Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means

Size: px
Start display at page:

Download "Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means"

Transcription

1 Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means.

2 Steps in Hypothesis Testing. State the null hypothesis H 0 and the alternative hypothesis H a.. Calculate the value of the test statistic on which the test will be based. 3. Find the p-value for the observed data. 4. State a conclusion. Recall the steps in hypothesis testing. First, we state the null and alternative hypothesis to address our research question. Next, calculate the test statistic. We then compare the test statistic to a density curve to find the p-value. Finally, we compare this p-value to the type I error probability to determine our conclusion.

3 Hypothesis Testing: Comparing Two Means Identify two independent populations. Draw a simple random sample of size n from population and a simple random sample of size n from population. Compute the mean for each sample. Formulate hypothesis test based on the difference of the means 3 Let s discuss the setting for hypothesis testing of two means. First, we take random samples from two independent populations. We wish to compare the average value mu from these two independent populations to see if they are similar or different. From each sample we compute an average value, xbar. We will then use these sample means to determine if the populations are centered in the same location or different locations. We look at a linear combination (xbar-xbar) to help us make this decision. If xbar-xbar is close to zero, the populations probably have the same center. If xbar-xbar is not close to zero the populations may have different centers. 3

4 Hypothesis Testing: Comparing Two Means Step : State your hypotheses H 0 : μ - μ = 0 H a : μ - μ 0 (two-sided) Or H a : μ - μ < 0 (one-sided) Or H a : μ - μ > 0 (one-sided) 4 First step is to represent our scientific question is the null and alternative hypothesis. The null: Ho: m-m = 0 represents the condition that the populations are centered in the same spot. As with one-sample and matched pairs hypothesis testing we can have a one-sided or two-sided alternative. The two sided alternative is that the means differ. That is m-m does not equal zero. We could also look at the alternative that m is greater than m. This would be if we subtract m from m we would obtain a negative number. Or We could look at the alternative that m is greater than m. This would be if we subtract m from m we would obtain a positive number. 4

5 Two sample Problem with σ and σ known. z = ( x x) σ σ + n n 5 If the population standard deviation for both populations is known then the statistic we use is the z statistic. You can see the standard error of the difference of xbar and xbar is in the denominator. You will recall that when we make a linear combination of two means that the variances are additive. This is why the standard error in the denominator has a plus sign instead of a minus sign. As before, knowing the variance of the population is not typical. So we usually substitute the value of the sample variance in where the population variance is in this equation. 5

6 Use this t when s larger /s smaller > Two sample Problem with σ and σ unknown (do not assume σ =σ ). df= smaller of n - or n - t = ( x x) s n + s n 6 When we do this substitution we switch to using the student s t statistic. Notice in the title it also says do not assume s=s. There are two ways to calculate the standard error of the difference of samples means. The first is what you see in the denominator here. This is when we cannot assume that the population standard deviations are the same from the two independent populations. We do not know the populations standard deviations so we look at our sample standard deviations. If the larger sample standard deviation divided by the smaller sample standard deviation is greater than two, we do not assume sigma=sigma. This is a rule of thumb. It says our sample standard deviations are different enough we cannot assume sigma=sigma. Our degrees of freedom for this t-test are the smaller of n- or n-. 6

7 Two sample Problem with σ and σ unknown and assumption σ = σ. Use this t when s larger /s smaller < ( x x) μo t = s + p n n withs p with n + n ( n ) s + ( n ) s = n + n degreesof freedom 7 So what happens when s larger over s smaller is less than two? Well, we can assume sigma=sigma. If we make this assumption we use the t test given in this slide. Notice we pool the variances to create a common variance. This is called sp. We then use sp in the denominator to calculate the standard error of the difference of sample means. So why worry about whether or not to assume sigma=sigma? Notice the degrees of freedom when we make the assumption are n+n-. This is more degrees of freedom than in the previous t test. When we have more degrees of freedom in the t-test we have more power to detect a difference should there be one. We want to make the assumption that the population variances are equal when we can. 7

8 SAS Example We have 0 students, 5 are randomly assigned to control and 5 are randomly assigned to treatment. Response times to a stimulus is measured for all 0 participants. Research question: Do the treatment scores come from a population whose mean is different from which the control scores were drawn? Control mean = 88.6 millisec Treatment mean = 0.6 millisec 8 Let s try an example. We will also introduce a bit of SAS to understand our example. Recall: SAS is a computer language that helps us analyze data. At this point you may have tried the SAS tutorial for the first assignment. If not, you may want to do this before moving on. Consider the example above. You have 0 students, 5 are randomly assigned to control and 5 are randomly assigned to treatment. The outcome of interest is response times to a stimulus. We are wondering of the treatment group and the control group come from populations whose mean values are different. The control sample mean was 88.6 milliseconds. The treatment sample mean was 0.6 milliseconds. 8

9 Data Response; Input Group $ Time; Datalines; C 80 C 93 C 83 C 89 C 98 T 00 T 03 T 04 T 99 T 0 ; Proc ttest data = response; Title "T-test example"; class group; var time; run; SAS: Proc ttest This is a SAS program that reads in data and performs a two sample t-test. The first line Data response; tells SAS that we want to create a temporary data set called response. The next line Input Group $ Time; tells SAS that we have two variables. One is called Group and it is categorical. This is indicated by the dollar sign following the word Group. The second variable is called time. There is no designation of type of variable after time. SAS will assume it is quantitative if there is not a designation. Next we have Datalines; this tells SAS: Here comes the actual data. Following datalines is the data C and T are control and treatment. The data is separated by a single space with a new line for each person s data. Notice the semicolon is a line below the final piece of data. The data step is now complete. We can then do a procedure on this data. 9

10 Data Response; Input Group $ Time; Datalines; C 80 C 93 C 83 C 89 C 98 T 00 T 03 T 04 T 99 T 0 ; Proc ttest data = response; Title "T-test example"; class group; var time; run; SAS: Proc ttest The procedure is Proc ttest SAS will analyze the data using a ttest. We tell SAS which data set by data=response; We can insert a title with the title command followed by the title in quotes. Next class group; tells SAS between which two groups we would like to perform the t-test. In our case it is the variable called Groups with control or treatment as group. var time; tells SAS that we want to analyze the outcome time; Finally, run; tells SAS go ahead and analyze using the procedure. Again, for more on SAS programming see the class SAS tutorials. 0

11 The TTEST Procedure Statistics Lower CL Upper CL Lower CL Upper Variable Group N Mean Mean Mean Std Dev Std Dev Std Dev Std Err Time C Time T Time Diff (-) Note: SAS Tests ->Ho: μ=μ vs. Ha: μ not equal μ If everything ran without error you will see output. This is the first piece of output you see. We have variable time divided by our two groups, Control and treatment. We also have a row indicating the difference of control treatment outcomes. Let s start with row. We see this is our control group with n=5. We have the sample mean of 88.6 with a 95% confidence interval from 79.5 to We have a sample standard deviation of 7.3. SAS also gives us the 95% confidence interval for the standard deviation. Finally, SAS gives us the standard error of 7.3 divided by the square root of 5 with value 3.7. We have the same information in row for our treatment group. The third row has the confidence interval for m-m from 0.8 to 5.. Notice this confidence interval does not contain zero. Later we will see why this is important to us. Finally, notice SAS is always testing the two sided hypothesis test: Ho: u=u vs. Ha: u not equal u.

12 T-Tests Variable Method Variances DF t Value Pr > t Time Pooled Equal Time Satterthwaite Unequal Note: SAS tests both with assumption σ =σ and σ not equal σ This is the output for the t-test statistic. Notice we have two results Pooled and Satterthwaite. These correspond to the two choices that we have for the t statistic. We need to decide which is appropriate for our analysis based on our data. If we go back to the previous slide we see the standard deviation for the control group over the standard deviation for the treatment group is greater than. This means we cannot assume the population standard deviations are the same. We need to choose the variances unequal option (Satterthwaite). Our degrees of freedom when we do this calculation by hand are the smalelr of n- or n-. SAS uses a formula to calculate more exact degrees of freedom, so our number will not match. The t-value is with a two sided p-value of At a = 0.05 we would reject the null and conclude response times are different.

13 Equality of Variances Variable Method Num DF Den DF F Value Pr > F Time Folded F Note: If Pr > F is < 0.05 do NOT assume σ =σ do not pool sample variances. 3 So why this final piece of output when we are able to draw our conclusion from the previous output? Well, SAS performs a test of equality for population variances instead of using our ratio as a rule of thumb. Generally, the results will agree. Here SAS has the Ho: sigma=sigma vs. Ha: sigma not equal sigma. The test statistic is an f with a p-value of At a = 0.05 we would reject the null and conclude the population variance cannot be assumed to be equal. This would lead us to use the Satterthwaite test above as we had decided before. Recall: we said that the confidence interval for the difference of means does not contain zero. This corresponds to the two sided hypothesis test of the difference of means. If the confidence interval does not contain zero we would reject the null hypothesis of equal means. Note however; SAS calculates this confidence interval is based on the assumption that sigma=sigma. Your results may not always match if you cannot make this assumption. 3

14 Hypothesis Testing Comparing Two Means: An Example The effect of environmental exposure to lead on intellectual development is investigated using two randomly selected samples of 7 year old children from similar backgrounds but with different lead exposures. 4 Here is an example not using SAS to do our analysis. Lead has detrimental effect on intellectual development, especially when young children are exposed. The effect of environmental exposure to lead on intellectual development is investigated using two randomly selected samples of 7 year old children from similar backgrounds but with different lead exposures. 4

15 Hypothesis Testing Comparing Two Means: An Example Serum lead levels in group > 30 ug/dl Serum lead levels in group < 30 ug/dl 5 The two groups of children have different lead levels. One group had lead levels above 30 micrograms per deci liter. The other group had lead levels below 30 micrograms per deci liter. Researchers are wondering if children with lead levels above 30 micrograms per deci liter will score differently on intelligence tests than the children with lead levels that are lower. 5

16 Hypothesis Testing Comparing Two Means: An Example Does a significant difference exist between the mean intelligence test score in these two groups? The data for intelligence test score is summarized below: n =6 n =4 x =94 x =0 s =7 s =8 6 A random sample was drawn from each populations and the children were given an establish intelligence test. The results are as follows. Of the 6 kids in the higher lead level group the average score was 94 with a standard deviation of 7 points. Of the 4 kids with the lower lead level the average score was 0 with a standard deviation of 8 points. Is there a difference between mean intelligence test scores for the different populations? The sample averages are different, but this could have happened by chance. We can do a hypothesis test of two means to see if the means are significantly different. 6

17 Hypothesis Testing Comparing Two Means: An Example Step : State your hypotheses (set α=.0) H 0 : μ - μ = 0 H a : μ - μ 0 (two-sided) Step : Calculate your test statistic t = ( x x ) ( μo) (94 0) 0 = = s n 6 4 s n The first step is to write our null and alternative hypothesis. Remember this is a two-sided hypothesis. We did not specify that either group would be lower. Next we need to decide with test statistic to use. We do not know sigma for either populations so we will use a t statistic, but which one? If we look at the ratio of the sample standard deviations, the larger over the smaller, we see that this value is greater than two. We do not assume the population standard deviations are the same and we do not pool the variance. The unpooled t value is

18 Hypothesis Testing Comparing Two Means: An Example Step 3: Calculate the p-value * p( t.789) = *.005 =.005 Degrees of freedom = 40 Step 4 : Make a conclusion p-value < α, then reject H o The data suggests a significant mean difference exists in intelligence scores for the two groups. 8 Step 3 is calculate our pvalue. We look at times the probability that a t with 40 degrees of freedom is less than Our conclusion is to reject Ho. This means the scores are significantly differenct at the alpha 0.05 level. Our sample means were not likely different by chance. It is likely the average score for the populations would have different locations. In other words, the data suggests a significant mean difference exists in intelligence scores for the two groups. 8

19 Hypothesis Testing: A Pooled T-test Example Independent random samples selected from two normal populations produced the sample means and standard deviations shown in the table: Sample size Mean Sample Standard deviation Sample Test the null hypothesis that the population means are equal vs. the alternative that they are not equal. Let α=0.05, this means we will reject the null hypothesis when it is true 5% of the time. 7 Sample 9 Here is an example where we would choose to use the pooled t test. Independent random samples selected from two normal populations produced the following results. There were 7 subjects in sample with a mean value of 5.4 and a sample standard deviation of 3.4. There were subjects in sample with a mean value of 7.9 and a standard deviation of 4.8. I want to test the null hypothesis that the population means are equal vs. the alternative that they are not equal. Let =0.05, this means we will reject the null hypothesis when it is true 5% of the time. Notice the ratio of the larger sample standard deviation divided by the smaller sample standard deviation is less than two. 9

20 Hypothesis Testing: A Pooled T-test Example. Ho: μ - μ =0 Ha: μ - μ 0. Calculate the test statistic: s p and ( n = ) s + ( n ) s n + n ( x x) μo t = = s + p n n ( ) 6.4 (7 )(3.4 ) + ( )(4.8 = =.645 ) = We choose to use the pooled t test. First, we need to figure out what the pooled estimate of the variance would be. We call this sp. It s value is 6.4. We use this value in the denominator for the t statistic. Our statistic yields a value of

21 Hypothesis Testing: A Pooled T-test Example. This test statistic follows the t-distribution with 7 degrees of freedom. 3. P-value=*P(T>.645) =0. (answer from calculator). 4. Therefore we fail to reject the null hypothesis based on an α-level of 0.05 and conclude that the two population means are not likely different. This test statistic follows the t-distribution with 7 degrees of freedom. This is n + n. The P-value=*P(T>.645) =0.. I obtained this answer from a calculator of a computer program. You cannot get an exact value using the table in your book. Our p-value leads us to fail to reject the null hypothesis based on an?-level of 0.05 and conclude that the two population means are not likely different. This assumes we had the power to detect a difference should there be one. This ends lesson c. Please go to self assessment c.

Part 3. Comparing Groups. Chapter 7 Comparing Paired Groups 189. Chapter 8 Comparing Two Independent Groups 217

Part 3. Comparing Groups. Chapter 7 Comparing Paired Groups 189. Chapter 8 Comparing Two Independent Groups 217 Part 3 Comparing Groups Chapter 7 Comparing Paired Groups 189 Chapter 8 Comparing Two Independent Groups 217 Chapter 9 Comparing More Than Two Groups 257 188 Elementary Statistics Using SAS Chapter 7 Comparing

More information

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

More information

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.

More information

THE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7.

THE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7. THERE ARE TWO WAYS TO DO HYPOTHESIS TESTING WITH STATCRUNCH: WITH SUMMARY DATA (AS IN EXAMPLE 7.17, PAGE 236, IN ROSNER); WITH THE ORIGINAL DATA (AS IN EXAMPLE 8.5, PAGE 301 IN ROSNER THAT USES DATA FROM

More information

NCSS Statistical Software

NCSS Statistical Software Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the

More information

Confidence Intervals for the Difference Between Two Means

Confidence Intervals for the Difference Between Two Means Chapter 47 Confidence Intervals for the Difference Between Two Means Introduction This procedure calculates the sample size necessary to achieve a specified distance from the difference in sample means

More information

Hypothesis testing - Steps

Hypothesis testing - Steps Hypothesis testing - Steps Steps to do a two-tailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =

More information

SIMPLE LINEAR CORRELATION. r can range from -1 to 1, and is independent of units of measurement. Correlation can be done on two dependent variables.

SIMPLE LINEAR CORRELATION. r can range from -1 to 1, and is independent of units of measurement. Correlation can be done on two dependent variables. SIMPLE LINEAR CORRELATION Simple linear correlation is a measure of the degree to which two variables vary together, or a measure of the intensity of the association between two variables. Correlation

More information

Two Related Samples t Test

Two Related Samples t Test Two Related Samples t Test In this example 1 students saw five pictures of attractive people and five pictures of unattractive people. For each picture, the students rated the friendliness of the person

More information

Two-Sample T-Tests Assuming Equal Variance (Enter Means)

Two-Sample T-Tests Assuming Equal Variance (Enter Means) Chapter 4 Two-Sample T-Tests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the variances of

More information

Lecture Notes Module 1

Lecture Notes Module 1 Lecture Notes Module 1 Study Populations A study population is a clearly defined collection of people, animals, plants, or objects. In psychological research, a study population usually consists of a specific

More information

Two-Sample T-Tests Allowing Unequal Variance (Enter Difference)

Two-Sample T-Tests Allowing Unequal Variance (Enter Difference) Chapter 45 Two-Sample T-Tests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when no assumption

More information

Introduction. Hypothesis Testing. Hypothesis Testing. Significance Testing

Introduction. Hypothesis Testing. Hypothesis Testing. Significance Testing Introduction Hypothesis Testing Mark Lunt Arthritis Research UK Centre for Ecellence in Epidemiology University of Manchester 13/10/2015 We saw last week that we can never know the population parameters

More information

1.5 Oneway Analysis of Variance

1.5 Oneway Analysis of Variance Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments

More information

Independent t- Test (Comparing Two Means)

Independent t- Test (Comparing Two Means) Independent t- Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent t-test when to use the independent t-test the use of SPSS to complete an independent

More information

t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon

t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon t-tests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com www.excelmasterseries.com

More information

Recall this chart that showed how most of our course would be organized:

Recall this chart that showed how most of our course would be organized: Chapter 4 One-Way ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical

More information

2 Sample t-test (unequal sample sizes and unequal variances)

2 Sample t-test (unequal sample sizes and unequal variances) Variations of the t-test: Sample tail Sample t-test (unequal sample sizes and unequal variances) Like the last example, below we have ceramic sherd thickness measurements (in cm) of two samples representing

More information

NCSS Statistical Software. One-Sample T-Test

NCSS Statistical Software. One-Sample T-Test Chapter 205 Introduction This procedure provides several reports for making inference about a population mean based on a single sample. These reports include confidence intervals of the mean or median,

More information

Section 13, Part 1 ANOVA. Analysis Of Variance

Section 13, Part 1 ANOVA. Analysis Of Variance Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability

More information

3.4 Statistical inference for 2 populations based on two samples

3.4 Statistical inference for 2 populations based on two samples 3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted

More information

Study Guide for the Final Exam

Study Guide for the Final Exam Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make

More information

Good luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name:

Good luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name: Glo bal Leadership M BA BUSINESS STATISTICS FINAL EXAM Name: INSTRUCTIONS 1. Do not open this exam until instructed to do so. 2. Be sure to fill in your name before starting the exam. 3. You have two hours

More information

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of

More information

Comparing Two Groups. Standard Error of ȳ 1 ȳ 2. Setting. Two Independent Samples

Comparing Two Groups. Standard Error of ȳ 1 ȳ 2. Setting. Two Independent Samples Comparing Two Groups Chapter 7 describes two ways to compare two populations on the basis of independent samples: a confidence interval for the difference in population means and a hypothesis test. The

More information

Unit 26 Estimation with Confidence Intervals

Unit 26 Estimation with Confidence Intervals Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference

More information

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as... HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

More information

CALCULATIONS & STATISTICS

CALCULATIONS & STATISTICS CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents

More information

Compare birds living near a toxic waste site with birds living in a pristine area.

Compare birds living near a toxic waste site with birds living in a pristine area. STT 430/630/ES 760 Lecture Notes: Chapter 7: Two-Sample Inference 1 February 27, 2009 Chapter 7: Two Sample Inference Chapter 6 introduced hypothesis testing in the one-sample setting: one sample is obtained

More information

UNDERSTANDING THE DEPENDENT-SAMPLES t TEST

UNDERSTANDING THE DEPENDENT-SAMPLES t TEST UNDERSTANDING THE DEPENDENT-SAMPLES t TEST A dependent-samples t test (a.k.a. matched or paired-samples, matched-pairs, samples, or subjects, simple repeated-measures or within-groups, or correlated groups)

More information

Chapter 7. Comparing Means in SPSS (t-tests) Compare Means analyses. Specifically, we demonstrate procedures for running Dependent-Sample (or

Chapter 7. Comparing Means in SPSS (t-tests) Compare Means analyses. Specifically, we demonstrate procedures for running Dependent-Sample (or 1 Chapter 7 Comparing Means in SPSS (t-tests) This section covers procedures for testing the differences between two means using the SPSS Compare Means analyses. Specifically, we demonstrate procedures

More information

Paired T-Test. Chapter 208. Introduction. Technical Details. Research Questions

Paired T-Test. Chapter 208. Introduction. Technical Details. Research Questions Chapter 208 Introduction This procedure provides several reports for making inference about the difference between two population means based on a paired sample. These reports include confidence intervals

More information

Two-sample hypothesis testing, II 9.07 3/16/2004

Two-sample hypothesis testing, II 9.07 3/16/2004 Two-sample hypothesis testing, II 9.07 3/16/004 Small sample tests for the difference between two independent means For two-sample tests of the difference in mean, things get a little confusing, here,

More information

Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1)

Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1) Spring 204 Class 9: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the

More information

HYPOTHESIS TESTING: POWER OF THE TEST

HYPOTHESIS TESTING: POWER OF THE TEST HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9-step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,

More information

Chapter 7 Notes - Inference for Single Samples. You know already for a large sample, you can invoke the CLT so:

Chapter 7 Notes - Inference for Single Samples. You know already for a large sample, you can invoke the CLT so: Chapter 7 Notes - Inference for Single Samples You know already for a large sample, you can invoke the CLT so: X N(µ, ). Also for a large sample, you can replace an unknown σ by s. You know how to do a

More information

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as... HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

More information

Chi-square test Fisher s Exact test

Chi-square test Fisher s Exact test Lesson 1 Chi-square test Fisher s Exact test McNemar s Test Lesson 1 Overview Lesson 11 covered two inference methods for categorical data from groups Confidence Intervals for the difference of two proportions

More information

" Y. Notation and Equations for Regression Lecture 11/4. Notation:

 Y. Notation and Equations for Regression Lecture 11/4. Notation: Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through

More information

Basic Statistical and Modeling Procedures Using SAS

Basic Statistical and Modeling Procedures Using SAS Basic Statistical and Modeling Procedures Using SAS One-Sample Tests The statistical procedures illustrated in this handout use two datasets. The first, Pulse, has information collected in a classroom

More information

Chapter 7 Section 7.1: Inference for the Mean of a Population

Chapter 7 Section 7.1: Inference for the Mean of a Population Chapter 7 Section 7.1: Inference for the Mean of a Population Now let s look at a similar situation Take an SRS of size n Normal Population : N(, ). Both and are unknown parameters. Unlike what we used

More information

Stat 411/511 THE RANDOMIZATION TEST. Charlotte Wickham. stat511.cwick.co.nz. Oct 16 2015

Stat 411/511 THE RANDOMIZATION TEST. Charlotte Wickham. stat511.cwick.co.nz. Oct 16 2015 Stat 411/511 THE RANDOMIZATION TEST Oct 16 2015 Charlotte Wickham stat511.cwick.co.nz Today Review randomization model Conduct randomization test What about CIs? Using a t-distribution as an approximation

More information

Tests for Two Proportions

Tests for Two Proportions Chapter 200 Tests for Two Proportions Introduction This module computes power and sample size for hypothesis tests of the difference, ratio, or odds ratio of two independent proportions. The test statistics

More information

Part 2: Analysis of Relationship Between Two Variables

Part 2: Analysis of Relationship Between Two Variables Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable

More information

Chapter 9. Two-Sample Tests. Effect Sizes and Power Paired t Test Calculation

Chapter 9. Two-Sample Tests. Effect Sizes and Power Paired t Test Calculation Chapter 9 Two-Sample Tests Paired t Test (Correlated Groups t Test) Effect Sizes and Power Paired t Test Calculation Summary Independent t Test Chapter 9 Homework Power and Two-Sample Tests: Paired Versus

More information

General Method: Difference of Means. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n 1, n 2 ) 1.

General Method: Difference of Means. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n 1, n 2 ) 1. General Method: Difference of Means 1. Calculate x 1, x 2, SE 1, SE 2. 2. Combined SE = SE1 2 + SE2 2. ASSUMES INDEPENDENT SAMPLES. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n

More information

NCSS Statistical Software

NCSS Statistical Software Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the

More information

One-Way Analysis of Variance

One-Way Analysis of Variance One-Way Analysis of Variance Note: Much of the math here is tedious but straightforward. We ll skim over it in class but you should be sure to ask questions if you don t understand it. I. Overview A. We

More information

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96 1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

More information

Calculating P-Values. Parkland College. Isela Guerra Parkland College. Recommended Citation

Calculating P-Values. Parkland College. Isela Guerra Parkland College. Recommended Citation Parkland College A with Honors Projects Honors Program 2014 Calculating P-Values Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating P-Values" (2014). A with Honors Projects.

More information

Chapter 2 Probability Topics SPSS T tests

Chapter 2 Probability Topics SPSS T tests Chapter 2 Probability Topics SPSS T tests Data file used: gss.sav In the lecture about chapter 2, only the One-Sample T test has been explained. In this handout, we also give the SPSS methods to perform

More information

HYPOTHESIS TESTING WITH SPSS:

HYPOTHESIS TESTING WITH SPSS: HYPOTHESIS TESTING WITH SPSS: A NON-STATISTICIAN S GUIDE & TUTORIAL by Dr. Jim Mirabella SPSS 14.0 screenshots reprinted with permission from SPSS Inc. Published June 2006 Copyright Dr. Jim Mirabella CHAPTER

More information

Using Stata for One Sample Tests

Using Stata for One Sample Tests Using Stata for One Sample Tests All of the one sample problems we have discussed so far can be solved in Stata via either (a) statistical calculator functions, where you provide Stata with the necessary

More information

Introduction to Hypothesis Testing

Introduction to Hypothesis Testing I. Terms, Concepts. Introduction to Hypothesis Testing A. In general, we do not know the true value of population parameters - they must be estimated. However, we do have hypotheses about what the true

More information

C. The null hypothesis is not rejected when the alternative hypothesis is true. A. population parameters.

C. The null hypothesis is not rejected when the alternative hypothesis is true. A. population parameters. Sample Multiple Choice Questions for the material since Midterm 2. Sample questions from Midterms and 2 are also representative of questions that may appear on the final exam.. A randomly selected sample

More information

DDBA 8438: The t Test for Independent Samples Video Podcast Transcript

DDBA 8438: The t Test for Independent Samples Video Podcast Transcript DDBA 8438: The t Test for Independent Samples Video Podcast Transcript JENNIFER ANN MORROW: Welcome to The t Test for Independent Samples. My name is Dr. Jennifer Ann Morrow. In today's demonstration,

More information

Comparing Means in Two Populations

Comparing Means in Two Populations Comparing Means in Two Populations Overview The previous section discussed hypothesis testing when sampling from a single population (either a single mean or two means from the same population). Now we

More information

Two-sample t-tests. - Independent samples - Pooled standard devation - The equal variance assumption

Two-sample t-tests. - Independent samples - Pooled standard devation - The equal variance assumption Two-sample t-tests. - Independent samples - Pooled standard devation - The equal variance assumption Last time, we used the mean of one sample to test against the hypothesis that the true mean was a particular

More information

An Introduction to Statistical Tests for the SAS Programmer Sara Beck, Fred Hutchinson Cancer Research Center, Seattle, WA

An Introduction to Statistical Tests for the SAS Programmer Sara Beck, Fred Hutchinson Cancer Research Center, Seattle, WA ABSTRACT An Introduction to Statistical Tests for the SAS Programmer Sara Beck, Fred Hutchinson Cancer Research Center, Seattle, WA Often SAS Programmers find themselves in situations where performing

More information

Testing a claim about a population mean

Testing a claim about a population mean Introductory Statistics Lectures Testing a claim about a population mean One sample hypothesis test of the mean Department of Mathematics Pima Community College Redistribution of this material is prohibited

More information

Point Biserial Correlation Tests

Point Biserial Correlation Tests Chapter 807 Point Biserial Correlation Tests Introduction The point biserial correlation coefficient (ρ in this chapter) is the product-moment correlation calculated between a continuous random variable

More information

Odds ratio, Odds ratio test for independence, chi-squared statistic.

Odds ratio, Odds ratio test for independence, chi-squared statistic. Odds ratio, Odds ratio test for independence, chi-squared statistic. Announcements: Assignment 5 is live on webpage. Due Wed Aug 1 at 4:30pm. (9 days, 1 hour, 58.5 minutes ) Final exam is Aug 9. Review

More information

Introduction to Analysis of Variance (ANOVA) Limitations of the t-test

Introduction to Analysis of Variance (ANOVA) Limitations of the t-test Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One- Way ANOVA Limitations of the t-test Although the t-test is commonly used, it has limitations Can only

More information

Two-sample inference: Continuous data

Two-sample inference: Continuous data Two-sample inference: Continuous data Patrick Breheny April 5 Patrick Breheny STA 580: Biostatistics I 1/32 Introduction Our next two lectures will deal with two-sample inference for continuous data As

More information

KSTAT MINI-MANUAL. Decision Sciences 434 Kellogg Graduate School of Management

KSTAT MINI-MANUAL. Decision Sciences 434 Kellogg Graduate School of Management KSTAT MINI-MANUAL Decision Sciences 434 Kellogg Graduate School of Management Kstat is a set of macros added to Excel and it will enable you to do the statistics required for this course very easily. To

More information

Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY

Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY 1. Introduction Besides arriving at an appropriate expression of an average or consensus value for observations of a population, it is important to

More information

One-Way ANOVA using SPSS 11.0. SPSS ANOVA procedures found in the Compare Means analyses. Specifically, we demonstrate

One-Way ANOVA using SPSS 11.0. SPSS ANOVA procedures found in the Compare Means analyses. Specifically, we demonstrate 1 One-Way ANOVA using SPSS 11.0 This section covers steps for testing the difference between three or more group means using the SPSS ANOVA procedures found in the Compare Means analyses. Specifically,

More information

Non-Inferiority Tests for Two Means using Differences

Non-Inferiority Tests for Two Means using Differences Chapter 450 on-inferiority Tests for Two Means using Differences Introduction This procedure computes power and sample size for non-inferiority tests in two-sample designs in which the outcome is a continuous

More information

Descriptive Statistics

Descriptive Statistics Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

More information

Section 12 Part 2. Chi-square test

Section 12 Part 2. Chi-square test Section 12 Part 2 Chi-square test McNemar s Test Section 12 Part 2 Overview Section 12, Part 1 covered two inference methods for categorical data from 2 groups Confidence Intervals for the difference of

More information

Testing Research and Statistical Hypotheses

Testing Research and Statistical Hypotheses Testing Research and Statistical Hypotheses Introduction In the last lab we analyzed metric artifact attributes such as thickness or width/thickness ratio. Those were continuous variables, which as you

More information

Hypothesis Testing: Two Means, Paired Data, Two Proportions

Hypothesis Testing: Two Means, Paired Data, Two Proportions Chapter 10 Hypothesis Testing: Two Means, Paired Data, Two Proportions 10.1 Hypothesis Testing: Two Population Means and Two Population Proportions 1 10.1.1 Student Learning Objectives By the end of this

More information

Outline. Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test

Outline. Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test The t-test Outline Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test - Dependent (related) groups t-test - Independent (unrelated) groups t-test Comparing means Correlation

More information

BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420

BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 1. Which of the following will increase the value of the power in a statistical test

More information

Simple Regression Theory II 2010 Samuel L. Baker

Simple Regression Theory II 2010 Samuel L. Baker SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the

More information

BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394

BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394 BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394 1. Does vigorous exercise affect concentration? In general, the time needed for people to complete

More information

research/scientific includes the following: statistical hypotheses: you have a null and alternative you accept one and reject the other

research/scientific includes the following: statistical hypotheses: you have a null and alternative you accept one and reject the other 1 Hypothesis Testing Richard S. Balkin, Ph.D., LPC-S, NCC 2 Overview When we have questions about the effect of a treatment or intervention or wish to compare groups, we use hypothesis testing Parametric

More information

Analysis of Variance ANOVA

Analysis of Variance ANOVA Analysis of Variance ANOVA Overview We ve used the t -test to compare the means from two independent groups. Now we ve come to the final topic of the course: how to compare means from more than two populations.

More information

SCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES

SCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES SCHOOL OF HEALTH AND HUMAN SCIENCES Using SPSS Topics addressed today: 1. Differences between groups 2. Graphing Use the s4data.sav file for the first part of this session. DON T FORGET TO RECODE YOUR

More information

Principles of Hypothesis Testing for Public Health

Principles of Hypothesis Testing for Public Health Principles of Hypothesis Testing for Public Health Laura Lee Johnson, Ph.D. Statistician National Center for Complementary and Alternative Medicine johnslau@mail.nih.gov Fall 2011 Answers to Questions

More information

individualdifferences

individualdifferences 1 Simple ANalysis Of Variance (ANOVA) Oftentimes we have more than two groups that we want to compare. The purpose of ANOVA is to allow us to compare group means from several independent samples. In general,

More information

CHAPTER 14 NONPARAMETRIC TESTS

CHAPTER 14 NONPARAMETRIC TESTS CHAPTER 14 NONPARAMETRIC TESTS Everything that we have done up until now in statistics has relied heavily on one major fact: that our data is normally distributed. We have been able to make inferences

More information

STAT 350 Practice Final Exam Solution (Spring 2015)

STAT 350 Practice Final Exam Solution (Spring 2015) PART 1: Multiple Choice Questions: 1) A study was conducted to compare five different training programs for improving endurance. Forty subjects were randomly divided into five groups of eight subjects

More information

Projects Involving Statistics (& SPSS)

Projects Involving Statistics (& SPSS) Projects Involving Statistics (& SPSS) Academic Skills Advice Starting a project which involves using statistics can feel confusing as there seems to be many different things you can do (charts, graphs,

More information

Inference for two Population Means

Inference for two Population Means Inference for two Population Means Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison October 27 November 1, 2011 Two Population Means 1 / 65 Case Study Case Study Example

More information

Introduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses

Introduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses Introduction to Hypothesis Testing 1 Hypothesis Testing A hypothesis test is a statistical procedure that uses sample data to evaluate a hypothesis about a population Hypothesis is stated in terms of the

More information

Testing for differences I exercises with SPSS

Testing for differences I exercises with SPSS Testing for differences I exercises with SPSS Introduction The exercises presented here are all about the t-test and its non-parametric equivalents in their various forms. In SPSS, all these tests can

More information

Pearson's Correlation Tests

Pearson's Correlation Tests Chapter 800 Pearson's Correlation Tests Introduction The correlation coefficient, ρ (rho), is a popular statistic for describing the strength of the relationship between two variables. The correlation

More information

Chapter 14: Repeated Measures Analysis of Variance (ANOVA)

Chapter 14: Repeated Measures Analysis of Variance (ANOVA) Chapter 14: Repeated Measures Analysis of Variance (ANOVA) First of all, you need to recognize the difference between a repeated measures (or dependent groups) design and the between groups (or independent

More information

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HOD 2990 10 November 2010 Lecture Background This is a lightning speed summary of introductory statistical methods for senior undergraduate

More information

Outline. Topic 4 - Analysis of Variance Approach to Regression. Partitioning Sums of Squares. Total Sum of Squares. Partitioning sums of squares

Outline. Topic 4 - Analysis of Variance Approach to Regression. Partitioning Sums of Squares. Total Sum of Squares. Partitioning sums of squares Topic 4 - Analysis of Variance Approach to Regression Outline Partitioning sums of squares Degrees of freedom Expected mean squares General linear test - Fall 2013 R 2 and the coefficient of correlation

More information

Chapter 3 RANDOM VARIATE GENERATION

Chapter 3 RANDOM VARIATE GENERATION Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.

More information

Chapter 7. One-way ANOVA

Chapter 7. One-way ANOVA Chapter 7 One-way ANOVA One-way ANOVA examines equality of population means for a quantitative outcome and a single categorical explanatory variable with any number of levels. The t-test of Chapter 6 looks

More information

Understand the role that hypothesis testing plays in an improvement project. Know how to perform a two sample hypothesis test.

Understand the role that hypothesis testing plays in an improvement project. Know how to perform a two sample hypothesis test. HYPOTHESIS TESTING Learning Objectives Understand the role that hypothesis testing plays in an improvement project. Know how to perform a two sample hypothesis test. Know how to perform a hypothesis test

More information

WHERE DOES THE 10% CONDITION COME FROM?

WHERE DOES THE 10% CONDITION COME FROM? 1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay

More information

Introduction to Quantitative Methods

Introduction to Quantitative Methods Introduction to Quantitative Methods October 15, 2009 Contents 1 Definition of Key Terms 2 2 Descriptive Statistics 3 2.1 Frequency Tables......................... 4 2.2 Measures of Central Tendencies.................

More information

This chapter discusses some of the basic concepts in inferential statistics.

This chapter discusses some of the basic concepts in inferential statistics. Research Skills for Psychology Majors: Everything You Need to Know to Get Started Inferential Statistics: Basic Concepts This chapter discusses some of the basic concepts in inferential statistics. Details

More information

Chapter 2. Hypothesis testing in one population

Chapter 2. Hypothesis testing in one population Chapter 2. Hypothesis testing in one population Contents Introduction, the null and alternative hypotheses Hypothesis testing process Type I and Type II errors, power Test statistic, level of significance

More information

Guide to Microsoft Excel for calculations, statistics, and plotting data

Guide to Microsoft Excel for calculations, statistics, and plotting data Page 1/47 Guide to Microsoft Excel for calculations, statistics, and plotting data Topic Page A. Writing equations and text 2 1. Writing equations with mathematical operations 2 2. Writing equations with

More information