4 re enclosed b the curves between these two point. 4. i Sketch the grphs of the function 6 nd ii Find the points of intersection of the curves. iii Find the totl re enclosed between them.

23 Mthemtics Lerning Centre, Universit of Sdne Other Applictions of the Definite Integrl The problem with which we introduced the ide of the definite integrl ws tht of finding the re under curve. As result, most people tend to think of definite integrls lws in terms of re. But it is importnt to remember tht the definite integrl is ctull defined s the limit of sum: n lim f( i ) n i nd tht n other problem which cn be pproimted b similr sum will give rise to definite intregrl when we tke the limit. Emples. Volume of solid If we wnt to find the volume of solid, we cn imgine it being put through bred slicer, nd cut into slices of thickness. If A() is the cross sectionl re t distnce long the -is, the volume of the slice will be pproimtel A(), nd the totl volume of the solid will be pproimtel n A( i ). i When we pss to the limit s nd n, this becomes the definite integrl Are A() A()d.. Length of curve We cn pproimte to the length of curve b dividing it up into segments, s shown, nd pproimting the length of ech segment b replcing the curved line with stright line joining the end points. If the length of the ith stright line segment is l i, the totl length of the curve will be pproimtel n l i. i If we tke the limit of this sum s the length of ech segment pproches zero nd the number of segments pproches infinit, we gin get definite integrl. The detils re rther complicted nd re not given here. P i P i l i P n P

24 Mthemtics Lerning Centre, Universit of Sdne 3. Mss of bod of vring densit Suppose we hve br, rope or chin whose liner densit (mss per unit length) vries. Let the densit t distnce long the -is be d(). If we subdivide the object into smll sections of length, the totl mss cn be pproimted b the sum n d( i ). When we tke the limit s n,weobtin the definite integrl i d()d. 4. Work done b vrible force In mechnics, the work done b constnt force is defined to be the product of the mgnitude of the force nd the distnce moved in the direction of the force. If the force F ()isvring, we cn pproimte to the work b dividing up the distnce into smll subintervls. If these re smll enough, we cn regrd the force s effectivel constnt throughout ech intervl nd so the work done in moving through distnce is pproimtel F (). The totl work is thus pproimtel n i F ( i ) nd when we tke the limit s n,wefind tht the work done in moving the force from to b is F ()d. Mn other emples could be given, but these four should be sufficient to illustrte the wide vriet of pplictions of the definite integrl.

25 Mthemtics Lerning Centre, Universit of Sdne 3 Solutions to Eercises Eercises 5.. (4 3 ) ( 3 ) b c. 6 9 d. ln 4 ln ln 4 ln.. b. c. d. 9 4 π π [ ] 9 d cos tdt [sin t] π π sin π ( sin π ) ( ) d [ ] ( ) [ (s +s +)ds 3 s3 + s +s] ( ) 3 + ( 8 ) Are b. Are c. Are d. Are 3 4 π [ ( ) ( ) 8 ( +)d ] d [ln]3 ln3 ln ln3 4 [ ] (4 u)du (4 u) 4 ( )du 3 (4 u) sin tdt [ cos t] π cos π +cos b. c. d. π 5 e d e d [ e ] (e ) 3 d ( )d [ln(3 )] 3 (ln 4 ln 5) ln 5 ln 4ln5 4 sin d π sin d [ cos ] π ( cos π + cos ) t 4+t dt 5 t 4+t dt [ ln(4 + t ) ] 5 9 ln 5

26 Mthemtics Lerning Centre, Universit of Sdne 4 Eercises 8. First, drw grph. The re is below the -is, so we first clculte 4 3 ( 4)d. 4 3 ( 4)d 4 (3 3 )d 4 [ ] The required re is therefore 64 units.. i ii π sin d [ cos ] π cos π + cos + π π From the grph we see tht the re π π Are sin d + sin d π [ cos ] π + [ cos ]π π ( cos π + cos ) + cos π + cos π ( ( )+)+ +( ) The grph of the curve cuts the -is t, nd. The totl re re A + re B. Are A ( + )( )d ( )d [ ] ( 3 4+) 5 5. B A Are B ( + )( )d [ ] ( ) 3.

27 Mthemtics Lerning Centre, Universit of Sdne 5 Therefore the totl re is squre units. Eercises 9. The curves nd + intersect where +. i.e. t or. The upper curve is +. (,3) Are (( +) ( ))d ( + )d [ ] (,) ( ) ( ) 4.. The curves intersect where 4 + i.e. 4 i.e. or. The upper curve is (see sketch). Are (( ) ( 4 + ))d (4 )d [ ] (,) (8 3 8) 3. (, ) 3. When π 4, sin nd cos. When 5π 4, sin nd cos. So the curves sin nd cos intersect t π 4 nd 5π 4. π/4 5π/4 Are 5π 4 π 4 (sin cos )d [ cos sin ] 5π 4 π 4

28 Mthemtics Lerning Centre, Universit of Sdne 6 ( cos 5π 4 sin 5π 4 )+(cos π 4 + sin π 4 ) (i) nd (ii) The curves re esier to sketch if we first find the points of intersection: the meet where Tht is, or ( )( +3). So the points of intersection re (, 6); (, ); nd ( 3, ). The first curve is n upside-down prbol, nd the second cubic. Totl re re A+re B. A 3 B Are A 3 3 (( ) (6 ))d ( 3 + 6)d [ ] Are B 5 3. ((6 ) ( ))d (6 3 )d.. the totl re squre units.

AREA OF A SURFACE OF REVOLUTION

AREA OF A SURFACE OF REVOLUTION AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.

More information

Integration. 148 Chapter 7 Integration

Integration. 148 Chapter 7 Integration 48 Chpter 7 Integrtion 7 Integrtion t ech, by supposing tht during ech tenth of second the object is going t constnt speed Since the object initilly hs speed, we gin suppose it mintins this speed, but

More information

Double Integrals over General Regions

Double Integrals over General Regions Double Integrls over Generl egions. Let be the region in the plne bounded b the lines, x, nd x. Evlute the double integrl x dx d. Solution. We cn either slice the region verticll or horizontll. ( x x Slicing

More information

Graphs on Logarithmic and Semilogarithmic Paper

Graphs on Logarithmic and Semilogarithmic Paper 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

More information

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one. 5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply

More information

SPECIAL PRODUCTS AND FACTORIZATION

SPECIAL PRODUCTS AND FACTORIZATION MODULE - Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come

More information

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding 1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde

More information

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( ) Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

More information

www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values)

www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values) www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input

More information

Math Review 1. , where α (alpha) is a constant between 0 and 1, is one specific functional form for the general production function.

Math Review 1. , where α (alpha) is a constant between 0 and 1, is one specific functional form for the general production function. Mth Review Vribles, Constnts nd Functions A vrible is mthemticl bbrevition for concept For emple in economics, the vrible Y usully represents the level of output of firm or the GDP of n economy, while

More information

Integration by Substitution

Integration by Substitution Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Basic Algebra

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Basic Algebra SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mthemtics Bsic Alger. Opertions nd Epressions. Common Mistkes. Division of Algeric Epressions. Eponentil Functions nd Logrithms. Opertions nd their Inverses. Mnipulting

More information

6.2 Volumes of Revolution: The Disk Method

6.2 Volumes of Revolution: The Disk Method mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine so-clled volumes of

More information

9 CONTINUOUS DISTRIBUTIONS

9 CONTINUOUS DISTRIBUTIONS 9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete

More information

Factoring Polynomials

Factoring Polynomials Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

More information

Or more simply put, when adding or subtracting quantities, their uncertainties add.

Or more simply put, when adding or subtracting quantities, their uncertainties add. Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re

More information

15.6. The mean value and the root-mean-square value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style

15.6. The mean value and the root-mean-square value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style The men vlue nd the root-men-squre vlue of function 5.6 Introduction Currents nd voltges often vry with time nd engineers my wish to know the verge vlue of such current or voltge over some prticulr time

More information

Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials

Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials MEI Mthemtics in Ection nd Instry Topic : Proof MEI Structured Mthemtics Mole Summry Sheets C, Methods for Anced Mthemtics (Version B reference to new book) Topic : Nturl Logrithms nd Eponentils Topic

More information

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions. Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd

More information

Section 7-4 Translation of Axes

Section 7-4 Translation of Axes 62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 7-4 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the

More information

Numerical Methods of Approximating Definite Integrals

Numerical Methods of Approximating Definite Integrals 6 C H A P T E R Numericl Methods o Approimting Deinite Integrls 6. APPROXIMATING SUMS: L n, R n, T n, AND M n Introduction Not only cn we dierentite ll the bsic unctions we ve encountered, polynomils,

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Nme Chpter Eponentil nd Logrithmic Functions Section. Eponentil Functions nd Their Grphs Objective: In this lesson ou lerned how to recognize, evlute, nd grph eponentil functions. Importnt Vocbulr Define

More information

Algebra Review. How well do you remember your algebra?

Algebra Review. How well do you remember your algebra? Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then

More information

Applications to Physics and Engineering

Applications to Physics and Engineering Section 7.5 Applictions to Physics nd Engineering Applictions to Physics nd Engineering Work The term work is used in everydy lnguge to men the totl mount of effort required to perform tsk. In physics

More information

1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator

1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator AP Clculus Finl Review Sheet When you see the words. This is wht you think of doing. Find the zeros Find roots. Set function =, fctor or use qudrtic eqution if qudrtic, grph to find zeros on clcultor.

More information

2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration

2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration Source: http://www.mth.cuhk.edu.hk/~mt26/mt26b/notes/notes3.pdf 25-6 Second Term MAT26B 1 Supplementry Notes 3 Interchnge of Differentition nd Integrtion The theme of this course is bout vrious limiting

More information

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers. 2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this

More information

CHAPTER 11 Numerical Differentiation and Integration

CHAPTER 11 Numerical Differentiation and Integration CHAPTER 11 Numericl Differentition nd Integrtion Differentition nd integrtion re bsic mthemticl opertions with wide rnge of pplictions in mny res of science. It is therefore importnt to hve good methods

More information

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100 hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

More information

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive

More information

PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1

PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1 PROBLEMS - APPLICATIONS OF DERIVATIVES Pge ( ) Wter seeps out of conicl filter t the constnt rte of 5 cc / sec. When the height of wter level in the cone is 5 cm, find the rte t which the height decreses.

More information

Review guide for the final exam in Math 233

Review guide for the final exam in Math 233 Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered

More information

Review Problems for the Final of Math 121, Fall 2014

Review Problems for the Final of Math 121, Fall 2014 Review Problems for the Finl of Mth, Fll The following is collection of vrious types of smple problems covering sections.,.5, nd.7 6.6 of the text which constitute only prt of the common Mth Finl. Since

More information

Section A-4 Rational Expressions: Basic Operations

Section A-4 Rational Expressions: Basic Operations A- Appendi A A BASIC ALGEBRA REVIEW 7. Construction. A rectngulr open-topped bo is to be constructed out of 9- by 6-inch sheets of thin crdbord by cutting -inch squres out of ech corner nd bending the

More information

Unit 6: Exponents and Radicals

Unit 6: Exponents and Radicals Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -

More information

Reasoning to Solve Equations and Inequalities

Reasoning to Solve Equations and Inequalities Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

More information

10.6 Applications of Quadratic Equations

10.6 Applications of Quadratic Equations 10.6 Applictions of Qudrtic Equtions In this section we wnt to look t the pplictions tht qudrtic equtions nd functions hve in the rel world. There re severl stndrd types: problems where the formul is given,

More information

Lecture 3 Gaussian Probability Distribution

Lecture 3 Gaussian Probability Distribution Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike

More information

Curve Sketching. 96 Chapter 5 Curve Sketching

Curve Sketching. 96 Chapter 5 Curve Sketching 96 Chpter 5 Curve Sketching 5 Curve Sketching A B A B A Figure 51 Some locl mximum points (A) nd minimum points (B) If (x, f(x)) is point where f(x) reches locl mximum or minimum, nd if the derivtive of

More information

Thinking out of the Box... Problem It s a richer problem than we ever imagined

Thinking out of the Box... Problem It s a richer problem than we ever imagined From the Mthemtics Techer, Vol. 95, No. 8, pges 568-574 Wlter Dodge (not pictured) nd Steve Viktor Thinking out of the Bo... Problem It s richer problem thn we ever imgined The bo problem hs been stndrd

More information

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn 33337_0P03.qp 2/27/06 24 9:3 AM Chpter P Pge 24 Prerequisites P.3 Polynomils nd Fctoring Wht you should lern Polynomils An lgeric epression is collection of vriles nd rel numers. The most common type of

More information

EQUATIONS OF LINES AND PLANES

EQUATIONS OF LINES AND PLANES EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint

More information

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of

More information

4.11 Inner Product Spaces

4.11 Inner Product Spaces 314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces

More information

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Byesin Updting with Continuous Priors Clss 3, 8.05, Spring 04 Jeremy Orloff nd Jonthn Bloom Lerning Gols. Understnd prmeterized fmily of distriutions s representing continuous rnge of hypotheses for the

More information

Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a.

Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a. Vectors mesurement which onl descries the mgnitude (i.e. size) of the oject is clled sclr quntit, e.g. Glsgow is 11 miles from irdrie. vector is quntit with mgnitude nd direction, e.g. Glsgow is 11 miles

More information

Experiment 6: Friction

Experiment 6: Friction Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht

More information

LECTURE #05. Learning Objective. To describe the geometry in and around a unit cell in terms of directions and planes.

LECTURE #05. Learning Objective. To describe the geometry in and around a unit cell in terms of directions and planes. LECTURE #05 Chpter 3: Lttice Positions, Directions nd Plnes Lerning Objective To describe the geometr in nd round unit cell in terms of directions nd plnes. 1 Relevnt Reding for this Lecture... Pges 64-83.

More information

Vectors 2. 1. Recap of vectors

Vectors 2. 1. Recap of vectors Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms

More information

Helicopter Theme and Variations

Helicopter Theme and Variations Helicopter Theme nd Vritions Or, Some Experimentl Designs Employing Pper Helicopters Some possible explntory vribles re: Who drops the helicopter The length of the rotor bldes The height from which the

More information

The Chain Rule. rf dx. t t lim " (x) dt " (0) dx. df dt = df. dt dt. f (r) = rf v (1) df dx

The Chain Rule. rf dx. t t lim  (x) dt  (0) dx. df dt = df. dt dt. f (r) = rf v (1) df dx The Chin Rule The Chin Rule In this section, we generlize the chin rule to functions of more thn one vrible. In prticulr, we will show tht the product in the single-vrible chin rule extends to n inner

More information

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is so-clled becuse when the sclr product of two vectors

More information

The Definite Integral

The Definite Integral Chpter 4 The Definite Integrl 4. Determining distnce trveled from velocity Motivting Questions In this section, we strive to understnd the ides generted by the following importnt questions: If we know

More information

Pure C4. Revision Notes

Pure C4. Revision Notes Pure C4 Revision Notes Mrch 0 Contents Core 4 Alger Prtil frctions Coordinte Geometry 5 Prmetric equtions 5 Conversion from prmetric to Crtesin form 6 Are under curve given prmetriclly 7 Sequences nd

More information

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered: Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you

More information

Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3.

Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3. The nlysis of vrince (ANOVA) Although the t-test is one of the most commonly used sttisticl hypothesis tests, it hs limittions. The mjor limittion is tht the t-test cn be used to compre the mens of only

More information

The Velocity Factor of an Insulated Two-Wire Transmission Line

The Velocity Factor of an Insulated Two-Wire Transmission Line The Velocity Fctor of n Insulted Two-Wire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the

More information

Math 135 Circles and Completing the Square Examples

Math 135 Circles and Completing the Square Examples Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for

More information

PHY 222 Lab 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS

PHY 222 Lab 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS PHY 222 Lb 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS Nme: Prtners: INTRODUCTION Before coming to lb, plese red this pcket nd do the prelb on pge 13 of this hndout. From previous experiments,

More information

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is

More information

Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right.

Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right. Order of Opertions r of Opertions Alger P lese Prenthesis - Do ll grouped opertions first. E cuse Eponents - Second M D er Multipliction nd Division - Left to Right. A unt S hniqu Addition nd Sutrction

More information

Section 5-4 Trigonometric Functions

Section 5-4 Trigonometric Functions 5- Trigonometric Functions Section 5- Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form

More information

Ostrowski Type Inequalities and Applications in Numerical Integration. Edited By: Sever S. Dragomir. and. Themistocles M. Rassias

Ostrowski Type Inequalities and Applications in Numerical Integration. Edited By: Sever S. Dragomir. and. Themistocles M. Rassias Ostrowski Type Inequlities nd Applictions in Numericl Integrtion Edited By: Sever S Drgomir nd Themistocles M Rssis SS Drgomir) School nd Communictions nd Informtics, Victori University of Technology,

More information

6 Energy Methods And The Energy of Waves MATH 22C

6 Energy Methods And The Energy of Waves MATH 22C 6 Energy Methods And The Energy of Wves MATH 22C. Conservtion of Energy We discuss the principle of conservtion of energy for ODE s, derive the energy ssocited with the hrmonic oscilltor, nd then use this

More information

Basic Analysis of Autarky and Free Trade Models

Basic Analysis of Autarky and Free Trade Models Bsic Anlysis of Autrky nd Free Trde Models AUTARKY Autrky condition in prticulr commodity mrket refers to sitution in which country does not engge in ny trde in tht commodity with other countries. Consequently

More information

Econ 4721 Money and Banking Problem Set 2 Answer Key

Econ 4721 Money and Banking Problem Set 2 Answer Key Econ 472 Money nd Bnking Problem Set 2 Answer Key Problem (35 points) Consider n overlpping genertions model in which consumers live for two periods. The number of people born in ech genertion grows in

More information

Cypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period:

Cypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period: Nme: SOLUTIONS Dte: Period: Directions: Solve ny 5 problems. You my ttempt dditionl problems for extr credit. 1. Two blocks re sliding to the right cross horizontl surfce, s the drwing shows. In Cse A

More information

A Note on Complement of Trapezoidal Fuzzy Numbers Using the α-cut Method

A Note on Complement of Trapezoidal Fuzzy Numbers Using the α-cut Method Interntionl Journl of Applictions of Fuzzy Sets nd Artificil Intelligence ISSN - Vol. - A Note on Complement of Trpezoidl Fuzzy Numers Using the α-cut Method D. Stephen Dingr K. Jivgn PG nd Reserch Deprtment

More information

4.5 Signal Flow Graphs

4.5 Signal Flow Graphs 3/9/009 4_5 ignl Flow Grphs.doc / 4.5 ignl Flow Grphs Reding Assignment: pp. 89-97 Q: Using individul device scttering prmeters to nlze comple microwve network results in lot of mess mth! Isn t there n

More information

Solving BAMO Problems

Solving BAMO Problems Solving BAMO Problems Tom Dvis tomrdvis@erthlink.net http://www.geometer.org/mthcircles Februry 20, 2000 Abstrct Strtegies for solving problems in the BAMO contest (the By Are Mthemticl Olympid). Only

More information

DIFFERENTIATING UNDER THE INTEGRAL SIGN

DIFFERENTIATING UNDER THE INTEGRAL SIGN DIFFEENTIATING UNDE THE INTEGAL SIGN KEITH CONAD I hd lerned to do integrls by vrious methods shown in book tht my high school physics techer Mr. Bder hd given me. [It] showed how to differentite prmeters

More information

Lecture 5. Inner Product

Lecture 5. Inner Product Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right

More information

Binary Representation of Numbers Autar Kaw

Binary Representation of Numbers Autar Kaw Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy

More information

Physics 43 Homework Set 9 Chapter 40 Key

Physics 43 Homework Set 9 Chapter 40 Key Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x

More information

MODULE 3. 0, y = 0 for all y

MODULE 3. 0, y = 0 for all y Topics: Inner products MOULE 3 The inner product of two vectors: The inner product of two vectors x, y V, denoted by x, y is (in generl) complex vlued function which hs the following four properties: i)

More information

Mechanics Cycle 1 Chapter 5. Chapter 5

Mechanics Cycle 1 Chapter 5. Chapter 5 Chpter 5 Contct orces: ree Body Digrms nd Idel Ropes Pushes nd Pulls in 1D, nd Newton s Second Lw Neglecting riction ree Body Digrms Tension Along Idel Ropes (i.e., Mssless Ropes) Newton s Third Lw Bodies

More information

Factoring Trinomials of the Form. x 2 b x c. Example 1 Factoring Trinomials. The product of 4 and 2 is 8. The sum of 3 and 2 is 5.

Factoring Trinomials of the Form. x 2 b x c. Example 1 Factoring Trinomials. The product of 4 and 2 is 8. The sum of 3 and 2 is 5. Section P.6 Fctoring Trinomils 6 P.6 Fctoring Trinomils Wht you should lern: Fctor trinomils of the form 2 c Fctor trinomils of the form 2 c Fctor trinomils y grouping Fctor perfect squre trinomils Select

More information

Square Roots Teacher Notes

Square Roots Teacher Notes Henri Picciotto Squre Roots Techer Notes This unit is intended to help students develop n understnding of squre roots from visul / geometric point of view, nd lso to develop their numer sense round this

More information

The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus Section 5.4 Te Funmentl Teorem of Clculus Kiryl Tsiscnk Te Funmentl Teorem of Clculus EXAMPLE: If f is function wose grp is sown below n g() = f(t)t, fin te vlues of g(), g(), g(), g(3), g(4), n g(5).

More information

Calculus of variations with fractional derivatives and fractional integrals

Calculus of variations with fractional derivatives and fractional integrals Anis do CNMAC v.2 ISSN 1984-820X Clculus of vritions with frctionl derivtives nd frctionl integrls Ricrdo Almeid, Delfim F. M. Torres Deprtment of Mthemtics, University of Aveiro 3810-193 Aveiro, Portugl

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur Module Anlysis of Stticlly Indeterminte Structures by the Mtrix Force Method Version CE IIT, Khrgpur esson 9 The Force Method of Anlysis: Bems (Continued) Version CE IIT, Khrgpur Instructionl Objectives

More information

MATH 150 HOMEWORK 4 SOLUTIONS

MATH 150 HOMEWORK 4 SOLUTIONS MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive

More information

Radius of the Earth - Radii Used in Geodesy James R. Clynch February 2006

Radius of the Earth - Radii Used in Geodesy James R. Clynch February 2006 dius of the Erth - dii Used in Geodesy Jmes. Clynch Februry 006 I. Erth dii Uses There is only one rdius of sphere. The erth is pproximtely sphere nd therefore, for some cses, this pproximtion is dequte.

More information

Regular Sets and Expressions

Regular Sets and Expressions Regulr Sets nd Expressions Finite utomt re importnt in science, mthemtics, nd engineering. Engineers like them ecuse they re super models for circuits (And, since the dvent of VLSI systems sometimes finite

More information

3 The Utility Maximization Problem

3 The Utility Maximization Problem 3 The Utility Mxiiztion Proble We hve now discussed how to describe preferences in ters of utility functions nd how to forulte siple budget sets. The rtionl choice ssuption, tht consuers pick the best

More information

PHY 140A: Solid State Physics. Solution to Homework #2

PHY 140A: Solid State Physics. Solution to Homework #2 PHY 140A: Solid Stte Physics Solution to Homework # TA: Xun Ji 1 October 14, 006 1 Emil: jixun@physics.ucl.edu Problem #1 Prove tht the reciprocl lttice for the reciprocl lttice is the originl lttice.

More information

g(y(a), y(b)) = o, B a y(a)+b b y(b)=c, Boundary Value Problems Lecture Notes to Accompany

g(y(a), y(b)) = o, B a y(a)+b b y(b)=c, Boundary Value Problems Lecture Notes to Accompany Lecture Notes to Accompny Scientific Computing An Introductory Survey Second Edition by Michel T Heth Boundry Vlue Problems Side conditions prescribing solution or derivtive vlues t specified points required

More information

Babylonian Method of Computing the Square Root: Justifications Based on Fuzzy Techniques and on Computational Complexity

Babylonian Method of Computing the Square Root: Justifications Based on Fuzzy Techniques and on Computational Complexity Bbylonin Method of Computing the Squre Root: Justifictions Bsed on Fuzzy Techniques nd on Computtionl Complexity Olg Koshelev Deprtment of Mthemtics Eduction University of Texs t El Pso 500 W. University

More information

Warm-up for Differential Calculus

Warm-up for Differential Calculus Summer Assignment Wrm-up for Differentil Clculus Who should complete this pcket? Students who hve completed Functions or Honors Functions nd will be tking Differentil Clculus in the fll of 015. Due Dte:

More information

Finite Automata. Informatics 2A: Lecture 3. John Longley. 25 September School of Informatics University of Edinburgh

Finite Automata. Informatics 2A: Lecture 3. John Longley. 25 September School of Informatics University of Edinburgh Lnguges nd Automt Finite Automt Informtics 2A: Lecture 3 John Longley School of Informtics University of Edinburgh jrl@inf.ed.c.uk 25 September 2015 1 / 30 Lnguges nd Automt 1 Lnguges nd Automt Wht is

More information

Plotting and Graphing

Plotting and Graphing Plotting nd Grphing Much of the dt nd informtion used by engineers is presented in the form of grphs. The vlues to be plotted cn come from theoreticl or empiricl (observed) reltionships, or from mesured

More information

Section 1: Crystal Structure

Section 1: Crystal Structure Phsics 927 Section 1: Crstl Structure A solid is sid to be crstl if toms re rrnged in such w tht their positions re ectl periodic. This concept is illustrted in Fig.1 using two-dimensionl (2D) structure.

More information

A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324

A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324 A P P E N D I X A Vectors CONTENTS A.1 Scling vector................................................ 321 A.2 Unit or Direction vectors...................................... 321 A.3 Vector ddition.................................................

More information

The Riemann Integral. Chapter 1

The Riemann Integral. Chapter 1 Chpter The Riemnn Integrl now of some universities in Englnd where the Lebesgue integrl is tught in the first yer of mthemtics degree insted of the Riemnn integrl, but now of no universities in Englnd

More information

addition, there are double entries for the symbols used to signify different parameters. These parameters are explained in this appendix.

addition, there are double entries for the symbols used to signify different parameters. These parameters are explained in this appendix. APPENDIX A: The ellipse August 15, 1997 Becuse of its importnce in both pproximting the erth s shpe nd describing stellite orbits, n informl discussion of the ellipse is presented in this ppendix. The

More information

All pay auctions with certain and uncertain prizes a comment

All pay auctions with certain and uncertain prizes a comment CENTER FOR RESEARC IN ECONOMICS AND MANAGEMENT CREAM Publiction No. 1-2015 All py uctions with certin nd uncertin prizes comment Christin Riis All py uctions with certin nd uncertin prizes comment Christin

More information

Lectures 8 and 9 1 Rectangular waveguides

Lectures 8 and 9 1 Rectangular waveguides 1 Lectures 8 nd 9 1 Rectngulr wveguides y b x z Consider rectngulr wveguide with 0 < x b. There re two types of wves in hollow wveguide with only one conductor; Trnsverse electric wves

More information

Euler Euler Everywhere Using the Euler-Lagrange Equation to Solve Calculus of Variation Problems

Euler Euler Everywhere Using the Euler-Lagrange Equation to Solve Calculus of Variation Problems Euler Euler Everywhere Using the Euler-Lgrnge Eqution to Solve Clculus of Vrition Problems Jenine Smllwood Principles of Anlysis Professor Flschk My 12, 1998 1 1. Introduction Clculus of vritions is brnch

More information

Homework #4: Answers. 1. Draw the array of world outputs that free trade allows by making use of each country s transformation schedule.

Homework #4: Answers. 1. Draw the array of world outputs that free trade allows by making use of each country s transformation schedule. Text questions, Chpter 5, problems 1-5: Homework #4: Answers 1. Drw the rry of world outputs tht free trde llows by mking use of ech country s trnsformtion schedule.. Drw it. This digrm is constructed

More information