# Correlational Research. Correlational Research. Stephen E. Brock, Ph.D., NCSP EDS 250. Descriptive Research 1. Correlational Research: Scatter Plots

Save this PDF as:

Size: px
Start display at page:

Download "Correlational Research. Correlational Research. Stephen E. Brock, Ph.D., NCSP EDS 250. Descriptive Research 1. Correlational Research: Scatter Plots"

## Transcription

1 Correlational Research Stephen E. Brock, Ph.D., NCSP California State University, Sacramento 1 Correlational Research A quantitative methodology used to determine whether, and to what degree, a relationship exists between two or more variables within a population (or a sample). The degree of relationships are expressed by correlation coefficients. Coefficients range from to Higher correlations (coefficients closer to or -1.00) indicate stronger relationships. Positive correlations indicate that as the values associated with one variable go up, so do the values associated with the other. e.g., higher grades are associated with higher???. Negative correlations indicate that as the values associated with one variable go up, the values associated with the other go down e.g., higher grades are associated with lower???. 2 Correlational Research: Scatter Plots 3 Descriptive Research 1

2 Correlational Research: Scatter Plots 4 Portfolio Activity # 6: Mini-proposal 2 Briefly describe a correlational research project relevant to one of your identified research topics. Small group discussion 5 A researcher found that there was a correlation between the variable of height and Mental Age among a random sample of 100 individuals. From these data the researcher determines that taller people are smarter than shorter people. What do you think? Interpret this finding. 6 Descriptive Research 2

3 Mental Age Chronological Age Height 7 % of Homes with Firearms Isolation Suicide Rate 8 Even a perfect correlation does not necessarily imply a causal connection between variables. For example, in a recent CDE study, the number of support staff in school districts was positively correlated with poor attendance. An educational research example: Attention span is highly correlated with reading comprehension test scores. But both are also correlated with basic reading skill. The correlation may be the result of a mutual association with these other variables. 9 Descriptive Research 3

4 Attention Deficits Basic Reading Skill Reading Comprehension 10 A statistically significant relationship (correlation) is a necessary, but not sufficient condition when determining causation. Must be able to document that the causal variable occurred first and that all other factors are accounted for. Experiments are typically necessary to determine causation. 11 Types of Correlational Studies Descriptive Used to simply describe relationships. Often a precursor to the experimental study. Variables suggested to be related would be the subject of further study. Also helps to identify variables that need to be controlled during an experiment. e.g., basic reading skill in a study of the effects of ADHD on reading comprehension. Hypotheses, if offered, are often nondirectional. Predictive Hypotheses are directional 12 Descriptive Research 4

5 1. Problem selection Variables to be correlated should be selected based on a) A logical relationship b) Theoretical grounds c) Personal experience What are some examples of problems (or questions) that are consistent with these three bases for correlational research? Correlational treasure hunts (AKA the shotgun approach ) are strongly discouraged. What does r =.50, p =.05 mean? r = strength of the relationship (actually it is r 2 or 25% of variance) p = significance of the relationship (how unlikely a given r value will occur given NO relationship in the population, 5% chance of an r of.50 if there is no real relationship between variable in the population) Select/Obtain Participants Sample from the population so as to maximize generalizability. What are examples of preferred sampling techniques? At least 30 participants. If you are dealing with a sample and the correlation between two variables is r =.05, p =.50, what would you say about the relationship? If you are dealing with a population and the correlation between two variables is r =.05, what would you say about the relationship? Select Measures How to quantify the variables under study. How might your quantify ADHD, Reading Achievement, phonological processing? If the measures lack reliability a larger sample will be required. 4. Specify Procedures How is data assessing the variables are obtained and correlated? 15 Descriptive Research 5

6 5. Conduct Data Analysis Statistically significant correlations p values (p. 582 of the text). Whether the obtained coefficient is really different from zero or- the probability that the correlation represents a true relationship or a chance occurrence. In larger samples, lower correlations are required to reach statistical significance. Why? Tests of significance are not required if the entire population has been assessed. Why? What do the levels of significance (e.g., p =.1, p =.05, p =.01, p =.001) mean? Is a significant relationship necessarily an important relationship? Compare these two results: (1) ADHD correlates with Reading (r =.75, p =.05); (2) ADHD correlates with Reading (r =.25, p =.001) Conduct Data Analysis (continued) Determining statistically significant correlations If you are using a Table, the number of degrees of freedom is two less than the number of pairs Conduct Data Analysis (continued) Correlation s significance vs. its strength. Just because a correlation is significant does not mean it is high enough to reflect an important relationship. Variance (the correlation coefficient squared) When two or more variables are correlated, each variable will have a range of scores. Each variable will have some variance; that is not everyone will get the same score. Common or shared variance indicates the extent to which variables vary in a systematic way (pp ). r 2 is the amount of variance explained (or accounted for) by the correlation coefficient. Determine the amount of variance accounted for by the following r values: 1.0,.95,.75,.50, Descriptive Research 6

7 Relationship Studies Often used to study complex variables before beginning an experiment. To identify variables (other than the independent variable) that correlate with the dependent measure. When relationships are identified these variables are then controlled for. For example, before studying how a given IV (like ADHD symptom severity) influences reading comprehension you would want to identify other variables (such as word reading, word attack, vocabulary, background knowledge) that also affect reading comprehension and then control for them. How would this be done? 19 Relationship Studies Why is it important to be selective when identifying variables to be correlated? What problems might arise if you used a shotgun approach and obtained correlations among 100 randomly selected variables and you used a p value of.05? Chances are that 5 of the obtained coefficients will not reflect a true relationship greater than zero. 20 Prediction Studies Regression Analysis A method of analyzing the variability of a criterion variable by examining information available on one or more predictor variables. When only one predictor variable is used, the analysis is referred to as simple regression. When more than one predictor is used, the analysis is referred to as multiple regression 21 Descriptive Research 7

8 Simple Regression A college football coach wishes to use the scores on one variable to predict the scores on another variable. He wishes to determine the best prediction equation for the grade-point averages of potential freshmen recruits. SAT test scores for the current group of recruits as well as their grade point averages are available. From the available SAT and GPA scores for this year s class, the prediction equation for next year s class can be calculated. 22 Simple Regression A teacher wishes to determine the effects of hours of study (the predictor variable) on vocabulary test performance (the criterion variable). When vocabulary test means associated with different amounts of study differ from each other and lie on a straight line, it is said that there is a simple linear regression of vocabulary test performance on hours of study 23 Hours Score A Score B Hours of study & vocabulary tests Excel Data Sheet pp of text for SPSS screen shots 24 Descriptive Research 8

9 Multiple Regression A GATE program administrator wishes to determine the best prediction equation for rapid learning among a group of ELL elementary students. The available predictor variables are: 1. SAT-9 scores (X 1 ) 2. Changes in scores on the English LAS (X 2 ) 3. Scores on a non-verbal reasoning test (X 3 ) 4. Primary language vocabulary test scores (X 4 ) Y The criterion variable (the one the administrator wishes to predict) are achievement test gains made between 2nd to 3rd grades (Y observed ). From the regression of the predictor variables (X 1, 2, 3, and 4 ) on the criterion variable (Y observed ), a prediction equation can be developed. 25 Types of Correlation Coefficients Variable 1 Continuous Rank Dichotomous Pearson r Continuous Correlation ratio Variable 2 Spearmans rho Rank Kendall s tau Biserial Tetrachoric Dichotomous Point Biserial Phi coefficient Scales of Measurement: Ratio or Interval (Continuous, e.g., scores on a test); Ordinal (Rank, e.g., class rankings); and Nominal or Categorical (Dichotomous, e.g., gender) Notes: Correlation ratio is used for nonlinear relationships (i.e., curvilinear correlations) Biserial and Tetrachoric are used when the dichotomy is artificial Point Biserial and Phi coefficient are used when the dichotomy is genuine or true. 26 Types of Statistical Correlations Partial Correlations If you have three variables and you wish to know how highly two of them are related when the mutual relationships with the third variable are taken out ( partialed out ), use partial correlation. Height r =.835 (A spurious correlation?) Age M.A. After partialing out Age this correlation dropped to.219. This is an example of statistical control. What might be another variable to partial out? What might be another way to control for the Age? 27 Descriptive Research 9

10 Types of Statistical Correlations Multiple Correlations If you have three variables and you wish to know how highly two of them, taken together, are related to the third, use multiple correlation. Reading Speed + Reading Achievement Phonological awareness In a typical multiple-correlation study, the first set of numbers represents measures of a criterion variable (e.g., reading achievement) and the other two sets of numbers are measures of predictors (e.g., reading speed and sound awareness). The multiple-correlation coefficient between the criterion variable and the two predictor variables will give an indication of the degree to which the two predictors, taken together, actually predict the criterion Questions: What is the difference between prediction and 28 causation? Next Meeting: After Spring Break Causal Comparative and Single Subject Research Read Educational Research Chapters 9 & 11. Portfolio Element #7 Due: Mini-proposal 3 29 Portfolio Activity # 7 Mini-proposal 3 Students will briefly describe a causal comparative research project relevant to one of their identified research topics. Chapter 9 provides guidance necessary to complete this mini-proposal. 30 Descriptive Research 10

### Chapter 14: Analyzing Relationships Between Variables

Chapter Outlines for: Frey, L., Botan, C., & Kreps, G. (1999). Investigating communication: An introduction to research methods. (2nd ed.) Boston: Allyn & Bacon. Chapter 14: Analyzing Relationships Between

### 11/20/2014. Correlational research is used to describe the relationship between two or more naturally occurring variables.

Correlational research is used to describe the relationship between two or more naturally occurring variables. Is age related to political conservativism? Are highly extraverted people less afraid of rejection

### Class 6: Chapter 12. Key Ideas. Explanatory Design. Correlational Designs

Class 6: Chapter 12 Correlational Designs l 1 Key Ideas Explanatory and predictor designs Characteristics of correlational research Scatterplots and calculating associations Steps in conducting a correlational

### Section 3 Part 1. Relationships between two numerical variables

Section 3 Part 1 Relationships between two numerical variables 1 Relationship between two variables The summary statistics covered in the previous lessons are appropriate for describing a single variable.

### Lesson 4 Part 1. Relationships between. two numerical variables. Correlation Coefficient. Relationship between two

Lesson Part Relationships between two numerical variables Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear between two numerical variables Relationship

### LEARNING OBJECTIVES SCALES OF MEASUREMENT: A REVIEW SCALES OF MEASUREMENT: A REVIEW DESCRIBING RESULTS DESCRIBING RESULTS 8/14/2016

UNDERSTANDING RESEARCH RESULTS: DESCRIPTION AND CORRELATION LEARNING OBJECTIVES Contrast three ways of describing results: Comparing group percentages Correlating scores Comparing group means Describe

### DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.

DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,

### Inferential Statistics

Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are

### Descriptive Statistics

Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

### Statistics. Measurement. Scales of Measurement 7/18/2012

Statistics Measurement Measurement is defined as a set of rules for assigning numbers to represent objects, traits, attributes, or behaviors A variableis something that varies (eye color), a constant does

### CORRELATIONAL ANALYSIS: PEARSON S r Purpose of correlational analysis The purpose of performing a correlational analysis: To discover whether there

CORRELATIONAL ANALYSIS: PEARSON S r Purpose of correlational analysis The purpose of performing a correlational analysis: To discover whether there is a relationship between variables, To find out the

### X X X a) perfect linear correlation b) no correlation c) positive correlation (r = 1) (r = 0) (0 < r < 1)

CORRELATION AND REGRESSION / 47 CHAPTER EIGHT CORRELATION AND REGRESSION Correlation and regression are statistical methods that are commonly used in the medical literature to compare two or more variables.

### The aspect of the data that we want to describe/measure is the degree of linear relationship between and The statistic r describes/measures the degree

PS 511: Advanced Statistics for Psychological and Behavioral Research 1 Both examine linear (straight line) relationships Correlation works with a pair of scores One score on each of two variables ( and

### Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables 2

Lesson 4 Part 1 Relationships between two numerical variables 1 Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables

### What is correlational research?

Key Ideas Purpose and use of correlational designs How correlational research developed Types of correlational designs Key characteristics of correlational designs Procedures used in correlational studies

### Correlational Research

Correlational Research By Marilyn K. Simon and Jim Goes Includes excerpts from Simon (2011), Dissertation and Scholarly Research: Recipes for Success. Seattle, WA: Dissertation Success LLC Find this and

### Statistical basics for Biology: p s, alphas, and measurement scales.

334 Volume 25: Mini Workshops Statistical basics for Biology: p s, alphas, and measurement scales. Catherine Teare Ketter School of Marine Programs University of Georgia Athens Georgia 30602-3636 (706)

### Lecture 5: Correlation and Linear Regression

Lecture 5: Correlation and Linear Regression 3.5. (Pearson) correlation coefficient The correlation coefficient measures the strength of the linear relationship between two variables. The correlation is

### DATA COLLECTION AND ANALYSIS

DATA COLLECTION AND ANALYSIS Quality Education for Minorities (QEM) Network HBCU-UP Fundamentals of Education Research Workshop Gerunda B. Hughes, Ph.D. August 23, 2013 Objectives of the Discussion 2 Discuss

### The correlation coefficient

The correlation coefficient Clinical Biostatistics The correlation coefficient Martin Bland Correlation coefficients are used to measure the of the relationship or association between two quantitative

### Pearson s correlation

Pearson s correlation Introduction Often several quantitative variables are measured on each member of a sample. If we consider a pair of such variables, it is frequently of interest to establish if there

### Simple Linear Regression Chapter 11

Simple Linear Regression Chapter 11 Rationale Frequently decision-making situations require modeling of relationships among business variables. For instance, the amount of sale of a product may be related

### Spearman s correlation

Spearman s correlation Introduction Before learning about Spearman s correllation it is important to understand Pearson s correlation which is a statistical measure of the strength of a linear relationship

### DATA ANALYSIS. QEM Network HBCU-UP Fundamentals of Education Research Workshop Gerunda B. Hughes, Ph.D. Howard University

DATA ANALYSIS QEM Network HBCU-UP Fundamentals of Education Research Workshop Gerunda B. Hughes, Ph.D. Howard University Quantitative Research What is Statistics? Statistics (as a subject) is the science

### Regression. In this class we will:

AMS 5 REGRESSION Regression The idea behind the calculation of the coefficient of correlation is that the scatter plot of the data corresponds to a cloud that follows a straight line. This idea can be

### Z-SCORES AND CORRELATION! LECTURE#3! PSYC218 ANALYSIS OF BEHAV. DATA! DR. OLLIE HULME, 2011, UBC!

Z-SCORES AND CORRELATION! LECTURE#3! PSYC218 ANALYSIS OF BEHAV. DATA! DR. OLLIE HULME, 2011, UBC! Housekeeping! All assignments in-class hard copy only SPSS should be installed, last chance to report problems

### Quantitative Data Analysis: Choosing a statistical test Prepared by the Office of Planning, Assessment, Research and Quality

Quantitative Data Analysis: Choosing a statistical test Prepared by the Office of Planning, Assessment, Research and Quality 1 To help choose which type of quantitative data analysis to use either before

### Lecture 18 Linear Regression

Lecture 18 Statistics Unit Andrew Nunekpeku / Charles Jackson Fall 2011 Outline 1 1 Situation - used to model quantitative dependent variable using linear function of quantitative predictor(s). Situation

### UNIVERSITY OF NAIROBI

UNIVERSITY OF NAIROBI MASTERS IN PROJECT PLANNING AND MANAGEMENT NAME: SARU CAROLYNN ELIZABETH REGISTRATION NO: L50/61646/2013 COURSE CODE: LDP 603 COURSE TITLE: RESEARCH METHODS LECTURER: GAKUU CHRISTOPHER

### Chapter 7: Simple linear regression Learning Objectives

Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -

### Some Critical Information about SOME Statistical Tests and Measures of Correlation/Association

Some Critical Information about SOME Statistical Tests and Measures of Correlation/Association This information is adapted from and draws heavily on: Sheskin, David J. 2000. Handbook of Parametric and

### Variables and Data A variable contains data about anything we measure. For example; age or gender of the participants or their score on a test.

The Analysis of Research Data The design of any project will determine what sort of statistical tests you should perform on your data and how successful the data analysis will be. For example if you decide

### We are often interested in the relationship between two variables. Do people with more years of full-time education earn higher salaries?

Statistics: Correlation Richard Buxton. 2008. 1 Introduction We are often interested in the relationship between two variables. Do people with more years of full-time education earn higher salaries? Do

### Guided Reading 9 th Edition. informed consent, protection from harm, deception, confidentiality, and anonymity.

Guided Reading Educational Research: Competencies for Analysis and Applications 9th Edition EDFS 635: Educational Research Chapter 1: Introduction to Educational Research 1. List and briefly describe the

### Correlation key concepts:

CORRELATION Correlation key concepts: Types of correlation Methods of studying correlation a) Scatter diagram b) Karl pearson s coefficient of correlation c) Spearman s Rank correlation coefficient d)

### THE CORRELATION COEFFICIENT

THE CORRELATION COEFFICIENT 1 More Statistical Notation Correlational analysis requires scores from two variables. X stands for the scores on one variable and Y stands for the scores on the other variable.

### , then the form of the model is given by: which comprises a deterministic component involving the three regression coefficients (

Multiple regression Introduction Multiple regression is a logical extension of the principles of simple linear regression to situations in which there are several predictor variables. For instance if we

### Types of Group Comparison Research. Stephen E. Brock, Ph.D., NCSP EDS 250. Causal-Comparative Research 1

Causal-Comparative Research & Single Subject Research Stephen E. Brock, Ph.D., NCSP California State University, Sacramento 1 Correlation vs. Group Comparison Correlational Group Comparison 1 group 2 or

### Chapter 13 Introduction to Linear Regression and Correlation Analysis

Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing

### Module 3: Correlation and Covariance

Using Statistical Data to Make Decisions Module 3: Correlation and Covariance Tom Ilvento Dr. Mugdim Pašiƒ University of Delaware Sarajevo Graduate School of Business O ften our interest in data analysis

### Using Excel for inferential statistics

FACT SHEET Using Excel for inferential statistics Introduction When you collect data, you expect a certain amount of variation, just caused by chance. A wide variety of statistical tests can be applied

Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm

### Chapter Seven. Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS

Chapter Seven Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS Section : An introduction to multiple regression WHAT IS MULTIPLE REGRESSION? Multiple

### Correlational Research

Types of Correlational Research Designs Correlational Research The first type of correlational design, explanatory design, is conducted when researchers want to explore the extents to which two or more

### Answer: C. The strength of a correlation does not change if units change by a linear transformation such as: Fahrenheit = 32 + (5/9) * Centigrade

Statistics Quiz Correlation and Regression -- ANSWERS 1. Temperature and air pollution are known to be correlated. We collect data from two laboratories, in Boston and Montreal. Boston makes their measurements

### Linear Models in STATA and ANOVA

Session 4 Linear Models in STATA and ANOVA Page Strengths of Linear Relationships 4-2 A Note on Non-Linear Relationships 4-4 Multiple Linear Regression 4-5 Removal of Variables 4-8 Independent Samples

### II. DISTRIBUTIONS distribution normal distribution. standard scores

Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,

### BIOSTATISTICS QUIZ ANSWERS

BIOSTATISTICS QUIZ ANSWERS 1. When you read scientific literature, do you know whether the statistical tests that were used were appropriate and why they were used? a. Always b. Mostly c. Rarely d. Never

### 17.0 Linear Regression

17.0 Linear Regression 1 Answer Questions Lines Correlation Regression 17.1 Lines The algebraic equation for a line is Y = β 0 + β 1 X 2 The use of coordinate axes to show functional relationships was

### When to Use Which Statistical Test

When to Use Which Statistical Test Rachel Lovell, Ph.D., Senior Research Associate Begun Center for Violence Prevention Research and Education Jack, Joseph, and Morton Mandel School of Applied Social Sciences

### Elementary Statistics. Scatter Plot, Regression Line, Linear Correlation Coefficient, and Coefficient of Determination

Scatter Plot, Regression Line, Linear Correlation Coefficient, and Coefficient of Determination What is a Scatter Plot? A Scatter Plot is a plot of ordered pairs (x, y) where the horizontal axis is used

### Analysing Questionnaires using Minitab (for SPSS queries contact -) Graham.Currell@uwe.ac.uk

Analysing Questionnaires using Minitab (for SPSS queries contact -) Graham.Currell@uwe.ac.uk Structure As a starting point it is useful to consider a basic questionnaire as containing three main sections:

### Module 9: Nonparametric Tests. The Applied Research Center

Module 9: Nonparametric Tests The Applied Research Center Module 9 Overview } Nonparametric Tests } Parametric vs. Nonparametric Tests } Restrictions of Nonparametric Tests } One-Sample Chi-Square Test

### EBM Cheat Sheet- Measurements Card

EBM Cheat Sheet- Measurements Card Basic terms: Prevalence = Number of existing cases of disease at a point in time / Total population. Notes: Numerator includes old and new cases Prevalence is cross-sectional

### 496 STATISTICAL ANALYSIS OF CAUSE AND EFFECT

496 STATISTICAL ANALYSIS OF CAUSE AND EFFECT * Use a non-parametric technique. There are statistical methods, called non-parametric methods, that don t make any assumptions about the underlying distribution

### Lesson Lesson Outline Outline

Lesson 15 Linear Regression Lesson 15 Outline Review correlation analysis Dependent and Independent variables Least Squares Regression line Calculating l the slope Calculating the Intercept Residuals and

There are three kinds of people in the world those who are good at math and those who are not. PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 Positive Views The record of a month

### AMS7: WEEK 8. CLASS 1. Correlation Monday May 18th, 2015

AMS7: WEEK 8. CLASS 1 Correlation Monday May 18th, 2015 Type of Data and objectives of the analysis Paired sample data (Bivariate data) Determine whether there is an association between two variables This

### Module 2 Project Maths Development Team Draft (Version 2)

5 Week Modular Course in Statistics & Probability Strand 1 Module 2 Analysing Data Numerically Measures of Central Tendency Mean Median Mode Measures of Spread Range Standard Deviation Inter-Quartile Range

### Statistical Significance and Bivariate Tests

Statistical Significance and Bivariate Tests BUS 735: Business Decision Making and Research 1 1.1 Goals Goals Specific goals: Re-familiarize ourselves with basic statistics ideas: sampling distributions,

### Research Design. Relationships in Nonexperimental Research. Nonexperimental Research Designs and Survey Research. Katie Rommel-Esham Education 504

Nonexperimental Research Designs and Survey Research Katie Rommel-Esham Education 504 Research Design Research design deals with the ways in which data are gathered from subjects Relationships in Nonexperimental

### Nonexperimental Research Designs and Survey Research. Katie Rommel-Esham Education 604

Nonexperimental Research Designs and Survey Research Katie Rommel-Esham Education 604 Research Design Research design deals with the ways in which data are gathered from subjects Relationships in Nonexperimental

### Yiming Peng, Department of Statistics. February 12, 2013

Regression Analysis Using JMP Yiming Peng, Department of Statistics February 12, 2013 2 Presentation and Data http://www.lisa.stat.vt.edu Short Courses Regression Analysis Using JMP Download Data to Desktop

### Elementary Statistics

Elementary Statistics Chapter 1 Dr. Ghamsary Page 1 Elementary Statistics M. Ghamsary, Ph.D. Chap 01 1 Elementary Statistics Chapter 1 Dr. Ghamsary Page 2 Statistics: Statistics is the science of collecting,

### Univariate Regression

Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is

### UNDERSTANDING MULTIPLE REGRESSION

UNDERSTANDING Multiple regression analysis (MRA) is any of several related statistical methods for evaluating the effects of more than one independent (or predictor) variable on a dependent (or outcome)

### . 58 58 60 62 64 66 68 70 72 74 76 78 Father s height (inches)

PEARSON S FATHER-SON DATA The following scatter diagram shows the heights of 1,0 fathers and their full-grown sons, in England, circa 1900 There is one dot for each father-son pair Heights of fathers and

### Describe what is meant by a placebo Contrast the double-blind procedure with the single-blind procedure Review the structure for organizing a memo

Readings: Ha and Ha Textbook - Chapters 1 8 Appendix D & E (online) Plous - Chapters 10, 11, 12 and 14 Chapter 10: The Representativeness Heuristic Chapter 11: The Availability Heuristic Chapter 12: Probability

### Introduction to Regression and Data Analysis

Statlab Workshop Introduction to Regression and Data Analysis with Dan Campbell and Sherlock Campbell October 28, 2008 I. The basics A. Types of variables Your variables may take several forms, and it

### Basic Concepts in Research and Data Analysis

Basic Concepts in Research and Data Analysis Introduction: A Common Language for Researchers...2 Steps to Follow When Conducting Research...3 The Research Question... 3 The Hypothesis... 4 Defining the

### 7. Tests of association and Linear Regression

7. Tests of association and Linear Regression In this chapter we consider 1. Tests of Association for 2 qualitative variables. 2. Measures of the strength of linear association between 2 quantitative variables.

### 12/31/2016. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2

PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 Understand linear regression with a single predictor Understand how we assess the fit of a regression model Total Sum of Squares

### Eight things you need to know about interpreting correlations:

Research Skills One, Correlation interpretation, Graham Hole v.1.0. Page 1 Eight things you need to know about interpreting correlations: A correlation coefficient is a single number that represents the

### Outline. Correlation & Regression, III. Review. Relationship between r and regression

Outline Correlation & Regression, III 9.07 4/6/004 Relationship between correlation and regression, along with notes on the correlation coefficient Effect size, and the meaning of r Other kinds of correlation

### Simple linear regression

Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between

### Calculating, Interpreting, and Reporting Estimates of Effect Size (Magnitude of an Effect or the Strength of a Relationship)

1 Calculating, Interpreting, and Reporting Estimates of Effect Size (Magnitude of an Effect or the Strength of a Relationship) I. Authors should report effect sizes in the manuscript and tables when reporting

### Linear Regression. Chapter 5. Prediction via Regression Line Number of new birds and Percent returning. Least Squares

Linear Regression Chapter 5 Regression Objective: To quantify the linear relationship between an explanatory variable (x) and response variable (y). We can then predict the average response for all subjects

### Measurement and Metrics Fundamentals. SE 350 Software Process & Product Quality

Measurement and Metrics Fundamentals Lecture Objectives Provide some basic concepts of metrics Quality attribute metrics and measurements Reliability, validity, error Correlation and causation Discuss

### GCSE Statistics Revision notes

GCSE Statistics Revision notes Collecting data Sample This is when data is collected from part of the population. There are different methods for sampling Random sampling, Stratified sampling, Systematic

### Correlation & Regression, II. Residual Plots. What we like to see: no pattern. Steps in regression analysis (so far)

Steps in regression analysis (so far) Correlation & Regression, II 9.07 4/6/2004 Plot a scatter plot Find the parameters of the best fit regression line, y =a+bx Plot the regression line on the scatter

### Study Resources For Algebra I. Unit 1C Analyzing Data Sets for Two Quantitative Variables

Study Resources For Algebra I Unit 1C Analyzing Data Sets for Two Quantitative Variables This unit explores linear functions as they apply to data analysis of scatter plots. Information compiled and written

### Regression-Based Tests for Moderation

Regression-Based Tests for Moderation Brian K. Miller, Ph.D. 1 Presentation Objectives 1. Differentiate between mediation & moderation 2. Differentiate between hierarchical and stepwise regression 3. Run

### The Dummy s Guide to Data Analysis Using SPSS

The Dummy s Guide to Data Analysis Using SPSS Mathematics 57 Scripps College Amy Gamble April, 2001 Amy Gamble 4/30/01 All Rights Rerserved TABLE OF CONTENTS PAGE Helpful Hints for All Tests...1 Tests

### Regression. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Class: Date: Regression Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Given the least squares regression line y8 = 5 2x: a. the relationship between

### Semester 1 Statistics Short courses

Semester 1 Statistics Short courses Course: STAA0001 Basic Statistics Blackboard Site: STAA0001 Dates: Sat. March 12 th and Sat. April 30 th (9 am 5 pm) Assumed Knowledge: None Course Description Statistical

### AP * Statistics Review. Linear Regression

AP * Statistics Review Linear Regression Teacher Packet Advanced Placement and AP are registered trademark of the College Entrance Examination Board. The College Board was not involved in the production

### CALCULATIONS & STATISTICS

CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents

### Correlational Research

Correlational Research Chapter Fifteen Correlational Research Chapter Fifteen Bring folder of readings The Nature of Correlational Research Correlational Research is also known as Associational Research.

### Shiken: JLT Testing & Evlution SIG Newsletter. 5 (3) October 2001 (pp. 13-17)

Statistics Corner: Questions and answers about language testing statistics: Point- biserial correlation coefficients James Dean Brown (University of Hawai'i at Manoa) QUESTION: Recently on the email forum

### Chapter 9. Section Correlation

Chapter 9 Section 9.1 - Correlation Objectives: Introduce linear correlation, independent and dependent variables, and the types of correlation Find a correlation coefficient Test a population correlation

### Introduction to Quantitative Methods

Introduction to Quantitative Methods October 15, 2009 Contents 1 Definition of Key Terms 2 2 Descriptive Statistics 3 2.1 Frequency Tables......................... 4 2.2 Measures of Central Tendencies.................

### Regression in SPSS. Workshop offered by the Mississippi Center for Supercomputing Research and the UM Office of Information Technology

Regression in SPSS Workshop offered by the Mississippi Center for Supercomputing Research and the UM Office of Information Technology John P. Bentley Department of Pharmacy Administration University of

### Association Between Variables

Contents 11 Association Between Variables 767 11.1 Introduction............................ 767 11.1.1 Measure of Association................. 768 11.1.2 Chapter Summary.................... 769 11.2 Chi

### Introduction to Regression. Dr. Tom Pierce Radford University

Introduction to Regression Dr. Tom Pierce Radford University In the chapter on correlational techniques we focused on the Pearson R as a tool for learning about the relationship between two variables.

### WHAT IS A JOURNAL CLUB?

WHAT IS A JOURNAL CLUB? With its September 2002 issue, the American Journal of Critical Care debuts a new feature, the AJCC Journal Club. Each issue of the journal will now feature an AJCC Journal Club

### Overview of Non-Parametric Statistics PRESENTER: ELAINE EISENBEISZ OWNER AND PRINCIPAL, OMEGA STATISTICS

Overview of Non-Parametric Statistics PRESENTER: ELAINE EISENBEISZ OWNER AND PRINCIPAL, OMEGA STATISTICS About Omega Statistics Private practice consultancy based in Southern California, Medical and Clinical

### Introduction Types of mediation Causal steps approach SPSS example Miscellaneous topics Proportion mediated Sobel test. Mediation analysis

Mediation analysis Seminar General Statistics Matthijs J Warrens GION Multiple regression analysis 1 dependent variable (INT) Several independent variables 1, 2, 3 (INT) (predictors) 1 2 3 Research question

### SPSS: Descriptive and Inferential Statistics. For Windows

For Windows August 2012 Table of Contents Section 1: Summarizing Data...3 1.1 Descriptive Statistics...3 Section 2: Inferential Statistics... 10 2.1 Chi-Square Test... 10 2.2 T tests... 11 2.3 Correlation...