# UNDERSTANDING ANALYSIS OF COVARIANCE (ANCOVA)

Size: px
Start display at page:

Transcription

1 UNDERSTANDING ANALYSIS OF COVARIANCE () In general, research is conducted for the purpose of explaining the effects of the independent variable on the dependent variable, and the purpose of research design is to provide a structure for the research. In the research design, the researcher identifies and controls independent variables that can help to explain the observed variation in the dependent variable, which in turn reduces error variance (unexplained variation). Since the research design is structured before the research begins, this method of control is called experimental control. Research design the science (and art) of planning procedures for conducting studies so as to get the most valid findings. Called design for short. hen designing a research study, one draws up a set of instructions for gathering evidence and for interpreting it. Experiments, quasi-experiments, double-blind procedures, and correlated groups design are examples of types of research design (Vogt, 1999). Control for to subtract statistically the effects of a variable (a control variable) to see what a relationship would be without it (Vogt, 1999). Hold constant to subtract the effects of a variable from a complex relationship so as to study what the relationship would be if the variable were in fact a constant. Holding a variable constant essentially means assigning it an average value (Vogt, 1999). In addition to controlling and explaining variation through research design, it is also possible to use statistical control to explain variation in the dependent variable. Statistical control, used when experimental control is difficult, if not impossible, can be achieved by measuring one or more variables in addition to the independent variables of primary interest and by controlling the variation attributed to these variables through statistical analysis rather than through research design. The analysis procedure employed in this statistical control is analysis of covariance (). Statistical control using statistical techniques to isolate or subtract variance in the dependent variable attributable to variables that are not the subject of the study (Vogt, 1999). Analysis of Covariance () an extension of ANOVA that provides a way of statistically controlling the (linear) effect of variables one does not want to examine in a study. These extraneous variables are called covariates, or control variables. (Covariates should be measured on an interval or ratio scale.) allows you to remove covariates from the list of possible explanations of variance in the dependent variable. does this by using statistical techniques (such as regression to partial out the effects of covariates) rather than direct experimental methods to control extraneous variables. is used in experimental studies when researchers want to remove the effects of some antecedent variable. For example, pretest scores are used as covariates in pretestposttest experimental designs. is also used in non-experimental research, such as surveys or nonrandom samples, or in quasi-experiments when subjects cannot be assigned randomly to control and experimental groups. Although fairly common, the use of for non-experimental research is controversial (Vogt, 1999).

2 A one-way analysis of covariance () evaluates whether population means on the dependent variable are the same across levels of a factor (independent variable), adjusting for differences on the covariate, or more simply stated, whether the adjusted group means differ significantly from each other. ith a one-way analysis of covariance, each individual or case must have scores on three variables: a factor or independent variable, a covariate, and a dependent variable. The factor divides individuals into two or more groups or levels, while the covariate and the dependent variable differentiate individuals on quantitative dimensions. The one-way is used to analyze data from several types of studies; including studies with a pretest and random assignment of subjects to factor levels, studies with a pretest and assignment to factor levels based on the pretest, studies with a pretest, matching based on the pretest, and random assignment to factor levels, and studies with potential confounding (Green & Salkind, 2003). The analysis of covariance () is typically used to adjust or control for differences between the groups based on another, typically interval level, variable called the covariate. The is an extension of ANOVA that typically provides a way of statistically controlling for the effects of continuous or scale variables that you are concerned about but that are not the focal point or independent variable(s) in the study. For example, imagine that we found that boys and girls differ on math achievement. However, this could be due to the fact that boys take more math courses in high school. allows us to adjust the math achievement scores based on the relationship between number of math courses taken and math achievement. e can then determine if boys and girls still have different math achievement scores after making the adjustment (Leech, arrett, & Morgan, 2005). STATISTICAL CONTROL USING Controlling and explaining variation in the dependent variable can be accomplished with either experimental control, using research design, or statistical control, using analysis of covariance. Analysis of covariance is used primarily as a procedure for the statistical control of an extraneous variable., which combines regression analysis and analysis of variance (ANOVA), controls for the effects of this extraneous variable, called a covariate, by partitioning out the variation attributed to this additional variable. In this way, the researcher is better able to investigate the effects of the primary independent variable. The F test evaluates whether the population means on the dependent variable, adjusted for differences on the covariate, differ across levels of a factor. If a factor has more than two levels and the F is significant, follow-up tests should be conducted to determine where there are differences on the adjusted means between groups. For example, if a factor has three levels, three pairwise comparisons among the adjusted means can be conducted: Group 1 versus Group 2, Group 1 versus Group 3, and Group 2 versus Group 3. Covariate (also called a concomitant or confound variable) a variable that a researcher seeks to control for (statistically subtract the effects of) by using such techniques as multiple regression analysis (MRA) or analysis of covariance () (Leech, arrett, & Morgan, 2005; Vogt, 1999). Page 2

4 NULL AND ALTERNATIVE HYPOTHESES The null hypothesis and the alternative hypothesis for are similar to those for ANOVA. Conceptually, however, these population means have been adjusted for the covariate. Thus, in reality, the null hypothesis of is of no difference among the adjusted population means. H 0 : µ 1... = k = µ 2 = µ H a : µ for some i, k i µ k SUMMARY TALE The format of the summary table for is similar to that for ANOVA; the difference is that the values for the sums of squares and degrees of freedom have been adjusted for the effects of the covariate. The between-groups degrees of freedom are still K 1, but the within-groups degrees of freedom and the total degrees of freedom are N K 1 and N 1, respectively. This reflects the loss of a degree of freedom when controlling for the covariate; this control places an additional restriction on the data. The test statistic for (F) is the ratio of the adjusted between-groups mean squares ( ) to the adjusted within-groups mean square ( ).The underlying distribution of this test statistic is the F distribution with K 1 and N K 1 degrees of freedom. F = Page 4

5 SUMMARY TALE FOR THE ONE-AY Summary ANOVA Source Sum of Squares Degrees of Freedom Variance Estimate (Mean Square) F Ratio Covariate SS Cov 1 Cov Cov etween SS K 1 = SS K 1 ithin SS N K - 1 = SS N K 1 Total SS T N 1 The summary table produced in SPSS contains several additional lines. elow is a sample SPSS printout with the applicable lines marked through to reflect the above table. Tests of etween-subjects Effects Dependent Variable: Total DVD assessment Source Corrected Model Intercept age promotion Error Total Corrected Total Type III Sum of Squares df Mean Square F Sig a a. R Squared =.282 (Adjusted R Squared =.252) ASSUMPTIONS FOR In addition to the assumptions underlying the ANOVA, there are two major assumptions that underlie the use of ; both concern the nature of the relationship between the dependent variable and the covariate. The first is that the relationship is linear. If the relationship is nonlinear, the adjustments made in the will be biased; the magnitude of this bias depends on the degree of departure from linearity, especially when there are substantial differences between the groups on the covariate. Thus it is important for the researcher, in preliminary analyses, to investigate the nature of the relationship between the dependent variable and the covariate (by looking at a scatter plot of the data points), in addition to conducting an ANOVA on the covariate. Page 5

6 The second assumption has to do with the regression lines within each of the groups. e assume the relationship to be linear. Additionally, however, the regression lines for these individual groups are assumed to be parallel; in other words, they have the same slope. This assumption is often called homogeneity of regression slopes or parallelism and is necessary in order to use the pooled within-groups regression coefficient for adjusting the sample means and is one of the most important assumptions for the. Failure to meet this assumption implies that there is an interaction between the covariate and the treatment. This assumption can be checked with an F test on the interaction of the independent variable(s) with the covariate(s). If the F test is significant (i.e., significant interaction) then this assumption has been violated and the covariate should not be used as is. A possible solution is converting the continuous scale of the covariate to a categorical (discrete) variable and making it a subsequent independent variable, and then use a factorial ANOVA to analyze the data. The assumptions underlying the had a slight modification from those for the ANOVA, however, conceptually, they are the same. Assumption 1: The cases represent a random sample from the population, and the scores on the dependent variable are independent of each other, known as the assumption of independence. The test will yield inaccurate results if the independence assumption is violated. This is a design issue that should be addressed prior to data collection. Using random sampling is the best way of ensuring that the observations are independent; however, this is not always possible. The most important thing to avoid is having known relationships among participants in the study. Assumption 2: The dependent variable is normally distributed in the population for any specific value of the covariate and for any one level of a factor (independent variable), known as the assumption of normality. This assumption describes multiple conditional distributions of the dependent variable, one for every combination of values of the covariate and levels of the factor, and requires them all to be normally distributed. To the extent that population distributions are not normal and sample sizes are small, p values may be invalid. In addition, the power of tests may be reduced considerably if the population distributions are non-normal and, more specifically, thick-tailed or heavily skewed. The assumption of normality can be checked with skewness values (e.g., within standard deviations). Assumption 3: The variances of the dependent variable for the conditional distributions are equal, known as the assumption of homogeneity of variance. To the extent that this assumption is violated and the group sample sizes differ, the validity of the results of the one-way should be questioned. Even with equal sample sizes, the results of the standard post hoc tests should be mistrusted if the population variances differ. The assumption of homogeneity of variance can be checked with the Levene s F test. Page 6

7 INTERPRETING AN ANALYSIS OF COVARIANCE Interpreting an analysis of covariance can present certain problems, depending on the nature of the data and, more important, the design of the experiment. The ideal application for an analysis of covariance is an experiment in which subjects are randomly assigned to treatments (or cells of a factorial design). In that situation, the expected value of the covariate mean for each group or cell is the same, and any differences can be attributed only to chance, assuming that the covariate was measured before the treatments were applied. In this situation, the analysis of covariance will primarily reduce the error term, but it will also, properly, remove any bias in the dependent variable means caused by change group differences on the covariate. In a randomized experiment in which the covariate is measured after the treatment has been applied and has affected the covariate, interpreting the results of an analysis of covariance is difficult at best. In this situation the expected values of the group covariate means are not equal, even though the subjects were assigned randomly. It is difficult to interpret the results of the analysis because you are asking what the groups would have been like had they not differed on the covariate, when in fact the covariate differences may be an integral part of the treatment effect. This problem is particularly severe if the covariate was measured in error (i.e., if it is not perfectly reliable). In this case an alternative analysis, called the true-score analysis of covariance, may be appropriate if the other interpretive problems can be overcome. hen subjects are not assigned to the treatment groups at random, interpreting the analysis of covariance can be particularly troublesome. The most common example of this problem is what is called the nonequivalent group design. In this design, two (or more) intact groups are chosen (e.g., schools or classrooms of children), a pretest measure is obtained from subjects in both groups, the treatment is applied to one of the groups, and the two groups are then compared on some posttest measure. Since subjects are not assigned to the groups at random, we have no basis for assuming that any differences that exist on the pretest are to be attributed to chance. Similarly, we have no basis for expecting the two groups to have the same mean on the posttest in the absence of a real treatment effect. The problem of interpreting results of designs in which subjects are not randomly assigned to the treatment groups is not easily overcome. This is one of the reasons why random assignment is even more important than random selection of subjects. It is difficult to overestimate the virtues of randomization, both for interpreting data and for making causal statements about the relationship between variables. Anyone using covariance analysis must think carefully about their data and the practical validity of the conclusions they draw. EFFECT SIZES IN AN ANALYSIS OF COVARIANCE Computing effect sizes for an is a bit more complicated compared to the One-way ANOVA. e have choices to make in the means we compare and the error term that we use. e can look at effect size with r-family and d-family measures. It is common to use the r-family measures when looking at an omnibus (overall) F test and a d-family measure when looking at specific contrasts (e.g., pairwise comparisons). Keep in mind that there are several options when it comes to effect size measures. hat is shown here is only one example of each family. Page 7

8 r-family MEASURE A common r-family measure of association (effect size index) is the omega square. Calculating the omega squared (ω 2 ) for the is very similar to that for the One-way ANOVA. e only need to make a few minor adjustments to the formula to account for the adjusted values of interest ω 2 SS ( K 1) = SST + here SS is the sums of square for the adjusted treatment (independent variable). The omega square ranges in value from 0 to 1, and is interpreted as the proportion of variance of the dependent variable related to the factor (independent variable), holding constant (partialling out) the covariate. That is, the proportion of total variance in the dependent variable accounted for by the independent variable, controlling for the effect of the covariate. d-family MEASURE A common d-family measure (effect size index) is Cohen s d. Like with the Oneway ANOVA, the effect size consists of the (numerator) mean difference between the contrasts (pairs) divided by the (denominator) averaged or pooled variability. e can estimate the average variability by taking the square root of error ( ) from the analysis of covariance, which would standardize the mean difference in the metric of the adjusted scores. As such, we can estimate Cohen s d ( dˆ ) with the following formula: dˆ = X i X k error References Green, S.., & Salkind, N. J. (2003). Using SPSS for indows and Macintosh: Analyzing and Understanding Data (3 rd ed.). Upper Saddle River, NJ: Prentice Hall. Hinkle, D. E., iersma,., & Jurs, S. G. (2003). Applied Statistics for the ehavioral Sciences (5 th ed.). oston, MA: Houghton Mifflin Company. Howell, D. C. (2002). Statistical Methods for Psychology (5 th ed.). Pacific Grove, CA: Duxbury. Huck, S.. (2004). Reading Statistics and Research (4 th ed.). oston, MA: Allyn and acon. Leech, N. L., arrett, K. C., & Morgan, G. A. (2005). SPSS for Intermediate Statistics: Use and Interpretation (2 nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates. Vogt,. P. (1999). Dictionary of Statistics and Methodology: A Nontechnical Guide for the Social Sciences (2 nd ed.). Thousand Oaks, CA: Sage Publications. Page 8

### UNDERSTANDING THE TWO-WAY ANOVA

UNDERSTANDING THE e have seen how the one-way ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables

### UNDERSTANDING THE INDEPENDENT-SAMPLES t TEST

UNDERSTANDING The independent-samples t test evaluates the difference between the means of two independent or unrelated groups. That is, we evaluate whether the means for two independent groups are significantly

### UNDERSTANDING THE DEPENDENT-SAMPLES t TEST

UNDERSTANDING THE DEPENDENT-SAMPLES t TEST A dependent-samples t test (a.k.a. matched or paired-samples, matched-pairs, samples, or subjects, simple repeated-measures or within-groups, or correlated groups)

### Research Methods & Experimental Design

Research Methods & Experimental Design 16.422 Human Supervisory Control April 2004 Research Methods Qualitative vs. quantitative Understanding the relationship between objectives (research question) and

### INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of

### Study Guide for the Final Exam

Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make

### Chapter 5 Analysis of variance SPSS Analysis of variance

Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means One-way ANOVA To test the null hypothesis that several population means are equal,

### Introduction to Analysis of Variance (ANOVA) Limitations of the t-test

Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One- Way ANOVA Limitations of the t-test Although the t-test is commonly used, it has limitations Can only

### Analysis of Data. Organizing Data Files in SPSS. Descriptive Statistics

Analysis of Data Claudia J. Stanny PSY 67 Research Design Organizing Data Files in SPSS All data for one subject entered on the same line Identification data Between-subjects manipulations: variable to

### Multivariate Analysis of Variance. The general purpose of multivariate analysis of variance (MANOVA) is to determine

2 - Manova 4.3.05 25 Multivariate Analysis of Variance What Multivariate Analysis of Variance is The general purpose of multivariate analysis of variance (MANOVA) is to determine whether multiple levels

### SCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES

SCHOOL OF HEALTH AND HUMAN SCIENCES Using SPSS Topics addressed today: 1. Differences between groups 2. Graphing Use the s4data.sav file for the first part of this session. DON T FORGET TO RECODE YOUR

### 1.5 Oneway Analysis of Variance

Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments

### individualdifferences

1 Simple ANalysis Of Variance (ANOVA) Oftentimes we have more than two groups that we want to compare. The purpose of ANOVA is to allow us to compare group means from several independent samples. In general,

### EPS 625 INTERMEDIATE STATISTICS FRIEDMAN TEST

EPS 625 INTERMEDIATE STATISTICS The Friedman test is an extension of the Wilcoxon test. The Wilcoxon test can be applied to repeated-measures data if participants are assessed on two occasions or conditions

### research/scientific includes the following: statistical hypotheses: you have a null and alternative you accept one and reject the other

1 Hypothesis Testing Richard S. Balkin, Ph.D., LPC-S, NCC 2 Overview When we have questions about the effect of a treatment or intervention or wish to compare groups, we use hypothesis testing Parametric

### Multivariate Analysis of Variance (MANOVA)

Multivariate Analysis of Variance (MANOVA) Aaron French, Marcelo Macedo, John Poulsen, Tyler Waterson and Angela Yu Keywords: MANCOVA, special cases, assumptions, further reading, computations Introduction

### Statistiek II. John Nerbonne. October 1, 2010. Dept of Information Science j.nerbonne@rug.nl

Dept of Information Science j.nerbonne@rug.nl October 1, 2010 Course outline 1 One-way ANOVA. 2 Factorial ANOVA. 3 Repeated measures ANOVA. 4 Correlation and regression. 5 Multiple regression. 6 Logistic

### STA-201-TE. 5. Measures of relationship: correlation (5%) Correlation coefficient; Pearson r; correlation and causation; proportion of common variance

Principles of Statistics STA-201-TE This TECEP is an introduction to descriptive and inferential statistics. Topics include: measures of central tendency, variability, correlation, regression, hypothesis

### Descriptive Statistics

Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

### One-Way Analysis of Variance

One-Way Analysis of Variance Note: Much of the math here is tedious but straightforward. We ll skim over it in class but you should be sure to ask questions if you don t understand it. I. Overview A. We

### Chapter 9. Two-Sample Tests. Effect Sizes and Power Paired t Test Calculation

Chapter 9 Two-Sample Tests Paired t Test (Correlated Groups t Test) Effect Sizes and Power Paired t Test Calculation Summary Independent t Test Chapter 9 Homework Power and Two-Sample Tests: Paired Versus

### 10. Analysis of Longitudinal Studies Repeat-measures analysis

Research Methods II 99 10. Analysis of Longitudinal Studies Repeat-measures analysis This chapter builds on the concepts and methods described in Chapters 7 and 8 of Mother and Child Health: Research methods.

### Chapter Eight: Quantitative Methods

Chapter Eight: Quantitative Methods RESEARCH DESIGN Qualitative, Quantitative, and Mixed Methods Approaches Third Edition John W. Creswell Chapter Outline Defining Surveys and Experiments Components of

### THE KRUSKAL WALLLIS TEST

THE KRUSKAL WALLLIS TEST TEODORA H. MEHOTCHEVA Wednesday, 23 rd April 08 THE KRUSKAL-WALLIS TEST: The non-parametric alternative to ANOVA: testing for difference between several independent groups 2 NON

### Fairfield Public Schools

Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity

### Session 7 Bivariate Data and Analysis

Session 7 Bivariate Data and Analysis Key Terms for This Session Previously Introduced mean standard deviation New in This Session association bivariate analysis contingency table co-variation least squares

### Applications of Structural Equation Modeling in Social Sciences Research

American International Journal of Contemporary Research Vol. 4 No. 1; January 2014 Applications of Structural Equation Modeling in Social Sciences Research Jackson de Carvalho, PhD Assistant Professor

### " Y. Notation and Equations for Regression Lecture 11/4. Notation:

Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through

### Outline. Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test

The t-test Outline Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test - Dependent (related) groups t-test - Independent (unrelated) groups t-test Comparing means Correlation

### CHAPTER 13. Experimental Design and Analysis of Variance

CHAPTER 13 Experimental Design and Analysis of Variance CONTENTS STATISTICS IN PRACTICE: BURKE MARKETING SERVICES, INC. 13.1 AN INTRODUCTION TO EXPERIMENTAL DESIGN AND ANALYSIS OF VARIANCE Data Collection

### Statistics courses often teach the two-sample t-test, linear regression, and analysis of variance

2 Making Connections: The Two-Sample t-test, Regression, and ANOVA In theory, there s no difference between theory and practice. In practice, there is. Yogi Berra 1 Statistics courses often teach the two-sample

### CALCULATIONS & STATISTICS

CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents

### Module 3: Correlation and Covariance

Using Statistical Data to Make Decisions Module 3: Correlation and Covariance Tom Ilvento Dr. Mugdim Pašiƒ University of Delaware Sarajevo Graduate School of Business O ften our interest in data analysis

### ANOVA ANOVA. Two-Way ANOVA. One-Way ANOVA. When to use ANOVA ANOVA. Analysis of Variance. Chapter 16. A procedure for comparing more than two groups

ANOVA ANOVA Analysis of Variance Chapter 6 A procedure for comparing more than two groups independent variable: smoking status non-smoking one pack a day > two packs a day dependent variable: number of

### Section 13, Part 1 ANOVA. Analysis Of Variance

Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability

### Simple linear regression

Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between

### Concepts of Experimental Design

Design Institute for Six Sigma A SAS White Paper Table of Contents Introduction...1 Basic Concepts... 1 Designing an Experiment... 2 Write Down Research Problem and Questions... 2 Define Population...

### Statistics 2014 Scoring Guidelines

AP Statistics 2014 Scoring Guidelines College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central is the official online home

### Module 5: Multiple Regression Analysis

Using Statistical Data Using to Make Statistical Decisions: Data Multiple to Make Regression Decisions Analysis Page 1 Module 5: Multiple Regression Analysis Tom Ilvento, University of Delaware, College

### DISCRIMINANT FUNCTION ANALYSIS (DA)

DISCRIMINANT FUNCTION ANALYSIS (DA) John Poulsen and Aaron French Key words: assumptions, further reading, computations, standardized coefficents, structure matrix, tests of signficance Introduction Discriminant

### Section 14 Simple Linear Regression: Introduction to Least Squares Regression

Slide 1 Section 14 Simple Linear Regression: Introduction to Least Squares Regression There are several different measures of statistical association used for understanding the quantitative relationship

### Part 2: Analysis of Relationship Between Two Variables

Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable

### POLYNOMIAL AND MULTIPLE REGRESSION. Polynomial regression used to fit nonlinear (e.g. curvilinear) data into a least squares linear regression model.

Polynomial Regression POLYNOMIAL AND MULTIPLE REGRESSION Polynomial regression used to fit nonlinear (e.g. curvilinear) data into a least squares linear regression model. It is a form of linear regression

### WHAT IS A JOURNAL CLUB?

WHAT IS A JOURNAL CLUB? With its September 2002 issue, the American Journal of Critical Care debuts a new feature, the AJCC Journal Club. Each issue of the journal will now feature an AJCC Journal Club

### An analysis method for a quantitative outcome and two categorical explanatory variables.

Chapter 11 Two-Way ANOVA An analysis method for a quantitative outcome and two categorical explanatory variables. If an experiment has a quantitative outcome and two categorical explanatory variables that

### NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

### Simple Regression Theory II 2010 Samuel L. Baker

SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the

### Calculating, Interpreting, and Reporting Estimates of Effect Size (Magnitude of an Effect or the Strength of a Relationship)

1 Calculating, Interpreting, and Reporting Estimates of Effect Size (Magnitude of an Effect or the Strength of a Relationship) I. Authors should report effect sizes in the manuscript and tables when reporting

### MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS

MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS MSR = Mean Regression Sum of Squares MSE = Mean Squared Error RSS = Regression Sum of Squares SSE = Sum of Squared Errors/Residuals α = Level of Significance

### Experimental Designs (revisited)

Introduction to ANOVA Copyright 2000, 2011, J. Toby Mordkoff Probably, the best way to start thinking about ANOVA is in terms of factors with levels. (I say this because this is how they are described

### Analysis of Variance ANOVA

Analysis of Variance ANOVA Overview We ve used the t -test to compare the means from two independent groups. Now we ve come to the final topic of the course: how to compare means from more than two populations.

### PSYCHOLOGY 320L Problem Set #3: One-Way ANOVA and Analytical Comparisons

PSYCHOLOGY 30L Problem Set #3: One-Way ANOVA and Analytical Comparisons Name: Score:. You and Dr. Exercise have decided to conduct a study on exercise and its effects on mood ratings. Many studies (Babyak

### Linear Models in STATA and ANOVA

Session 4 Linear Models in STATA and ANOVA Page Strengths of Linear Relationships 4-2 A Note on Non-Linear Relationships 4-4 Multiple Linear Regression 4-5 Removal of Variables 4-8 Independent Samples

### CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression

Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the

### 13: Additional ANOVA Topics. Post hoc Comparisons

13: Additional ANOVA Topics Post hoc Comparisons ANOVA Assumptions Assessing Group Variances When Distributional Assumptions are Severely Violated Kruskal-Wallis Test Post hoc Comparisons In the prior

### Introduction to Data Analysis in Hierarchical Linear Models

Introduction to Data Analysis in Hierarchical Linear Models April 20, 2007 Noah Shamosh & Frank Farach Social Sciences StatLab Yale University Scope & Prerequisites Strong applied emphasis Focus on HLM

### Randomized Block Analysis of Variance

Chapter 565 Randomized Block Analysis of Variance Introduction This module analyzes a randomized block analysis of variance with up to two treatment factors and their interaction. It provides tables of

### COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES.

277 CHAPTER VI COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES. This chapter contains a full discussion of customer loyalty comparisons between private and public insurance companies

### Post-hoc comparisons & two-way analysis of variance. Two-way ANOVA, II. Post-hoc testing for main effects. Post-hoc testing 9.

Two-way ANOVA, II Post-hoc comparisons & two-way analysis of variance 9.7 4/9/4 Post-hoc testing As before, you can perform post-hoc tests whenever there s a significant F But don t bother if it s a main

### Profile analysis is the multivariate equivalent of repeated measures or mixed ANOVA. Profile analysis is most commonly used in two cases:

Profile Analysis Introduction Profile analysis is the multivariate equivalent of repeated measures or mixed ANOVA. Profile analysis is most commonly used in two cases: ) Comparing the same dependent variables

### X X X a) perfect linear correlation b) no correlation c) positive correlation (r = 1) (r = 0) (0 < r < 1)

CORRELATION AND REGRESSION / 47 CHAPTER EIGHT CORRELATION AND REGRESSION Correlation and regression are statistical methods that are commonly used in the medical literature to compare two or more variables.

### Regression III: Advanced Methods

Lecture 16: Generalized Additive Models Regression III: Advanced Methods Bill Jacoby Michigan State University http://polisci.msu.edu/jacoby/icpsr/regress3 Goals of the Lecture Introduce Additive Models

### 1 Theory: The General Linear Model

QMIN GLM Theory - 1.1 1 Theory: The General Linear Model 1.1 Introduction Before digital computers, statistics textbooks spoke of three procedures regression, the analysis of variance (ANOVA), and the

### Simple Linear Regression Inference

Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

### Chapter 7. One-way ANOVA

Chapter 7 One-way ANOVA One-way ANOVA examines equality of population means for a quantitative outcome and a single categorical explanatory variable with any number of levels. The t-test of Chapter 6 looks

### Rank-Based Non-Parametric Tests

Rank-Based Non-Parametric Tests Reminder: Student Instructional Rating Surveys You have until May 8 th to fill out the student instructional rating surveys at https://sakai.rutgers.edu/portal/site/sirs

### Simple Tricks for Using SPSS for Windows

Simple Tricks for Using SPSS for Windows Chapter 14. Follow-up Tests for the Two-Way Factorial ANOVA The Interaction is Not Significant If you have performed a two-way ANOVA using the General Linear Model,

### TABLE OF CONTENTS. About Chi Squares... 1. What is a CHI SQUARE?... 1. Chi Squares... 1. Hypothesis Testing with Chi Squares... 2

About Chi Squares TABLE OF CONTENTS About Chi Squares... 1 What is a CHI SQUARE?... 1 Chi Squares... 1 Goodness of fit test (One-way χ 2 )... 1 Test of Independence (Two-way χ 2 )... 2 Hypothesis Testing

### ABSORBENCY OF PAPER TOWELS

ABSORBENCY OF PAPER TOWELS 15. Brief Version of the Case Study 15.1 Problem Formulation 15.2 Selection of Factors 15.3 Obtaining Random Samples of Paper Towels 15.4 How will the Absorbency be measured?

### ECON 142 SKETCH OF SOLUTIONS FOR APPLIED EXERCISE #2

University of California, Berkeley Prof. Ken Chay Department of Economics Fall Semester, 005 ECON 14 SKETCH OF SOLUTIONS FOR APPLIED EXERCISE # Question 1: a. Below are the scatter plots of hourly wages

### QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NON-PARAMETRIC TESTS

QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NON-PARAMETRIC TESTS This booklet contains lecture notes for the nonparametric work in the QM course. This booklet may be online at http://users.ox.ac.uk/~grafen/qmnotes/index.html.

### Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.

Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing

### Chapter 10. Key Ideas Correlation, Correlation Coefficient (r),

Chapter 0 Key Ideas Correlation, Correlation Coefficient (r), Section 0-: Overview We have already explored the basics of describing single variable data sets. However, when two quantitative variables

### Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1)

Spring 204 Class 9: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the

### One-Way ANOVA using SPSS 11.0. SPSS ANOVA procedures found in the Compare Means analyses. Specifically, we demonstrate

1 One-Way ANOVA using SPSS 11.0 This section covers steps for testing the difference between three or more group means using the SPSS ANOVA procedures found in the Compare Means analyses. Specifically,

### Comparison of Research Designs Template

Comparison of Comparison of The following seven tables provide an annotated template to guide you through the comparison of research designs assignment in this course. These tables help you organize your

### Two-sample hypothesis testing, II 9.07 3/16/2004

Two-sample hypothesis testing, II 9.07 3/16/004 Small sample tests for the difference between two independent means For two-sample tests of the difference in mean, things get a little confusing, here,

### 1 Basic ANOVA concepts

Math 143 ANOVA 1 Analysis of Variance (ANOVA) Recall, when we wanted to compare two population means, we used the 2-sample t procedures. Now let s expand this to compare k 3 population means. As with the

### Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means

Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis

### In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.

MATHEMATICS: THE LEVEL DESCRIPTIONS In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. Attainment target

### Analyzing Intervention Effects: Multilevel & Other Approaches. Simplest Intervention Design. Better Design: Have Pretest

Analyzing Intervention Effects: Multilevel & Other Approaches Joop Hox Methodology & Statistics, Utrecht Simplest Intervention Design R X Y E Random assignment Experimental + Control group Analysis: t

### Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

### Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing

Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim About a Proportion 8-5 Testing a Claim About a Mean: s Not Known 8-6 Testing

### Correlational Research. Correlational Research. Stephen E. Brock, Ph.D., NCSP EDS 250. Descriptive Research 1. Correlational Research: Scatter Plots

Correlational Research Stephen E. Brock, Ph.D., NCSP California State University, Sacramento 1 Correlational Research A quantitative methodology used to determine whether, and to what degree, a relationship

### DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9

DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9 Analysis of covariance and multiple regression So far in this course,

### ANALYSIS OF TREND CHAPTER 5

ANALYSIS OF TREND CHAPTER 5 ERSH 8310 Lecture 7 September 13, 2007 Today s Class Analysis of trends Using contrasts to do something a bit more practical. Linear trends. Quadratic trends. Trends in SPSS.

### Chapter 1 Introduction. 1.1 Introduction

Chapter 1 Introduction 1.1 Introduction 1 1.2 What Is a Monte Carlo Study? 2 1.2.1 Simulating the Rolling of Two Dice 2 1.3 Why Is Monte Carlo Simulation Often Necessary? 4 1.4 What Are Some Typical Situations

### Chapter Four. Data Analyses and Presentation of the Findings

Chapter Four Data Analyses and Presentation of the Findings The fourth chapter represents the focal point of the research report. Previous chapters of the report have laid the groundwork for the project.

### Premaster Statistics Tutorial 4 Full solutions

Premaster Statistics Tutorial 4 Full solutions Regression analysis Q1 (based on Doane & Seward, 4/E, 12.7) a. Interpret the slope of the fitted regression = 125,000 + 150. b. What is the prediction for

### Chapter 7: Simple linear regression Learning Objectives

Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -

### DDBA 8438: The t Test for Independent Samples Video Podcast Transcript

DDBA 8438: The t Test for Independent Samples Video Podcast Transcript JENNIFER ANN MORROW: Welcome to The t Test for Independent Samples. My name is Dr. Jennifer Ann Morrow. In today's demonstration,

### RESEARCH METHODS IN I/O PSYCHOLOGY

RESEARCH METHODS IN I/O PSYCHOLOGY Objectives Understand Empirical Research Cycle Knowledge of Research Methods Conceptual Understanding of Basic Statistics PSYC 353 11A rsch methods 01/17/11 [Arthur]

Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm

### Eta Squared, Partial Eta Squared, and Misreporting of Effect Size in Communication Research

612 HUMAN COMMUNICATION RESEARCH /October 2002 Eta Squared, Partial Eta Squared, and Misreporting of Effect Size in Communication Research TIMOTHY R. LEVINE Michigan State University CRAIG R. HULLETT University

### Association Between Variables

Contents 11 Association Between Variables 767 11.1 Introduction............................ 767 11.1.1 Measure of Association................. 768 11.1.2 Chapter Summary.................... 769 11.2 Chi

### T-test & factor analysis

Parametric tests T-test & factor analysis Better than non parametric tests Stringent assumptions More strings attached Assumes population distribution of sample is normal Major problem Alternatives Continue