# Multivariate Analysis of Variance. The general purpose of multivariate analysis of variance (MANOVA) is to determine

Save this PDF as:

Size: px
Start display at page:

Download "Multivariate Analysis of Variance. The general purpose of multivariate analysis of variance (MANOVA) is to determine"

## Transcription

1 2 - Manova Multivariate Analysis of Variance What Multivariate Analysis of Variance is The general purpose of multivariate analysis of variance (MANOVA) is to determine whether multiple levels of independent variables on their own or in combination with one another have an effect on the dependent variables. MANOVA requires that the dependent variables meet parametric requirements. When do you need MANOVA? MANOVA is used under the same circumstances as ANOVA but when there are multiple dependent variables as well as independent variables within the model which the researcher wishes to test. MANOVA is also considered a valid alternative to the repeated measures ANOVA when sphericity is violated. What kinds of data are necessary? The dependent variables in MANOVA need to conform to the parametric assumptions. Generally, it is better not to place highly correlated dependent variables in the same model for two main reasons. First, it does not make scientific sense to place into a model two or three dependent variables which the researcher knows measure the same aspect of

2 2 - Manova outcome. (However, this is point will be influenced by the hypothesis which the researcher is testing. For example, subscales from the same questionnaire may all be included in a MANOVA to overcome problems associated with multiple testing. Subscales from most questionnaires are related but may represent different aspects of the dependent variable.) The second reason for trying to avoid including highly correlated dependent variables is that the correlation between them can reduce the power of the tests. If MANOVA is being used to reduce multiple testing, this loss in power needs to be considered as a trade-off for the reduction in the chance of a Type I error occurring. Homogeneity of variance from ANOVA and t tests becomes homogeneity of variance covariance in MANOVA models. The amount of variance within each group needs to be comparable so that it can be assumed that the groups have been drawn from a similar population. Furthermore it is assumed that these results can be pooled to produce an error value which is representative of all the groups in the analysis. If there is a large difference in the amount of error within each group the estimated error measure for the model will be misleading. How much data? There needs to be more participants than dependent variables. If there were only one participant in any one of the combination of conditions, it would be impossible to determine the amount of variance within that combination (since only one data point would be available). Furthermore, the statistical power of any test is limited by a small sample size. (A greater amount of variance will be attributed to error in smaller sample

3 2 - Manova sizes, reducing the chances of a significant finding.) A value known as Box s M, given by most statistical programs, can be examined to determine whether the sample size is too small. Box s M determines whether the covariance in different groups is significantly different and must not be significant if one wishes to demonstrate that the sample sizes in each cell are adequate. An alternative is Levene s test of homogeneity of variance which tolerates violations of normality better than Box's M. However, rather than directly testing the size of the sample it examines whether the amount of variance is equally represented within the independent variable groups. In complex MANOVA models the likelihood of achieving robust analysis is intrinsically linked to the sample size. There are restrictions associated with the generalizability of the results when the sample size is small and therefore researchers should be encouraged to obtain as large a sample as possible. Example of MANOVA Considering an example may help to illustrate the difference between ANOVAs and MANOVAs. Kaufman and McLean (1998) used a questionnaire to investigate the relationship between interests and intelligence. They used the Kaufman Adolescent and Adult Intelligence Test (KAIT) and the Strong Interest Inventory (SII) which contained six subscales on occupational themes (GOT) and 23 Basic Interest Scales (BISs). Kaufman et al. used a MANOVA model which had four independent variables: age, gender, KAIT IQ and Fluid-Crystal intelligence (F-C). The dependent variables were the six occupational theme subscales (GOT) and the twenty-three Basic Interest Scales (BIS).

4 2 - Manova In Table 2.1 the dependent variables are listed in columns 3 and 4. The independent variables are listed in column 2, with the increasingly complex interactions being shown below the main variables. If an ANOVA had been used to examine these data, each of the GOT and BIS subscales would have been placed in a separate ANOVA. However, since the GOT and BIS scales are related, the results from separate ANOVAs would not be independent. Using multiple ANOVAs would increase the risk of a Type I error (a significant finding which occurs by chance due to repeating the same test a number of times). Kaufman and McLean used the Wilks lambda multivariate statistic (similar to the F values in univariate analysis) to consider the significance of their results and reported only the interactions which were significant. These are shown as Sig in Table 2.1. The values which proved to be significant are the majority of the main effects and one of the 2-way interactions. Note that although KAIT IQ had a significant main effect none of the interactions which included this variable were significant. On the other hand, age and gender show a significant interaction in the effect which they have on the dependent variables. What a multivariate analysis of variance does Like an ANOVA, MANOVA examines the degree of variance within the independent variables and determines whether it is smaller than the degree of variance between the independent variables. If the within subjects variance is smaller than the between subjects variance it means the independent variable has had a significant effect on the dependent

5 2 - Manova Table 2.1. The different aspects of the data considered by the MANOVA model used by Kaufman and McLean (1998). Level Independent variables 6 GOT 23 BIS subscales Main Effects Age Sig Gender Sig Sig KAIT IQ Sig Sig F-C 2-way Interactions Age x Gender Sig Sig Age x KAIT IQ Age x F-C Gender x KAIT IQ Gender x F-C KAIT IQ x F-C 3-way Interactions Age x Gender x KAIT IQ Age x Gender x F-C Age x KAIT IQ x F-C Gender x KAIT IQ x F-C Age KAIT IQ x F-C 4-way Interactions Age x Gender x KAIT IQ x F-C

6 2 - Manova variables. There are two main differences between MANOVAs and ANOVAs. The first is that MANOVAs are able to take into account multiple independent and multiple dependent variables within the same model, permitting greater complexity. Secondly, rather than using the F value as the indicator of significance a number of multivariate measures (Wilks lambda, Pillai s trace, Hotelling trace and Roy s largest root) are used. (An explanation of these multivariate statistics is given below). MANOVA deals with the multiple dependent variables by combining them in a linear manner to produce a combination which best separates the independent variable groups. An ANOVA is then performed on the newly developed dependent variable. In MANOVAs the independent variables relevant to each main effect are weighted to give them priority in the calculations performed. In interactions the independent variables are equally weighted to determine whether or not they have an additive effect in terms of the combined variance they account for in the dependent variable/s. The main effects of the independent variables and of the interactions are examined with all else held constant. The effect of each of the independent variables is tested separately. Any multiple interactions are tested separately from one another and from any significant main effects. Assuming there are equal sample sizes both in the main effects and the interactions, each test performed will be independent of the next or previous calculation (except for the error term which is calculated across the independent variables). There are two aspects of MANOVAs which are left to researchers: first, they decide which variables are placed in the MANOVA. Variables are included in order to address a

7 2 - Manova particular research question or hypothesis, and the best combination of dependent variables is one in which they are not correlated with one another, as explained above. Second, the researcher has to interpret a significant result. A statistical main effect of an independent variable implies that the independent variable groups are significantly different in terms of their scores on the dependent variable. (But this does not establish that the independent variable has caused the changes in the dependent variable. In a study which was poorly designed, differences in dependent variable scores may be the result of extraneous, uncontrolled or confounding variables.) To tease out higher level interactions in MANOVA, smaller ANOVA models which include only the independent variables which were significant can be used in separate analyses and followed by post hoc tests. Post hoc and preplanned comparisons compare all the possible paired combinations of the independent variable groups e.g. for three ethnic groups of white, African and Asian the comparisons would be: white v African, white v Asian, African v Asian. The most frequently used preplanned and post hoc tests are Least Squares Difference (LSD), Scheffe, Bonferroni, and Tukey. The tests will give the mean difference between each group and a p value to indicate whether the two groups differ significantly. The post hoc and preplanned tests differ from one another in how they calculate the p value for the mean difference between groups. Some are more conservative than others. LSD perform a series of t tests only after the null hypothesis (that there is no overall difference between the three groups) has been rejected. It is the most liberal of the post hoc tests and has a high Type I error rate. The Scheffe test uses the F distribution rather than the t distribution of the LSD tests and is considered more conservative. It has a high

8 2 - Manova Type II error rate but is considered appropriate when there are a large number of groups to be compared. The Bonferroni approach uses a series of t tests but corrects the significance level for multiple testing by dividing the significance levels by the number of tests being performed (for the example given above this would be 0.05/3). Since this test corrects for the number of comparisons being performed, it is generally used when the number of groups to be compared is small. Tukey's Honesty Significance Difference test also corrects for multiple comparisons, but it considers the power of the study to detect differences between groups rather than just the number of tests being carried out i.e. it takes into account sample size as well as the number of tests being performed. This makes it preferable when there are a large number of groups being compared, since it reduces the chances of a Type I error occurring. The statistical packages which perform MANOVAs produce many figures in their output, only some of which are of interest to the researcher. Sum of Squares: The sum of squares measure found in a MANOVA, like that reported in the ANOVA, is the measure of the squared deviations from the mean both within and between the independent variable. In MANOVA, the sums of squares are controlled for covariance between the independent variables. There are six different methods of calculating the sum of squares. Type I, hierarchical or sequential sums of squares, is appropriate when the groups in the MANOVA are of equal sizes. Type I sum of squares provides a breakdown of the sums of squares for the whole model used in the MANOVA but it is particularly sensitive to the order in which the independent variables are placed in the model. If a variable is entered first, it is not

9 2 - Manova adjusted for any of the other variables; if it is entered second, it is adjusted for one other variable (the first one entered); if it is placed third, it will be adjusted for the two other variables already entered. Type II, the partially sequential sum of squares, has the advantage over Type I in that it is not affected by the order in which the variables are entered. It displays the sum of squares after controlling for the effect of other main effects and interactions but is only robust where there are even numbers of participants in each group. Type III sum of squares can be used in models where there are uneven group sizes, although there needs to be at least one participant in each cell. It calculates the sum of squares after the independent variables have all been adjusted for the inclusion of all other independent variables in the model. Type IV sum of squares can be used when there are empty cells in the model but it is generally thought more suitable to use Type III sum of squares under these conditions since Type IV is not thought to be good at testing lower order effects. Type V has been developed for use where there are cells with missing data. It has been designed to examine the effects according to the degrees of freedom which are available and if the degrees of freedom fall below a given level these effects are not taken into account. The cells which remain in the model have at least the degrees of freedom the full model would have without any cells being excluded. For those cells which remain in the model the Type III sum of squares are calculated. However, the Type V sum of squares

10 2 - Manova are sensitive to the order in which the independent variables are placed in the model and the order in which they are entered will determine which cells are excluded. Type VI sum of squares is used for testing hypotheses where the independent variables are coded using negative and positive signs e.g. +1 = male, -1 = female. Type III sum of squares is the most frequently used as it has the advantages of Types IV, V and VI without the corresponding restrictions. Mean Squares: The mean square is the sum of squares divided by the appropriate degrees of freedom. Multivariate Measures: In most of the statistical programs used to calculate MANOVAs there are four multivariate measures: Wilks lambda, Pillai's trace, Hotelling-Lawley trace and Roy s largest root. The difference between the four measures is the way in which they combine the dependent variables in order examine the amount of variance in the data. Wilks lambda demonstrates the amount of variance accounted for in the dependent variable by the independent variable; the smaller the value, the larger the difference between the groups being analyzed. 1 minus Wilks lambda indicates the amount of variance in the dependent variables accounted for by the independent variables. Pillai's trace is considered the most reliable of the multivariate measures and offers the greatest protection against Type I errors with small sample sizes. Pillai's trace is the sum of the variance which can be explained by the calculation of discriminant variables. It calculates the amount of variance in the dependent variable which is accounted for by the greatest separation of the independent variables. The Hotelling-Lawley trace is generally

11 2 - Manova converted to the Hotelling s T-square. Hotelling s T is used when the independent variable forms two groups and represents the most significant linear combination of the dependent variables. Roy s largest root, also known as Roy s largest eigenvalue, is calculated in a similar fashion to Pillai's trace except it only considers the largest eigenvalue (i.e. the largest loading onto a vector). As the sample sizes increase the values produced by Pillai s trace, Hotelling-Lawley trace and Roy s largest root become similar. As you may be able to tell from these very broad explanations, the Wilks lambda is the easiest to understand and therefore the most frequently used measure. Multivariate F value: This is similar to the univariate F value in that it is representative of the degree of difference in the dependent variable created by the independent variable. However, as well as being based on the sum of squares (as in ANOVA) the calculation for F used in MANOVAs also takes into account the covariance of the variables. Example of Output of SPSS The data analysed in this example came from a large-scale study with three dependent variables which were thought to measure distinct aspects of behaviour. The first was total score on the Dissociative Experiences Scale, the second was reaction time when completing a signal detection task and the third was a measure of people s hallucinatory experiences (the Launay Slade Hallucinations Scale, LSHS). The independent variable was the degree to which participants were considered prone to psychotic experiences (labeled PRONE in the output shown in Fig 2.1), divided into High, Mean and Low.

12 2 - Manova The first part of the output is shown in Fig 2.1. The Between-Subjects Factors table displays the independent variable levels. Here there is only one independent variable with three levels. The number of participants in each of the independent variable groups are displayed in the column on the far right. The Multivariate Tests table displays the multivariate values: Pillai s Trace, Wilks Lambda, Hotelling s Trace and Roy s Largest Root. These are the multivariate values for the model as a whole. The F values for the Intercept, shown in the first part of the table are all the same. Those for the independent variable labeled PRONE are all different, but they are all significant above the 1% level (shown by Sig being.000), indicating that on the dependent variables there is a significant difference between the three proneness groups. The Tests of Between-Subjects Effects table gives the sum of squares, degrees of freedom, Mean Square value, the F values and the significance levels for each dependent variable. (The Corrected Model is the variance in the dependent variables which the independent variables accounts for without the intercept being taken into consideration.) The section of the table which is of interest is where the source under consideration is the independent variable, the row for PRONE. In this row it can be seen that two (DES, Launay Slade Hallucinations Scale) out of the three dependent variables included in the model are significant (p<.05), meaning that three proneness groups differ significantly in their scores on the DES and the LSHS. ******** Insert Fig 2.1***********

13 2 - Manova Figure 2.1. Example of main output from SPSS for MANOVA. To determine which of the three independent variable groups differ from one another on the dependent variables, Least Squares difference comparisons were performed by selecting the relevant option in SPSS. The output is shown in Fig 2.2. The table is split into broad rows, one for each dependent variable, and within each row the three groups of high, mean or low Proneness are compared one against the other. The mean difference between the two groups under consideration are given in one column and then separate columns show the Standard Error, Significance and the lower and upper 95% Confidence intervals. For the DES dependent variable, the High group is significantly different from the Low group (p=0.004) but not from the Mean group (p=0.076). Similarly, for the Total mean reaction time dependent variable, the High group differs significantly from the Low group but not from the Mean group. For both these dependent variables, the Mean group do not differ from the High group nor from the Low group. For the Launay scale, the High group differs significantly from the Mean and Low groups, both of which also differ from each other. ******** Insert Fig 2.2 *********** Figure 2.2. The Least Squares Difference output from SPSS MANOVA analysis.

14 2 - Manova The means and standard deviations on the DES and Launay scales for the three proneness groups are displayed in Fig 2.3, which was produced by SPSS. Tables such as this assist in interpreting the results. The MANOVA above could also have included another independent variable, such as gender. The interaction between the two independent variables on the dependent variables would have been reported in the Multivariate Statistics and Tests of Between Subjects Effects tables. ******* Insert Fig 2.3 ********* Figure 2.3. Means for the three psychosis proneness groups on the Dissociative Experiences Scale and the Launay Slade Hallucinations Scale. Example of the use of MANOVA From health Snow and Bruce (2003) explored the factors involved in Australian teenage girls smoking, collecting data from 241 participants aged between 13 and 16 years of age. Respondents completed a number of questionnaires including an Adolescent Coping Scale. They were also asked to indicate how frequently they smoked cigarettes and the responses were used to divide the respondents into three smoking groups (current smokers, experimental smokers, never smokers). In their analysis, Snow and Bruce used

15 2 - Manova MANOVA with smoking group as the independent variable. In one of the MANOVAs, the dependent variables were the measures on three different coping strategies. Snow and Bruce were only interested in the main effects of smoking group on the dependent variables so they converted the Wilk s lambda to F values and significance levels. They used Scheffe post hoc analysis to determine which of the three smoking groups differed significantly on the dependent variables, and found that on the 'productive' coping strategy there was a significant difference between the current and experimental smokers, on the 'non-productive' coping strategy there was a difference between the current smokers and those who had never smoked, and on the 'rely on others' coping strategy there was a difference between current and experimental smokers. FAQs How do I maximise the power in a MANOVA? Power refers to the sensitivity of your study design to detect true significant findings when using statistical analysis. Power is determined by the significance level chosen, the effect size and the sample size. (There are many free programmes available on the internet which can be used to calculate effect sizes from previous studies by placing means and sample sizes into the equations.) A small effect size will need a large sample size for significant differences to be detected, while a large effect size will need a relatively small sample to be detected. In general, the power of your analysis will increase the larger the effect size and sample size. Taking a practical approach, obtaining as large a sample as possible will maximise the power of your study.

16 2 - Manova What do I do if I have groups with uneven sample sizes? Having unequal sample sizes can affect the integrity of the analysis. One possibility is to recruit more participants into the groups which are under represented in the data set, another is to randomly delete cases from the more numerous groups until they are equal to the least numerous one. What do I do if I think there may be a covariate with the dependent variables included in a MANOVA model? When a covariate is incorporated into a MANOVA it is usually referred to as a MANCOVA model. The best covariate for inclusion in a model should be highly correlated with the dependent variables but not related to the independent variables. The dependent variables included in a MANCOVA are adjusted for their association with the covariate. Some experimenters include baseline data in as a covariate to control for any individual differences in scores since even randomisation to different experimental conditions does not completely control for individual differences. Summary MANOVA is used when there are multiple dependent variables as well as independent variables in the study. MANOVA combines the multiple dependent variables in a linear manner to produce a combination which best separates the independent variable groups. An ANOVA is then performed on the newly developed dependent variable.

17 2 - Manova Glossary Additive: the effect of the independent variables on one another when placed in multi- or univariate analysis of variance. Interaction: the combined effect of two or more independent variables on the dependent variables. Main Effect: the effect of one independent variable on the dependent variables, examined in isolation from all other independent variables. Mean Squares: sum of squares expressed as a ratio of the degrees of freedom either within or between the different groups. Sum of Squares: the squared deviations from the mean within or between the groups. In MANOVA they are controlled for covariance. Wilks' lambda: a statistic which can vary between 0 and 1 and which indicates whether the means of groups differ. A value of 1 indicates the groups have the same mean. References Kaufman, A.S. and McLean, J.E. (1998). An investigation into the relationship between interests and intelligence. Journal of Clinical Psychology, 54,

18 2 - Manova Snow, P.C. and Bruce, D.D. (2003). Cigarette smoking in teenage girls: exploring the role of peer reputations, self-concept and coping. Health Education Research Theory and Practice, 18, Further Reading Anderson, T.W. (2003). An Introduction to Multivariate Statistical Analysis. New York: Wiley. Rees, D.G. (2000). Essential Statistics. (4th ed.) London: Chapman and Hall/CRC. Internet Sources www2.chass.ncsu.edu/garson/pa765/manova.htm

### ANSWERS TO EXERCISES AND REVIEW QUESTIONS

ANSWERS TO EXERCISES AND REVIEW QUESTIONS PART FIVE: STATISTICAL TECHNIQUES TO COMPARE GROUPS Before attempting these questions read through the introduction to Part Five and Chapters 16-21 of the SPSS

### Chapter 5 Analysis of variance SPSS Analysis of variance

Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means One-way ANOVA To test the null hypothesis that several population means are equal,

### INTERPRETING THE REPEATED-MEASURES ANOVA

INTERPRETING THE REPEATED-MEASURES ANOVA USING THE SPSS GENERAL LINEAR MODEL PROGRAM RM ANOVA In this scenario (based on a RM ANOVA example from Leech, Barrett, and Morgan, 2005) each of 12 participants

### Multivariate Analysis of Variance (MANOVA)

Multivariate Analysis of Variance (MANOVA) Aaron French, Marcelo Macedo, John Poulsen, Tyler Waterson and Angela Yu Keywords: MANCOVA, special cases, assumptions, further reading, computations Introduction

### Lecture - 32 Regression Modelling Using SPSS

Applied Multivariate Statistical Modelling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur Lecture - 32 Regression Modelling Using SPSS (Refer

### INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of

### SPSS Guide: Tests of Differences

SPSS Guide: Tests of Differences I put this together to give you a step-by-step guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar

### Inferential Statistics. Probability. From Samples to Populations. Katie Rommel-Esham Education 504

Inferential Statistics Katie Rommel-Esham Education 504 Probability Probability is the scientific way of stating the degree of confidence we have in predicting something Tossing coins and rolling dice

### Descriptive Statistics

Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

### Profile analysis is the multivariate equivalent of repeated measures or mixed ANOVA. Profile analysis is most commonly used in two cases:

Profile Analysis Introduction Profile analysis is the multivariate equivalent of repeated measures or mixed ANOVA. Profile analysis is most commonly used in two cases: ) Comparing the same dependent variables

### SPSS: Descriptive and Inferential Statistics. For Windows

For Windows August 2012 Table of Contents Section 1: Summarizing Data...3 1.1 Descriptive Statistics...3 Section 2: Inferential Statistics... 10 2.1 Chi-Square Test... 10 2.2 T tests... 11 2.3 Correlation...

### Factor B: Curriculum New Math Control Curriculum (B (B 1 ) Overall Mean (marginal) Females (A 1 ) Factor A: Gender Males (A 2) X 21

1 Factorial ANOVA The ANOVA designs we have dealt with up to this point, known as simple ANOVA or oneway ANOVA, had only one independent grouping variable or factor. However, oftentimes a researcher has

### Multivariate Analysis of Variance (MANOVA)

Chapter 415 Multivariate Analysis of Variance (MANOVA) Introduction Multivariate analysis of variance (MANOVA) is an extension of common analysis of variance (ANOVA). In ANOVA, differences among various

### ANOVA ANOVA. Two-Way ANOVA. One-Way ANOVA. When to use ANOVA ANOVA. Analysis of Variance. Chapter 16. A procedure for comparing more than two groups

ANOVA ANOVA Analysis of Variance Chapter 6 A procedure for comparing more than two groups independent variable: smoking status non-smoking one pack a day > two packs a day dependent variable: number of

### ANOVA Analysis of Variance

ANOVA Analysis of Variance What is ANOVA and why do we use it? Can test hypotheses about mean differences between more than 2 samples. Can also make inferences about the effects of several different IVs,

### UNDERSTANDING THE TWO-WAY ANOVA

UNDERSTANDING THE e have seen how the one-way ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables

### Independent t- Test (Comparing Two Means)

Independent t- Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent t-test when to use the independent t-test the use of SPSS to complete an independent

### DDBA 8438: The t Test for Independent Samples Video Podcast Transcript

DDBA 8438: The t Test for Independent Samples Video Podcast Transcript JENNIFER ANN MORROW: Welcome to The t Test for Independent Samples. My name is Dr. Jennifer Ann Morrow. In today's demonstration,

### Multivariate Analysis of Variance (MANOVA): I. Theory

Gregory Carey, 1998 MANOVA: I - 1 Multivariate Analysis of Variance (MANOVA): I. Theory Introduction The purpose of a t test is to assess the likelihood that the means for two groups are sampled from the

### UNDERSTANDING ANALYSIS OF COVARIANCE (ANCOVA)

UNDERSTANDING ANALYSIS OF COVARIANCE () In general, research is conducted for the purpose of explaining the effects of the independent variable on the dependent variable, and the purpose of research design

### ANOVA must be modified to take correlated errors into account when multiple measurements are made for each subject.

Chapter 14 Within-Subjects Designs ANOVA must be modified to take correlated errors into account when multiple measurements are made for each subject. 14.1 Overview of within-subjects designs Any categorical

### Module 9: Nonparametric Tests. The Applied Research Center

Module 9: Nonparametric Tests The Applied Research Center Module 9 Overview } Nonparametric Tests } Parametric vs. Nonparametric Tests } Restrictions of Nonparametric Tests } One-Sample Chi-Square Test

### EPS 625 ANALYSIS OF COVARIANCE (ANCOVA) EXAMPLE USING THE GENERAL LINEAR MODEL PROGRAM

EPS 6 ANALYSIS OF COVARIANCE (ANCOVA) EXAMPLE USING THE GENERAL LINEAR MODEL PROGRAM ANCOVA One Continuous Dependent Variable (DVD Rating) Interest Rating in DVD One Categorical/Discrete Independent Variable

### Variables and Data A variable contains data about anything we measure. For example; age or gender of the participants or their score on a test.

The Analysis of Research Data The design of any project will determine what sort of statistical tests you should perform on your data and how successful the data analysis will be. For example if you decide

### HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HOD 2990 10 November 2010 Lecture Background This is a lightning speed summary of introductory statistical methods for senior undergraduate

### Mixed 2 x 3 ANOVA. Notes

Mixed 2 x 3 ANOVA This section explains how to perform an ANOVA when one of the variables takes the form of repeated measures and the other variable is between-subjects that is, independent groups of participants

### Association Between Variables

Contents 11 Association Between Variables 767 11.1 Introduction............................ 767 11.1.1 Measure of Association................. 768 11.1.2 Chapter Summary.................... 769 11.2 Chi

### Data Analysis in SPSS. February 21, 2004. If you wish to cite the contents of this document, the APA reference for them would be

Data Analysis in SPSS Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 35487-0348 Heather Claypool Department of Psychology Miami University

### Linear Models in STATA and ANOVA

Session 4 Linear Models in STATA and ANOVA Page Strengths of Linear Relationships 4-2 A Note on Non-Linear Relationships 4-4 Multiple Linear Regression 4-5 Removal of Variables 4-8 Independent Samples

### Testing Hypotheses using SPSS

Is the mean hourly rate of male workers \$2.00? T-Test One-Sample Statistics Std. Error N Mean Std. Deviation Mean 2997 2.0522 6.6282.2 One-Sample Test Test Value = 2 95% Confidence Interval Mean of the

### Statistics and research

Statistics and research Usaneya Perngparn Chitlada Areesantichai Drug Dependence Research Center (WHOCC for Research and Training in Drug Dependence) College of Public Health Sciences Chulolongkorn University,

### One-Way ANOVA using SPSS 11.0. SPSS ANOVA procedures found in the Compare Means analyses. Specifically, we demonstrate

1 One-Way ANOVA using SPSS 11.0 This section covers steps for testing the difference between three or more group means using the SPSS ANOVA procedures found in the Compare Means analyses. Specifically,

### T-test & factor analysis

Parametric tests T-test & factor analysis Better than non parametric tests Stringent assumptions More strings attached Assumes population distribution of sample is normal Major problem Alternatives Continue

### Multivariate analyses

14 Multivariate analyses Learning objectives By the end of this chapter you should be able to: Recognise when it is appropriate to use multivariate analyses (MANOVA) and which test to use (traditional

### research/scientific includes the following: statistical hypotheses: you have a null and alternative you accept one and reject the other

1 Hypothesis Testing Richard S. Balkin, Ph.D., LPC-S, NCC 2 Overview When we have questions about the effect of a treatment or intervention or wish to compare groups, we use hypothesis testing Parametric

### DISCRIMINANT FUNCTION ANALYSIS (DA)

DISCRIMINANT FUNCTION ANALYSIS (DA) John Poulsen and Aaron French Key words: assumptions, further reading, computations, standardized coefficents, structure matrix, tests of signficance Introduction Discriminant

### Statistics for Management II-STAT 362-Final Review

Statistics for Management II-STAT 362-Final Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The ability of an interval estimate to

### SPSS Tests for Versions 9 to 13

SPSS Tests for Versions 9 to 13 Chapter 2 Descriptive Statistic (including median) Choose Analyze Descriptive statistics Frequencies... Click on variable(s) then press to move to into Variable(s): list

### SCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES

SCHOOL OF HEALTH AND HUMAN SCIENCES Using SPSS Topics addressed today: 1. Differences between groups 2. Graphing Use the s4data.sav file for the first part of this session. DON T FORGET TO RECODE YOUR

### Aus: Statnotes: Topics in Multivariate Analysis, by G. David Garson (Zugriff am

Aus: Statnotes: Topics in Multivariate Analysis, by G. David Garson http://faculty.chass.ncsu.edu/garson/pa765/anova.htm (Zugriff am 20.10.2010) Planned multiple comparison t-tests, also just called "multiple

### SPSS Guide How-to, Tips, Tricks & Statistical Techniques

SPSS Guide How-to, Tips, Tricks & Statistical Techniques Support for the course Research Methodology for IB Also useful for your BSc or MSc thesis March 2014 Dr. Marijke Leliveld Jacob Wiebenga, MSc CONTENT

### Projects Involving Statistics (& SPSS)

Projects Involving Statistics (& SPSS) Academic Skills Advice Starting a project which involves using statistics can feel confusing as there seems to be many different things you can do (charts, graphs,

### Inferential Statistics

Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are

### Inferences About Differences Between Means Edpsy 580

Inferences About Differences Between Means Edpsy 580 Carolyn J. Anderson Department of Educational Psychology University of Illinois at Urbana-Champaign Inferences About Differences Between Means Slide

### Comparing three or more groups (one-way ANOVA...)

Page 1 of 36 Comparing three or more groups (one-way ANOVA...) You've measured a variable in three or more groups, and the means (and medians) are distinct. Is that due to chance? Or does it tell you the

### CHAPTER 11 CHI-SQUARE: NON-PARAMETRIC COMPARISONS OF FREQUENCY

CHAPTER 11 CHI-SQUARE: NON-PARAMETRIC COMPARISONS OF FREQUENCY The hypothesis testing statistics detailed thus far in this text have all been designed to allow comparison of the means of two or more samples

### Data analysis process

Data analysis process Data collection and preparation Collect data Prepare codebook Set up structure of data Enter data Screen data for errors Exploration of data Descriptive Statistics Graphs Analysis

### Reporting MANOVA: Four examples (not necessarily definitive)

Contents page Contents page... i MANOVA reporting... 1 Example 1: Gender in the future...1 Example 2: NESB teaching practice...1 Examining associations between scale scores and demographic variables...1

### 13: Additional ANOVA Topics. Post hoc Comparisons

13: Additional ANOVA Topics Post hoc Comparisons ANOVA Assumptions Assessing Group Variances When Distributional Assumptions are Severely Violated Kruskal-Wallis Test Post hoc Comparisons In the prior

### Chapter 2 Probability Topics SPSS T tests

Chapter 2 Probability Topics SPSS T tests Data file used: gss.sav In the lecture about chapter 2, only the One-Sample T test has been explained. In this handout, we also give the SPSS methods to perform

### COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES.

277 CHAPTER VI COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES. This chapter contains a full discussion of customer loyalty comparisons between private and public insurance companies

### One-Way Repeated Measures Analysis of Variance (Within-Subjects ANOVA)

One-Way Repeated Measures Analysis of Variance (Within-Subjects ANOVA) 1 SPSS for Windows Intermediate & Advanced Applied Statistics Zayed University Office of Research SPSS for Windows Workshop Series

### Simple Linear Regression One Binary Categorical Independent Variable

Simple Linear Regression Does sex influence mean GCSE score? In order to answer the question posed above, we want to run a linear regression of sgcseptsnew against sgender, which is a binary categorical

### Introduction to Analysis of Variance (ANOVA) Limitations of the t-test

Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One- Way ANOVA Limitations of the t-test Although the t-test is commonly used, it has limitations Can only

### Correlation and Regression

Dublin Institute of Technology ARROW@DIT Books/Book Chapters School of Management 2012-10 Correlation and Regression Donal O'Brien Dublin Institute of Technology, donal.obrien@dit.ie Pamela Sharkey Scott

### Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means

Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis

### Reliability Analysis

Measures of Reliability Reliability Analysis Reliability: the fact that a scale should consistently reflect the construct it is measuring. One way to think of reliability is that other things being equal,

### Data Analysis. Lecture Empirical Model Building and Methods (Empirische Modellbildung und Methoden) SS Analysis of Experiments - Introduction

Data Analysis Lecture Empirical Model Building and Methods (Empirische Modellbildung und Methoden) Prof. Dr. Dr. h.c. Dieter Rombach Dr. Andreas Jedlitschka SS 2014 Analysis of Experiments - Introduction

### ABSORBENCY OF PAPER TOWELS

ABSORBENCY OF PAPER TOWELS 15. Brief Version of the Case Study 15.1 Problem Formulation 15.2 Selection of Factors 15.3 Obtaining Random Samples of Paper Towels 15.4 How will the Absorbency be measured?

### Main Effects and Interactions

Main Effects & Interactions page 1 Main Effects and Interactions So far, we ve talked about studies in which there is just one independent variable, such as violence of television program. You might randomly

### Multiple-Comparison Procedures

Multiple-Comparison Procedures References A good review of many methods for both parametric and nonparametric multiple comparisons, planned and unplanned, and with some discussion of the philosophical

### Research Methods & Experimental Design

Research Methods & Experimental Design 16.422 Human Supervisory Control April 2004 Research Methods Qualitative vs. quantitative Understanding the relationship between objectives (research question) and

### Analysis of numerical data S4

Basic medical statistics for clinical and experimental research Analysis of numerical data S4 Katarzyna Jóźwiak k.jozwiak@nki.nl 3rd November 2015 1/42 Hypothesis tests: numerical and ordinal data 1 group:

### 1. Complete the sentence with the correct word or phrase. 2. Fill in blanks in a source table with the correct formuli for df, MS, and F.

Final Exam 1. Complete the sentence with the correct word or phrase. 2. Fill in blanks in a source table with the correct formuli for df, MS, and F. 3. Identify the graphic form and nature of the source

### Statistical Modeling Using SAS

Statistical Modeling Using SAS Xiangming Fang Department of Biostatistics East Carolina University SAS Code Workshop Series 2012 Xiangming Fang (Department of Biostatistics) Statistical Modeling Using

### Examining Differences (Comparing Groups) using SPSS Inferential statistics (Part I) Dwayne Devonish

Examining Differences (Comparing Groups) using SPSS Inferential statistics (Part I) Dwayne Devonish Statistics Statistics are quantitative methods of describing, analysing, and drawing inferences (conclusions)

### Perform hypothesis testing

Multivariate hypothesis tests for fixed effects Testing homogeneity of level-1 variances In the following sections, we use the model displayed in the figure below to illustrate the hypothesis tests. Partial

### II. DISTRIBUTIONS distribution normal distribution. standard scores

Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,

### Categorical Variables in Regression: Implementation and Interpretation By Dr. Jon Starkweather, Research and Statistical Support consultant

Interpretation and Implementation 1 Categorical Variables in Regression: Implementation and Interpretation By Dr. Jon Starkweather, Research and Statistical Support consultant Use of categorical variables

### UNDERSTANDING THE DEPENDENT-SAMPLES t TEST

UNDERSTANDING THE DEPENDENT-SAMPLES t TEST A dependent-samples t test (a.k.a. matched or paired-samples, matched-pairs, samples, or subjects, simple repeated-measures or within-groups, or correlated groups)

### A Basic Guide to Analyzing Individual Scores Data with SPSS

A Basic Guide to Analyzing Individual Scores Data with SPSS Step 1. Clean the data file Open the Excel file with your data. You may get the following message: If you get this message, click yes. Delete

### Paired Comparisons and Repeated Measures

Paired Comparisons and Repeated Measures Hotelling s T-squared tests for a single mean vector have useful applications for studies with paired comparisons or repeated measurements. 1. Paired comparison

### Technology Step-by-Step Using StatCrunch

Technology Step-by-Step Using StatCrunch Section 1.3 Simple Random Sampling 1. Select Data, highlight Simulate Data, then highlight Discrete Uniform. 2. Fill in the following window with the appropriate

### Allelopathic Effects on Root and Shoot Growth: One-Way Analysis of Variance (ANOVA) in SPSS. Dan Flynn

Allelopathic Effects on Root and Shoot Growth: One-Way Analysis of Variance (ANOVA) in SPSS Dan Flynn Just as t-tests are useful for asking whether the means of two groups are different, analysis of variance

### Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

### Reporting Statistics in Psychology

This document contains general guidelines for the reporting of statistics in psychology research. The details of statistical reporting vary slightly among different areas of science and also among different

### Notes for STA 437/1005 Methods for Multivariate Data

Notes for STA 437/1005 Methods for Multivariate Data Radford M. Neal, 26 November 2010 Random Vectors Notation: Let X be a random vector with p elements, so that X = [X 1,..., X p ], where denotes transpose.

### We have already discussed hypothesis testing in study unit 13. In this

14 study unit fourteen hypothesis tests applied to means: two related samples We have already discussed hypothesis testing in study unit 13. In this study unit we shall test a hypothesis empirically in

### Section 13, Part 1 ANOVA. Analysis Of Variance

Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability

### 10. Comparing Means Using Repeated Measures ANOVA

10. Comparing Means Using Repeated Measures ANOVA Objectives Calculate repeated measures ANOVAs Calculate effect size Conduct multiple comparisons Graphically illustrate mean differences Repeated measures

### Some Critical Information about SOME Statistical Tests and Measures of Correlation/Association

Some Critical Information about SOME Statistical Tests and Measures of Correlation/Association This information is adapted from and draws heavily on: Sheskin, David J. 2000. Handbook of Parametric and

### Checklists and Examples for Registering Statistical Analyses

Checklists and Examples for Registering Statistical Analyses For well-designed confirmatory research, all analysis decisions that could affect the confirmatory results should be planned and registered

### SPSS ADVANCED ANALYSIS WENDIANN SETHI SPRING 2011

SPSS ADVANCED ANALYSIS WENDIANN SETHI SPRING 2011 Statistical techniques to be covered Explore relationships among variables Correlation Regression/Multiple regression Logistic regression Factor analysis

### Hypothesis Testing with z Tests

CHAPTER SEVEN Hypothesis Testing with z Tests NOTE TO INSTRUCTOR This chapter is critical to an understanding of hypothesis testing, which students will use frequently in the coming chapters. Some of the

### 6 Variables: PD MF MA K IAH SBS

options pageno=min nodate formdlim='-'; title 'Canonical Correlation, Journal of Interpersonal Violence, 10: 354-366.'; data SunitaPatel; infile 'C:\Users\Vati\Documents\StatData\Sunita.dat'; input Group

### 4.4. Further Analysis within ANOVA

4.4. Further Analysis within ANOVA 1) Estimation of the effects Fixed effects model: α i = µ i µ is estimated by a i = ( x i x) if H 0 : µ 1 = µ 2 = = µ k is rejected. Random effects model: If H 0 : σa

### The Dummy s Guide to Data Analysis Using SPSS

The Dummy s Guide to Data Analysis Using SPSS Mathematics 57 Scripps College Amy Gamble April, 2001 Amy Gamble 4/30/01 All Rights Rerserved TABLE OF CONTENTS PAGE Helpful Hints for All Tests...1 Tests

### Regression Analysis Prof. Soumen Maity Department of Mathematics Indian Institute of Technology, Kharagpur

Regression Analysis Prof. Soumen Maity Department of Mathematics Indian Institute of Technology, Kharagpur Lecture - 7 Multiple Linear Regression (Contd.) This is my second lecture on Multiple Linear Regression

### individualdifferences

1 Simple ANalysis Of Variance (ANOVA) Oftentimes we have more than two groups that we want to compare. The purpose of ANOVA is to allow us to compare group means from several independent samples. In general,

### 10. Analysis of Longitudinal Studies Repeat-measures analysis

Research Methods II 99 10. Analysis of Longitudinal Studies Repeat-measures analysis This chapter builds on the concepts and methods described in Chapters 7 and 8 of Mother and Child Health: Research methods.

### Bivariate Analysis. Comparisons of proportions: Chi Square Test (X 2 test) Variable 1. Variable 2 2 LEVELS >2 LEVELS CONTINUOUS

Bivariate Analysis Variable 1 2 LEVELS >2 LEVELS CONTINUOUS Variable 2 2 LEVELS X 2 chi square test >2 LEVELS X 2 chi square test CONTINUOUS t-test X 2 chi square test X 2 chi square test ANOVA (F-test)

### c. The factor is the type of TV program that was watched. The treatment is the embedded commercials in the TV programs.

STAT E-150 - Statistical Methods Assignment 9 Solutions Exercises 12.8, 12.13, 12.75 For each test: Include appropriate graphs to see that the conditions are met. Use Tukey's Honestly Significant Difference

### MAT140: Applied Statistical Methods Summary of Calculating Confidence Intervals and Sample Sizes for Estimating Parameters

MAT140: Applied Statistical Methods Summary of Calculating Confidence Intervals and Sample Sizes for Estimating Parameters Inferences about a population parameter can be made using sample statistics for

### Using CrunchIt (http://bcs.whfreeman.com/crunchit/bps4e) or StatCrunch (www.calvin.edu/go/statcrunch)

Using CrunchIt (http://bcs.whfreeman.com/crunchit/bps4e) or StatCrunch (www.calvin.edu/go/statcrunch) 1. In general, this package is far easier to use than many statistical packages. Every so often, however,