# One-Way Analysis of Variance

Size: px
Start display at page:

Transcription

1 One-Way Analysis of Variance Note: Much of the math here is tedious but straightforward. We ll skim over it in class but you should be sure to ask questions if you don t understand it. I. Overview A. We have previously compared two populations, testing hypotheses of the form H 0 : µ 1 = µ H A : µ 1 µ But in many situations, we may be interested in more than two populations. Examples: T Compare the average income of blacks, whites, and others. T Compare the educational attainment of Catholics, Protestants, Jews. B. Q: Why not ust compare pairwise - take each possible pairing, and see which are significant? A: Because by chance alone, some contrasts would be significant. For example, suppose we had 7 groups. The number of pairwise combinations is 7 C = 1. If α =.05, we expect one of the differences to be significant. Therefore, you want to simultaneously investigate differences between the means of several populations. C. To do this, you use ANOVA - Analysis of Variance. ANOVA is appropriate when T You have a dependent, interval level variable T You have or more populations, i.e. the independent variable is categorical. In the population case, ANOVA becomes equivalent to a -tailed T test ( sample tests, Case II, σ's unknown but assumed equal). D. Thus, with ANOVA you test H 0 : H A : µ 1 = µ = µ 3 =... = µ J The means are not all equal. E. Simple 1-factor model: Suppose we want to compare the means of J different populations. We have samples of size N. Any individual score can be written as follows: y i = µ + τ + ε i, where = 1, J (# groups) and i = 1,,..., N That is, an observation is the sum of three components: 1. The grand mean µ of the combined populations. For example, the overall average income might be \$15,000. One-Way Analysis of Variance - Page 1

2 . A treatment effect τ associated with the particular population from which the observation is taken; put another way, τ is the deviation of the group mean from the overall mean. For example, suppose the average White income is \$0,000. Then τ whites = \$5, A random error term ε i. This reflects variability within each population. Not everyone in the group will have the same value. For example, the average white income might be \$0,000, but some whites will make more, some will make less. (For a white who makes \$18,000, ε i = -,000.) F. An alternative way to write the model is y i = µ + ε i, where µ = mean of the th population = µ + τ. G. We are interested in testing the hypothesis H 0 : µ 1 = µ = µ 3 =... = µ J But if the J means are equal, this means that µ = µ, which means that there are no treatment effects. That is, the above hypothesis is equivalent to H 0 : τ 1 = τ = τ 3 =... = τ J = 0 H. Estimating the treatment effects: As usual, we use sample information to estimate the population parameters. It is pretty simple to estimate the treatment effects: J N N yi yi T =1 i=1 A i=1 ˆ µ = y =, ˆ µ = y = =, = - = y - y ˆ τ ˆ µ ˆ µ N N N Example: A firm wishes to compare four programs for training workers to perform a certain manual task. Twenty new employees are randomly assigned to the training programs, with 5 in each program. At the end of the training period, a test is conducted to see how quickly trainees can perform the task. The number of times the task is performed per minute is recorded for each trainee, with the following results: One-Way Analysis of Variance - Page

3 Observation Program 1 Program Program 3 Program T A = Σy i µˆ = T A /N Estimate the treatment effects for the four programs. Solution. Note that ΣΣy i = 07, so µˆ = 07/0 = Since ˆ τ ˆ µ ˆ µ, we get ˆ1 τ = = 1.45, ˆ τ = = -1.55, ˆ3 τ = = 1.85, ˆ4 τ = = = I. Computing the treatment effects is easy - but how do we test whether the differences in effects are significant??? Note the following: s total = s = ( y i N y ) = SS Total DF Total = MS Total where SS = Sum of squares (i.e. sum of the squared deviations from the mean), DF = degrees of freedom, and MS = Mean square. Also, Where SS Total = SS Within + SS ( yi - y ) = εˆ i Between = SS Within = SS Errors = SS Residual ( y y ) = = N = SS Between = SS Explained ˆ τ ˆ τ i i One-Way Analysis of Variance - Page 3

4 SS Within captures variability within each group. If all group members had the same score, SS Within would equal 0. It is also called SS Errors or SS Residual, because it reflects variability that cannot be explained by group membership. Note that there are N degrees of freedom associated with each individual sample, so the total number of degrees of freedom within = Σ(N - 1) = N - J. SS Between captures variability between each group. If all groups had the same mean, SS Between would equal 0. The term SS Explained is also used because it reflects variability that is explained by group membership. Note that there are J samples, one grand mean, hence DF Between = J - 1. We further define MS Total = Proof (Optional): Note that SS Within MS Within= = DF Within SS Within, N - J SS Between SS Between MS Between = =, DF Between J - 1 SS Within + SS Between SS Total = =Total Variance N - 1 N - 1 y i = y i - y + y,and y i - y = y i - y + y - y We simply add and subtract y. Why do we do this? Note that individual's score from the group score = εˆ i ; and total score = τˆ. Hence, y y = deviation of the i y y = deviation of the group score from the SS Total = ( yi y ) = ( yi y + y y ) = ( ˆ ε i + ˆ τ ) = ˆ ε i + ˆ τ + ˆ ε i ˆ τ Let us deal with each term in turn: ( yi - y ) = εˆ i = SS Within = SS Errors = SS Residual SS Within captures variability within each group. If all group members had the same score, SS Within would equal 0. It is also called SS Errors or SS Residual, because it reflects variability One-Way Analysis of Variance - Page 4

5 that cannot be explained by group membership. Note that there are N degrees of freedom associated with each individual sample, so the total number of degrees of freedom within = Σ(N - 1) = N - J. ( y y ) = = N = SS Between = SS Explained ˆ τ ˆ τ i i (The third equation is valid because all cases within a group have the same value for y.) SS Between captures variability between each group. If all groups had the same mean, SS Between would equal 0. The term SS Explained is also used because it reflects variability that i s explained by group membership. Note that there are J samples, one grand mean, hence DF Between = J - 1. i ( y i y )( y y )= i ˆ ε i ˆ τ = ˆ τ i ˆ ε i = ˆ τ * 0 = 0 (The latter is true because the deviations from the mean must sum to 0). Hence, SS Total = SS Within + SS Between J. Now that we have these, what do we do with them? For hypothesis testing, we have to make certain assumptions. Recall that y i = µ + τ + ε i. ε i is referred to as a "random error te rm" or "disturbance." If we assume: (1) ε i - N(0, σ ), () σ is the same for all samples, (3) the random error terms are independent (Note that these assumptions basically mean that the ε 's are iid, independent and identically distributed); Then, if H 0 is true, MS Between F = ~ F(J -1, N - J), MS Within and E(F) =1 That is, if H 0 is true, then the test statistic F has an F distribution with J - 1 and N - J degrees of Freedom. See Appendix E, Table V (Hayes, pp ), for tables on the F distribution. See especially tables 5-3 (Q =.05) and 5-5 (Q =.01). One-Way Analysis of Variance - Page 5

6 K. Rationale: T The basic idea is to determine whether all of the variation in a set of data is attribut able to random error ( chance) or whether some of the variation is attributable to chance and some is attributable to differences in the means of the J populations of interest. T First, the sample variance for the entire set of data is computed and is seen to be composed of two parts: the numerator, which is a sum of squares, and the denominator, which is the degrees of freedom. T The total sum of squares can be partitioned into SS Between and SS Within, and the total degrees of freedom can be partitioned into d.f. between and d.f. Within. T By dividing each sum of squares by the respective d.f., MS between and MS within are determined; these represent the sample variability between the different samples and the sample variability within all the samples, respectively. T But the variability within the samples must be due to random error alone, according to the assumptions of the one-factor model. T The variability between the samples, on the other hand, may be attributable both to chance and to any differences in the J population means. T Thus, if MS Between is significantly greater than MS Within (as measured by the F-test), then the null hypothesis of zero treatment effects must be reected. L. Comments on the F distribution: T There are two sets of d.f., rather than 1. T F is not symmetric. All values are positive. T Like χ, we are only interested in values in the right-hand side of the tail. T In the tables, columns give the d.f. for MS Between (J - 1), while the rows give the d.f. for MS Within (N - J). T Look at Table 5-3, column 1; compare with Table 3 for the T distribution, the column labeled Q =.05. Note that F = T. A two sample test, case II, σ 1 = σ = σ, with a - tailed alternative hypothesis, can also be tested using ANOVA. One-Way Analysis of Variance - Page 6

7 M. Computational procedures for ANOVA. The above formulas are, in practice, a little awkward to deal with. When doing computations by hand, the following procedure is generally easier: One Way Anova: Computational Procedures Formula Explanation T A N = y ( y (1)= N i i ) i = N Y T A = the sum of the scores in group A, where A 1 = first group, A = second group, etc. Add up the values for the observations for group A 1, then A, etc. Also sometimes called ust T. Sum all the observations. Square the result. Divide by the total number of observations. ()= y i Square each observation. Sum the squared observations. (3)= T N A A Square T A1, and divide by N A1. Repeat for each of the J groups, and add the results together. SS Total = () - (1) SS Between = (3) - (1). Or, if treatment effects have been computed, use SS Within = () - (3) N ˆ τ MS Total = SS Total / (N - 1) MS Between = SS Between / (J - 1) MS Within = SS Within / (N - J) Total Sum of Squares Between Sum of Squares. This is also sometimes called SS A, SS Treatment, or SS Explained Within sum of squares. Also called SS error, or SS Residual Mean square total. Same as s, the sample variance. Mean square between. Also called MS A, MS Treatment, or MS Explained Mean Square Within. Also called MS error or MS Residual F = MS Between / MS Within Test statistic. d.f. = (J - 1, N - J) One-Way Analysis of Variance - Page 7

8 N. The ANOVA Table. The results of an analysis of variance are often presented in a table that looks something like the following (with the appropriate values filled in): Source SS D.F. Mean Square F A (or Treatment, or Explained) SS Between J - 1 SS Between/ (J - 1) MS Between MS Within Error (or Residual) SS Within N - J SS Within / (N - J) Total SS Total N - 1 SS Total / (N - 1) O. Hypothesis testing using ANOVA. As usual, we determine the critical value of the test statistic for a given value of α. If the test statistic is less than the critical value, we accept H 0, if it is greater than the critical value we reect H 0. EXAMPLES: 1. Again consider this problem: A firm wishes to compare four programs for training workers to perform a certain manual task. Twenty new employees are randomly assigned to the training programs, with 5 in each program. At the end of the training period, a test is conducted to see how quickly trainees can perform the task. The number of times the task is performed per minute is recorded for each trainee, with the following results: Program 1: 9, 1, 14, 11, 13 Program : 10, 6, 9, 9, 10 Program 3: 1, 14, 11, 13, 11 Program 4: 9, 8, 11, 7, 8 (a) (b) Construct the ANOVA table Using α =.05, determine whether the treatments differ in their effectiveness. Solution. (a) As we saw before, T A1 = 59, T A = 44, T A3 = 61, T A4 = 43. Also, ( (1)= y N i ) = 07 0 = () = y = = 39 (3)= T N i A A = = One-Way Analysis of Variance - Page 8

9 SS Total = () - (1) = = 96.55, SS Between = (3) - (1) = = 54.95; or, SS Between = τ = 5 * * * * 1.75 = N ˆ SS Within = () - (3) = = 41.6, MS Total = SS Total/ (N - 1) = / 19 = 5.08, MS Between = SS Between/ (J - 1) = 54.95/3 = 18.3, MS Within = SS Within/ (N - J) = 41.6/16 =.6, F = MS Between / MS Within = 18.3 /.6 = 7.04 The ANOVA Table therefore looks like this: Source SS D.F. Mean Square F A (or Treatment, or Explained) SS Between = J - 1 = 3 SS Between/ (J - 1) = 18.3 MS Between = MS Within Error (or Residual) SS Within = 41.6 N - J = 16 SS Within / (N - J) = Total SS Total = N - 1 = 19 SS Total / (N - 1) = 5.08 NOTE: Most computer programs would not be nice enough to spell out "SS Between =", etc.; that is, you would have to know from the location of the number in the table whether it was SS Between, MS Within, or whatever. See the SPSS examples below. (b) For α =.05, the critical value for an F with d.f. (3, 16) is 3.4. Ergo, we reect the null hypothesis. More formally, Step 1: H 0 : H A : µ 1 = µ = µ 3 = µ 4, i.e. treatments are equally effective The means are not all equal. Step : An F statistic is appropriate, since the dependent variable is continuous and there are or more groups. Step 3: Since α =.05 and d.f. = 3, 16, accept H 0 if F 3,16 # 3.4 Step 4: The computed value of the F statistic is 7.04 Step 5: Reect H 0. The treatments are not equally effective. One-Way Analysis of Variance - Page 9

10 There are several SPSS routines that can do one-way Anova. These include ANOVA (which, alas, requires that you enter the syntax directly rather than use menus; but it will give you the MCA table if you want it), MEANS, and ONEWAY. Which you use depends on any additional information you might like as well as the format you happen to like best. I ll use ONEWAY but feel free to try the others. If using the SPSS pull-down menus, after entering the data select ANALYZE/ COMPARE MEANS/ ONE WAY ANOVA. * Problem 1. Employee training. DATA LIST FREE / program score. BEGIN DATA END DATA. ONEWAY score BY program /STATISTICS DESCRIPTIVES /MISSING ANALYSIS. Descriptives SCORE Total 95% Confidence Interval for Mean N Mean Std. Deviation Std. Error Lower Bound Upper Bound Minimum Maximum One-Way Analysis of Variance - Page 10

11 ANOVA SCORE Between Groups Within Groups Total Sum of Squares df Mean Square F Sig For each of the following, indicate whether H 0 should be accepted or reected. a. A researcher has collected data from 1 Catholics, 1 Protestants, and 1 Jews. She wants to see whether the groups significantly differ at the.05 level in their incomes. Her computed F = 3.0. Solution. Note that n = 63, = 3. Hence, d.f. = 3-1, 63-3 =, 60. Looking at table V, we see that for α =.05 we should accept H 0 if F # Since the researcher got an F of 3.0, she should accept H 0. b. A manager wants to test (using α =.05) whether the mean delivery time of components supplied by 5 outside contractors is the same. He draws a random sample of 5 delivery times for each of the 5 contractors. He computes the following: SS Between = 4 SS Within = 50 Solution. Note that n = 5 (5 delivery times for each of 5 contractors) and J = 5 (5 contractors). Hence MS Between = SS Between/(J - 1) = 4/4 = 1 MS Within = SS Within/(N - J) = 50/0 =.5 F = MS Between/MS Within = 1/.5 =.4 D.F. = (J - 1, N - J) = (4, 0) For α =.05, accept H 0 if F # Therefore, accept H 0. One-Way Analysis of Variance - Page 11

12 3. An economist wants to test whether mean housing prices are the same regardless of which of 3 air-pollution levels typically prevails. A random sample of house purchases in 3 areas yields the price data below. MEAN HOUSING PRICES (THOUSANDS OF DOLLARS): Pollution Level Observation Low Mod High Σ (a) (b) (c) pollution. Solution. (a) Compute the treatment effects Construct the ANOVA Table At the.05 level of significance, test whether housing prices differ by level of ˆ µ = 81., ˆ µ = 77, ˆ µ = 55.4, ˆ µ = 71. ˆ τ = = ˆ τ = = 5.8 ˆ τ = = One-Way Analysis of Variance - Page 1

13 (b) T A1 = 406, T A = 385, T A3 = 77, ( y (1)= N i ) = = () = y = = (3)= T N A i A = SS Total = () - (1) = = , SS Between = (3) - (1) = = ; or, SS Between = τ = 5 * * * = , N ˆ SS Within = () - (3) = = 598, MS Total = SS Total/ (N - 1) = / 14 = 564., MS Between = SS Between/ (J - 1) = / = 958., MS Within = SS Within / (N - J) = 598 / 1 = 498.5, F = MS Between / MS Within = 958. / = 1.9 =77958 Source SS D.F. Mean Square F A (or Treatment, or Explained) SS Between = J - 1 = SS Between/ (J - 1) = 958. MS Between = MS Within Error (or Residual) SS Within = N - J = 1 SS Within / (N - J) = Total SS Total = N - 1 = 14 SS Total / (N - 1) = 564. (c) For α =.05 and df =, 1, accept H 0 if the computed F is # Since F = 1.9, do not reect H 0. More formally, Step 1. Step. H 0 : The τ's all = 0 (i.e. prices are the same in each area) H A : The τ's are not all equal (prices not all the same) Appropriate stat is F = MS Between/ MS Within. Since n = 15 and = 3, d.f. =, 1. Step 3. For α =.05, accept H 0 if F # 5.10 One-Way Analysis of Variance - Page 13

14 Step 4. Compute test stat. As shown above, F = 1.9 Step 5. Do not reect H 0 [NOTE: the SPSS solutions follows later] Here is how you could solve this problem using SPSS. If using the SPSS pull-down menus, after entering the data select ANALYZE/ COMPARE MEANS/ ONE WAY ANOVA. * Problem 3. Housing Prices. DATA LIST FREE / plevel price. BEGIN DATA END DATA. ONEWAY price BY plevel /STATISTICS DESCRIPTIVES /MISSING ANALYSIS. Oneway Descriptives PRICE Total 95% Confidence Interval for Mean N Mean Std. Deviation Std. Error Lower Bound Upper Bound Minimum Maximum ANOVA PRICE Between Groups Within Groups Total Sum of Squares df Mean Square F Sig One-Way Analysis of Variance - Page 14

15 Comment: Some Anova routines would also report that R =.43. Note that R = SS Between / SS Total = / =.43. That is, R = Explained Variance divided by total variance. We will talk more about R later. F Test versus T Test. Finally, for good measure, we will do an F-Test vs. T-Test comparison. We will do a modified version of problem 1, combining treatments 1 and 3 (the most effective), and and 4 (the least effective). We ll let SPSS do the work. * F test versus T-test comparison. DATA LIST FREE / program score. BEGIN DATA END DATA. RECODE PROGRAM (1, 3 = 1) (, 4 = ). ONEWAY score BY program /STATISTICS DESCRIPTIVES /MISSING ANALYSIS. Oneway Descriptives SCORE Total 95% Confidence Interval for Mean N Mean Std. Deviation Std. Error Lower Bound Upper Bound Minimum Maximum One-Way Analysis of Variance - Page 15

16 ANOVA SCORE Between Groups Within Groups Total Sum of Squares df Mean Square F Sig Note that the F value is 3.8. T-TEST / GROUPS PROGRAM (1, ) / VARIABLES SCORE. T-Test Group Statistics SCORE PROGRAM Std. Error N Mean Std. Deviation Mean Independent Samples Test SCORE Equal variances assumed Equal variances not assumed Levene's Test for Equality of Variances F Sig. t df Sig. (-tailed) t-test for Equality of Means Mean Difference 95% Confidence Interval of the Std. Error Difference Difference Lower Upper COMMENT: Note that 4.8 = 3.8 (approximately), i.e. t = F. When you only have two groups, both the F test and the T-Test are testing H 0 : µ 1 = µ H A : µ 1 µ Not surprisingly, then, both tests yield the same conclusion. One-Way Analysis of Variance - Page 16

### One-Way Analysis of Variance (ANOVA) Example Problem

One-Way Analysis of Variance (ANOVA) Example Problem Introduction Analysis of Variance (ANOVA) is a hypothesis-testing technique used to test the equality of two or more population (or treatment) means

### Introduction to Analysis of Variance (ANOVA) Limitations of the t-test

Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One- Way ANOVA Limitations of the t-test Although the t-test is commonly used, it has limitations Can only

### Recall this chart that showed how most of our course would be organized:

Chapter 4 One-Way ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical

### Testing Group Differences using T-tests, ANOVA, and Nonparametric Measures

Testing Group Differences using T-tests, ANOVA, and Nonparametric Measures Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 35487-0348 Phone:

### Chapter 2 Probability Topics SPSS T tests

Chapter 2 Probability Topics SPSS T tests Data file used: gss.sav In the lecture about chapter 2, only the One-Sample T test has been explained. In this handout, we also give the SPSS methods to perform

### Independent t- Test (Comparing Two Means)

Independent t- Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent t-test when to use the independent t-test the use of SPSS to complete an independent

### Chapter 9. Two-Sample Tests. Effect Sizes and Power Paired t Test Calculation

Chapter 9 Two-Sample Tests Paired t Test (Correlated Groups t Test) Effect Sizes and Power Paired t Test Calculation Summary Independent t Test Chapter 9 Homework Power and Two-Sample Tests: Paired Versus

### 12: Analysis of Variance. Introduction

1: Analysis of Variance Introduction EDA Hypothesis Test Introduction In Chapter 8 and again in Chapter 11 we compared means from two independent groups. In this chapter we extend the procedure to consider

### Two Related Samples t Test

Two Related Samples t Test In this example 1 students saw five pictures of attractive people and five pictures of unattractive people. For each picture, the students rated the friendliness of the person

### ANOVA ANOVA. Two-Way ANOVA. One-Way ANOVA. When to use ANOVA ANOVA. Analysis of Variance. Chapter 16. A procedure for comparing more than two groups

ANOVA ANOVA Analysis of Variance Chapter 6 A procedure for comparing more than two groups independent variable: smoking status non-smoking one pack a day > two packs a day dependent variable: number of

### Chapter 7. One-way ANOVA

Chapter 7 One-way ANOVA One-way ANOVA examines equality of population means for a quantitative outcome and a single categorical explanatory variable with any number of levels. The t-test of Chapter 6 looks

### INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of

### Regression Analysis: A Complete Example

Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty

### One-Way ANOVA using SPSS 11.0. SPSS ANOVA procedures found in the Compare Means analyses. Specifically, we demonstrate

1 One-Way ANOVA using SPSS 11.0 This section covers steps for testing the difference between three or more group means using the SPSS ANOVA procedures found in the Compare Means analyses. Specifically,

### " Y. Notation and Equations for Regression Lecture 11/4. Notation:

Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through

### individualdifferences

1 Simple ANalysis Of Variance (ANOVA) Oftentimes we have more than two groups that we want to compare. The purpose of ANOVA is to allow us to compare group means from several independent samples. In general,

### An analysis method for a quantitative outcome and two categorical explanatory variables.

Chapter 11 Two-Way ANOVA An analysis method for a quantitative outcome and two categorical explanatory variables. If an experiment has a quantitative outcome and two categorical explanatory variables that

### Regression step-by-step using Microsoft Excel

Step 1: Regression step-by-step using Microsoft Excel Notes prepared by Pamela Peterson Drake, James Madison University Type the data into the spreadsheet The example used throughout this How to is a regression

### Section 13, Part 1 ANOVA. Analysis Of Variance

Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability

### EXCEL Analysis TookPak [Statistical Analysis] 1. First of all, check to make sure that the Analysis ToolPak is installed. Here is how you do it:

EXCEL Analysis TookPak [Statistical Analysis] 1 First of all, check to make sure that the Analysis ToolPak is installed. Here is how you do it: a. From the Tools menu, choose Add-Ins b. Make sure Analysis

### 1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

### The F distribution and the basic principle behind ANOVAs. Situating ANOVAs in the world of statistical tests

Tutorial The F distribution and the basic principle behind ANOVAs Bodo Winter 1 Updates: September 21, 2011; January 23, 2014; April 24, 2014; March 2, 2015 This tutorial focuses on understanding rather

### t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon

t-tests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com www.excelmasterseries.com

### SCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES

SCHOOL OF HEALTH AND HUMAN SCIENCES Using SPSS Topics addressed today: 1. Differences between groups 2. Graphing Use the s4data.sav file for the first part of this session. DON T FORGET TO RECODE YOUR

### Two-sample t-tests. - Independent samples - Pooled standard devation - The equal variance assumption

Two-sample t-tests. - Independent samples - Pooled standard devation - The equal variance assumption Last time, we used the mean of one sample to test against the hypothesis that the true mean was a particular

### Chapter 7. Comparing Means in SPSS (t-tests) Compare Means analyses. Specifically, we demonstrate procedures for running Dependent-Sample (or

1 Chapter 7 Comparing Means in SPSS (t-tests) This section covers procedures for testing the differences between two means using the SPSS Compare Means analyses. Specifically, we demonstrate procedures

### 1.5 Oneway Analysis of Variance

Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments

### Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means

Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis

### Experimental Designs (revisited)

Introduction to ANOVA Copyright 2000, 2011, J. Toby Mordkoff Probably, the best way to start thinking about ANOVA is in terms of factors with levels. (I say this because this is how they are described

### CHAPTER 13. Experimental Design and Analysis of Variance

CHAPTER 13 Experimental Design and Analysis of Variance CONTENTS STATISTICS IN PRACTICE: BURKE MARKETING SERVICES, INC. 13.1 AN INTRODUCTION TO EXPERIMENTAL DESIGN AND ANALYSIS OF VARIANCE Data Collection

### Chapter 5 Analysis of variance SPSS Analysis of variance

Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means One-way ANOVA To test the null hypothesis that several population means are equal,

### How To Check For Differences In The One Way Anova

MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. One-Way

### One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups

One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups In analysis of variance, the main research question is whether the sample means are from different populations. The

### Chapter 13 Introduction to Linear Regression and Correlation Analysis

Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing

### KSTAT MINI-MANUAL. Decision Sciences 434 Kellogg Graduate School of Management

KSTAT MINI-MANUAL Decision Sciences 434 Kellogg Graduate School of Management Kstat is a set of macros added to Excel and it will enable you to do the statistics required for this course very easily. To

### Elementary Statistics Sample Exam #3

Elementary Statistics Sample Exam #3 Instructions. No books or telephones. Only the supplied calculators are allowed. The exam is worth 100 points. 1. A chi square goodness of fit test is considered to

### UNDERSTANDING THE TWO-WAY ANOVA

UNDERSTANDING THE e have seen how the one-way ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables

### Multivariate Analysis of Variance (MANOVA): I. Theory

Gregory Carey, 1998 MANOVA: I - 1 Multivariate Analysis of Variance (MANOVA): I. Theory Introduction The purpose of a t test is to assess the likelihood that the means for two groups are sampled from the

### Study Guide for the Final Exam

Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make

### When to use Excel. When NOT to use Excel 9/24/2014

Analyzing Quantitative Assessment Data with Excel October 2, 2014 Jeremy Penn, Ph.D. Director When to use Excel You want to quickly summarize or analyze your assessment data You want to create basic visual

### Examining Differences (Comparing Groups) using SPSS Inferential statistics (Part I) Dwayne Devonish

Examining Differences (Comparing Groups) using SPSS Inferential statistics (Part I) Dwayne Devonish Statistics Statistics are quantitative methods of describing, analysing, and drawing inferences (conclusions)

### Statistics Review PSY379

Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses

### Chapter 7 Section 7.1: Inference for the Mean of a Population

Chapter 7 Section 7.1: Inference for the Mean of a Population Now let s look at a similar situation Take an SRS of size n Normal Population : N(, ). Both and are unknown parameters. Unlike what we used

### Case Study in Data Analysis Does a drug prevent cardiomegaly in heart failure?

Case Study in Data Analysis Does a drug prevent cardiomegaly in heart failure? Harvey Motulsky hmotulsky@graphpad.com This is the first case in what I expect will be a series of case studies. While I mention

### General Regression Formulae ) (N-2) (1 - r 2 YX

General Regression Formulae Single Predictor Standardized Parameter Model: Z Yi = β Z Xi + ε i Single Predictor Standardized Statistical Model: Z Yi = β Z Xi Estimate of Beta (Beta-hat: β = r YX (1 Standard

### ABSORBENCY OF PAPER TOWELS

ABSORBENCY OF PAPER TOWELS 15. Brief Version of the Case Study 15.1 Problem Formulation 15.2 Selection of Factors 15.3 Obtaining Random Samples of Paper Towels 15.4 How will the Absorbency be measured?

### Linear Models in STATA and ANOVA

Session 4 Linear Models in STATA and ANOVA Page Strengths of Linear Relationships 4-2 A Note on Non-Linear Relationships 4-4 Multiple Linear Regression 4-5 Removal of Variables 4-8 Independent Samples

### Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1)

Spring 204 Class 9: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the

### COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES.

277 CHAPTER VI COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES. This chapter contains a full discussion of customer loyalty comparisons between private and public insurance companies

### NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

### UNDERSTANDING THE DEPENDENT-SAMPLES t TEST

UNDERSTANDING THE DEPENDENT-SAMPLES t TEST A dependent-samples t test (a.k.a. matched or paired-samples, matched-pairs, samples, or subjects, simple repeated-measures or within-groups, or correlated groups)

### Chapter 7: Simple linear regression Learning Objectives

Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -

### Data Analysis in SPSS. February 21, 2004. If you wish to cite the contents of this document, the APA reference for them would be

Data Analysis in SPSS Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 35487-0348 Heather Claypool Department of Psychology Miami University

### MULTIPLE LINEAR REGRESSION ANALYSIS USING MICROSOFT EXCEL. by Michael L. Orlov Chemistry Department, Oregon State University (1996)

MULTIPLE LINEAR REGRESSION ANALYSIS USING MICROSOFT EXCEL by Michael L. Orlov Chemistry Department, Oregon State University (1996) INTRODUCTION In modern science, regression analysis is a necessary part

### Two-sample hypothesis testing, II 9.07 3/16/2004

Two-sample hypothesis testing, II 9.07 3/16/004 Small sample tests for the difference between two independent means For two-sample tests of the difference in mean, things get a little confusing, here,

### Multiple Linear Regression

Multiple Linear Regression A regression with two or more explanatory variables is called a multiple regression. Rather than modeling the mean response as a straight line, as in simple regression, it is

### Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

### Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY

Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY 1. Introduction Besides arriving at an appropriate expression of an average or consensus value for observations of a population, it is important to

### Data Analysis Tools. Tools for Summarizing Data

Data Analysis Tools This section of the notes is meant to introduce you to many of the tools that are provided by Excel under the Tools/Data Analysis menu item. If your computer does not have that tool

### Chapter 23. Inferences for Regression

Chapter 23. Inferences for Regression Topics covered in this chapter: Simple Linear Regression Simple Linear Regression Example 23.1: Crying and IQ The Problem: Infants who cry easily may be more easily

### Randomized Block Analysis of Variance

Chapter 565 Randomized Block Analysis of Variance Introduction This module analyzes a randomized block analysis of variance with up to two treatment factors and their interaction. It provides tables of

### Simple Linear Regression Inference

Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

### Review and Rating factors affecting the Deployment of (CRM) Customer Relationship Management at Nestle Company

Review and Rating factors affecting the Deployment of (CRM) Customer Relationship Management at Nestle Company Rogaye Rezaeegiglo Department of Management, Bilesvar Branch, Islamic Azad University Ali

### CS 147: Computer Systems Performance Analysis

CS 147: Computer Systems Performance Analysis One-Factor Experiments CS 147: Computer Systems Performance Analysis One-Factor Experiments 1 / 42 Overview Introduction Overview Overview Introduction Finding

### CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS

CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS CHI-SQUARE TESTS OF INDEPENDENCE (SECTION 11.1 OF UNDERSTANDABLE STATISTICS) In chi-square tests of independence we use the hypotheses. H0: The variables are independent

### Calculating P-Values. Parkland College. Isela Guerra Parkland College. Recommended Citation

Parkland College A with Honors Projects Honors Program 2014 Calculating P-Values Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating P-Values" (2014). A with Honors Projects.

### Part 2: Analysis of Relationship Between Two Variables

Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable

### Multiple regression - Matrices

Multiple regression - Matrices This handout will present various matrices which are substantively interesting and/or provide useful means of summarizing the data for analytical purposes. As we will see,

### Analysis of Variance. MINITAB User s Guide 2 3-1

3 Analysis of Variance Analysis of Variance Overview, 3-2 One-Way Analysis of Variance, 3-5 Two-Way Analysis of Variance, 3-11 Analysis of Means, 3-13 Overview of Balanced ANOVA and GLM, 3-18 Balanced

### Unit 26 Estimation with Confidence Intervals

Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference

### MULTIPLE REGRESSION WITH CATEGORICAL DATA

DEPARTMENT OF POLITICAL SCIENCE AND INTERNATIONAL RELATIONS Posc/Uapp 86 MULTIPLE REGRESSION WITH CATEGORICAL DATA I. AGENDA: A. Multiple regression with categorical variables. Coding schemes. Interpreting

### Final Exam Practice Problem Answers

Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal

### UNDERSTANDING ANALYSIS OF COVARIANCE (ANCOVA)

UNDERSTANDING ANALYSIS OF COVARIANCE () In general, research is conducted for the purpose of explaining the effects of the independent variable on the dependent variable, and the purpose of research design

### LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.

### Premaster Statistics Tutorial 4 Full solutions

Premaster Statistics Tutorial 4 Full solutions Regression analysis Q1 (based on Doane & Seward, 4/E, 12.7) a. Interpret the slope of the fitted regression = 125,000 + 150. b. What is the prediction for

### Introduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.

Introduction to Hypothesis Testing CHAPTER 8 LEARNING OBJECTIVES After reading this chapter, you should be able to: 1 Identify the four steps of hypothesis testing. 2 Define null hypothesis, alternative

### Main Effects and Interactions

Main Effects & Interactions page 1 Main Effects and Interactions So far, we ve talked about studies in which there is just one independent variable, such as violence of television program. You might randomly

### Data Mining Techniques Chapter 5: The Lure of Statistics: Data Mining Using Familiar Tools

Data Mining Techniques Chapter 5: The Lure of Statistics: Data Mining Using Familiar Tools Occam s razor.......................................................... 2 A look at data I.........................................................

### A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

CHAPTER 5. A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 5.1 Concepts When a number of animals or plots are exposed to a certain treatment, we usually estimate the effect of the treatment

### UNDERSTANDING THE INDEPENDENT-SAMPLES t TEST

UNDERSTANDING The independent-samples t test evaluates the difference between the means of two independent or unrelated groups. That is, we evaluate whether the means for two independent groups are significantly

### Using Excel for inferential statistics

FACT SHEET Using Excel for inferential statistics Introduction When you collect data, you expect a certain amount of variation, just caused by chance. A wide variety of statistical tests can be applied

### 2 Sample t-test (unequal sample sizes and unequal variances)

Variations of the t-test: Sample tail Sample t-test (unequal sample sizes and unequal variances) Like the last example, below we have ceramic sherd thickness measurements (in cm) of two samples representing

### Section Format Day Begin End Building Rm# Instructor. 001 Lecture Tue 6:45 PM 8:40 PM Silver 401 Ballerini

NEW YORK UNIVERSITY ROBERT F. WAGNER GRADUATE SCHOOL OF PUBLIC SERVICE Course Syllabus Spring 2016 Statistical Methods for Public, Nonprofit, and Health Management Section Format Day Begin End Building

### A Basic Guide to Analyzing Individual Scores Data with SPSS

A Basic Guide to Analyzing Individual Scores Data with SPSS Step 1. Clean the data file Open the Excel file with your data. You may get the following message: If you get this message, click yes. Delete

### Descriptive Statistics

Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

### Analysis of Variance ANOVA

Analysis of Variance ANOVA Overview We ve used the t -test to compare the means from two independent groups. Now we ve come to the final topic of the course: how to compare means from more than two populations.

### Introduction to Statistics with SPSS (15.0) Version 2.3 (public)

Babraham Bioinformatics Introduction to Statistics with SPSS (15.0) Version 2.3 (public) Introduction to Statistics with SPSS 2 Table of contents Introduction... 3 Chapter 1: Opening SPSS for the first

### 7. Comparing Means Using t-tests.

7. Comparing Means Using t-tests. Objectives Calculate one sample t-tests Calculate paired samples t-tests Calculate independent samples t-tests Graphically represent mean differences In this chapter,

### DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9

DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9 Analysis of covariance and multiple regression So far in this course,

### 2. Simple Linear Regression

Research methods - II 3 2. Simple Linear Regression Simple linear regression is a technique in parametric statistics that is commonly used for analyzing mean response of a variable Y which changes according

### Week 4: Standard Error and Confidence Intervals

Health Sciences M.Sc. Programme Applied Biostatistics Week 4: Standard Error and Confidence Intervals Sampling Most research data come from subjects we think of as samples drawn from a larger population.

### Outline. Topic 4 - Analysis of Variance Approach to Regression. Partitioning Sums of Squares. Total Sum of Squares. Partitioning sums of squares

Topic 4 - Analysis of Variance Approach to Regression Outline Partitioning sums of squares Degrees of freedom Expected mean squares General linear test - Fall 2013 R 2 and the coefficient of correlation

### An SPSS companion book. Basic Practice of Statistics

An SPSS companion book to Basic Practice of Statistics SPSS is owned by IBM. 6 th Edition. Basic Practice of Statistics 6 th Edition by David S. Moore, William I. Notz, Michael A. Flinger. Published by

### THE KRUSKAL WALLLIS TEST

THE KRUSKAL WALLLIS TEST TEODORA H. MEHOTCHEVA Wednesday, 23 rd April 08 THE KRUSKAL-WALLIS TEST: The non-parametric alternative to ANOVA: testing for difference between several independent groups 2 NON

### January 26, 2009 The Faculty Center for Teaching and Learning

THE BASICS OF DATA MANAGEMENT AND ANALYSIS A USER GUIDE January 26, 2009 The Faculty Center for Teaching and Learning THE BASICS OF DATA MANAGEMENT AND ANALYSIS Table of Contents Table of Contents... i

### How To Run Statistical Tests in Excel

How To Run Statistical Tests in Excel Microsoft Excel is your best tool for storing and manipulating data, calculating basic descriptive statistics such as means and standard deviations, and conducting

### Paired 2 Sample t-test

Variations of the t-test: Paired 2 Sample 1 Paired 2 Sample t-test Suppose we are interested in the effect of different sampling strategies on the quality of data we recover from archaeological field surveys.