Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means"

Transcription

1 Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means.

2 Steps in Hypothesis Testing. State the null hypothesis H 0 and the alternative hypothesis H a.. Calculate the value of the test statistic on which the test will be based. 3. Find the p-value for the observed data. 4. State a conclusion. Recall the steps in hypothesis testing. First, we state the null and alternative hypothesis to address our research question. Next, calculate the test statistic. We then compare the test statistic to a density curve to find the p-value. Finally, we compare this p-value to the type I error probability to determine our conclusion.

3 Hypothesis Testing: Comparing Two Means Identify two independent populations. Draw a simple random sample of size n from population and a simple random sample of size n from population. Compute the mean for each sample. Formulate hypothesis test based on the difference of the means 3 Let s discuss the setting for hypothesis testing of two means. First, we take random samples from two independent populations. We wish to compare the average value mu from these two independent populations to see if they are similar or different. From each sample we compute an average value, xbar. We will then use these sample means to determine if the populations are centered in the same location or different locations. We look at a linear combination (xbar-xbar) to help us make this decision. If xbar-xbar is close to zero, the populations probably have the same center. If xbar-xbar is not close to zero the populations may have different centers. 3

4 Hypothesis Testing: Comparing Two Means Step : State your hypotheses H 0 : μ - μ = 0 H a : μ - μ 0 (two-sided) Or H a : μ - μ < 0 (one-sided) Or H a : μ - μ > 0 (one-sided) 4 First step is to represent our scientific question is the null and alternative hypothesis. The null: Ho: m-m = 0 represents the condition that the populations are centered in the same spot. As with one-sample and matched pairs hypothesis testing we can have a one-sided or two-sided alternative. The two sided alternative is that the means differ. That is m-m does not equal zero. We could also look at the alternative that m is greater than m. This would be if we subtract m from m we would obtain a negative number. Or We could look at the alternative that m is greater than m. This would be if we subtract m from m we would obtain a positive number. 4

5 Two sample Problem with σ and σ known. z = ( x x) σ σ + n n 5 If the population standard deviation for both populations is known then the statistic we use is the z statistic. You can see the standard error of the difference of xbar and xbar is in the denominator. You will recall that when we make a linear combination of two means that the variances are additive. This is why the standard error in the denominator has a plus sign instead of a minus sign. As before, knowing the variance of the population is not typical. So we usually substitute the value of the sample variance in where the population variance is in this equation. 5

6 Use this t when s larger /s smaller > Two sample Problem with σ and σ unknown (do not assume σ =σ ). df= smaller of n - or n - t = ( x x) s n + s n 6 When we do this substitution we switch to using the student s t statistic. Notice in the title it also says do not assume s=s. There are two ways to calculate the standard error of the difference of samples means. The first is what you see in the denominator here. This is when we cannot assume that the population standard deviations are the same from the two independent populations. We do not know the populations standard deviations so we look at our sample standard deviations. If the larger sample standard deviation divided by the smaller sample standard deviation is greater than two, we do not assume sigma=sigma. This is a rule of thumb. It says our sample standard deviations are different enough we cannot assume sigma=sigma. Our degrees of freedom for this t-test are the smaller of n- or n-. 6

7 Two sample Problem with σ and σ unknown and assumption σ = σ. Use this t when s larger /s smaller < ( x x) μo t = s + p n n withs p with n + n ( n ) s + ( n ) s = n + n degreesof freedom 7 So what happens when s larger over s smaller is less than two? Well, we can assume sigma=sigma. If we make this assumption we use the t test given in this slide. Notice we pool the variances to create a common variance. This is called sp. We then use sp in the denominator to calculate the standard error of the difference of sample means. So why worry about whether or not to assume sigma=sigma? Notice the degrees of freedom when we make the assumption are n+n-. This is more degrees of freedom than in the previous t test. When we have more degrees of freedom in the t-test we have more power to detect a difference should there be one. We want to make the assumption that the population variances are equal when we can. 7

8 SAS Example We have 0 students, 5 are randomly assigned to control and 5 are randomly assigned to treatment. Response times to a stimulus is measured for all 0 participants. Research question: Do the treatment scores come from a population whose mean is different from which the control scores were drawn? Control mean = 88.6 millisec Treatment mean = 0.6 millisec 8 Let s try an example. We will also introduce a bit of SAS to understand our example. Recall: SAS is a computer language that helps us analyze data. At this point you may have tried the SAS tutorial for the first assignment. If not, you may want to do this before moving on. Consider the example above. You have 0 students, 5 are randomly assigned to control and 5 are randomly assigned to treatment. The outcome of interest is response times to a stimulus. We are wondering of the treatment group and the control group come from populations whose mean values are different. The control sample mean was 88.6 milliseconds. The treatment sample mean was 0.6 milliseconds. 8

9 Data Response; Input Group $ Time; Datalines; C 80 C 93 C 83 C 89 C 98 T 00 T 03 T 04 T 99 T 0 ; Proc ttest data = response; Title "T-test example"; class group; var time; run; SAS: Proc ttest This is a SAS program that reads in data and performs a two sample t-test. The first line Data response; tells SAS that we want to create a temporary data set called response. The next line Input Group $ Time; tells SAS that we have two variables. One is called Group and it is categorical. This is indicated by the dollar sign following the word Group. The second variable is called time. There is no designation of type of variable after time. SAS will assume it is quantitative if there is not a designation. Next we have Datalines; this tells SAS: Here comes the actual data. Following datalines is the data C and T are control and treatment. The data is separated by a single space with a new line for each person s data. Notice the semicolon is a line below the final piece of data. The data step is now complete. We can then do a procedure on this data. 9

10 Data Response; Input Group $ Time; Datalines; C 80 C 93 C 83 C 89 C 98 T 00 T 03 T 04 T 99 T 0 ; Proc ttest data = response; Title "T-test example"; class group; var time; run; SAS: Proc ttest The procedure is Proc ttest SAS will analyze the data using a ttest. We tell SAS which data set by data=response; We can insert a title with the title command followed by the title in quotes. Next class group; tells SAS between which two groups we would like to perform the t-test. In our case it is the variable called Groups with control or treatment as group. var time; tells SAS that we want to analyze the outcome time; Finally, run; tells SAS go ahead and analyze using the procedure. Again, for more on SAS programming see the class SAS tutorials. 0

11 The TTEST Procedure Statistics Lower CL Upper CL Lower CL Upper Variable Group N Mean Mean Mean Std Dev Std Dev Std Dev Std Err Time C Time T Time Diff (-) Note: SAS Tests ->Ho: μ=μ vs. Ha: μ not equal μ If everything ran without error you will see output. This is the first piece of output you see. We have variable time divided by our two groups, Control and treatment. We also have a row indicating the difference of control treatment outcomes. Let s start with row. We see this is our control group with n=5. We have the sample mean of 88.6 with a 95% confidence interval from 79.5 to We have a sample standard deviation of 7.3. SAS also gives us the 95% confidence interval for the standard deviation. Finally, SAS gives us the standard error of 7.3 divided by the square root of 5 with value 3.7. We have the same information in row for our treatment group. The third row has the confidence interval for m-m from 0.8 to 5.. Notice this confidence interval does not contain zero. Later we will see why this is important to us. Finally, notice SAS is always testing the two sided hypothesis test: Ho: u=u vs. Ha: u not equal u.

12 T-Tests Variable Method Variances DF t Value Pr > t Time Pooled Equal Time Satterthwaite Unequal Note: SAS tests both with assumption σ =σ and σ not equal σ This is the output for the t-test statistic. Notice we have two results Pooled and Satterthwaite. These correspond to the two choices that we have for the t statistic. We need to decide which is appropriate for our analysis based on our data. If we go back to the previous slide we see the standard deviation for the control group over the standard deviation for the treatment group is greater than. This means we cannot assume the population standard deviations are the same. We need to choose the variances unequal option (Satterthwaite). Our degrees of freedom when we do this calculation by hand are the smalelr of n- or n-. SAS uses a formula to calculate more exact degrees of freedom, so our number will not match. The t-value is with a two sided p-value of At a = 0.05 we would reject the null and conclude response times are different.

13 Equality of Variances Variable Method Num DF Den DF F Value Pr > F Time Folded F Note: If Pr > F is < 0.05 do NOT assume σ =σ do not pool sample variances. 3 So why this final piece of output when we are able to draw our conclusion from the previous output? Well, SAS performs a test of equality for population variances instead of using our ratio as a rule of thumb. Generally, the results will agree. Here SAS has the Ho: sigma=sigma vs. Ha: sigma not equal sigma. The test statistic is an f with a p-value of At a = 0.05 we would reject the null and conclude the population variance cannot be assumed to be equal. This would lead us to use the Satterthwaite test above as we had decided before. Recall: we said that the confidence interval for the difference of means does not contain zero. This corresponds to the two sided hypothesis test of the difference of means. If the confidence interval does not contain zero we would reject the null hypothesis of equal means. Note however; SAS calculates this confidence interval is based on the assumption that sigma=sigma. Your results may not always match if you cannot make this assumption. 3

14 Hypothesis Testing Comparing Two Means: An Example The effect of environmental exposure to lead on intellectual development is investigated using two randomly selected samples of 7 year old children from similar backgrounds but with different lead exposures. 4 Here is an example not using SAS to do our analysis. Lead has detrimental effect on intellectual development, especially when young children are exposed. The effect of environmental exposure to lead on intellectual development is investigated using two randomly selected samples of 7 year old children from similar backgrounds but with different lead exposures. 4

15 Hypothesis Testing Comparing Two Means: An Example Serum lead levels in group > 30 ug/dl Serum lead levels in group < 30 ug/dl 5 The two groups of children have different lead levels. One group had lead levels above 30 micrograms per deci liter. The other group had lead levels below 30 micrograms per deci liter. Researchers are wondering if children with lead levels above 30 micrograms per deci liter will score differently on intelligence tests than the children with lead levels that are lower. 5

16 Hypothesis Testing Comparing Two Means: An Example Does a significant difference exist between the mean intelligence test score in these two groups? The data for intelligence test score is summarized below: n =6 n =4 x =94 x =0 s =7 s =8 6 A random sample was drawn from each populations and the children were given an establish intelligence test. The results are as follows. Of the 6 kids in the higher lead level group the average score was 94 with a standard deviation of 7 points. Of the 4 kids with the lower lead level the average score was 0 with a standard deviation of 8 points. Is there a difference between mean intelligence test scores for the different populations? The sample averages are different, but this could have happened by chance. We can do a hypothesis test of two means to see if the means are significantly different. 6

17 Hypothesis Testing Comparing Two Means: An Example Step : State your hypotheses (set α=.0) H 0 : μ - μ = 0 H a : μ - μ 0 (two-sided) Step : Calculate your test statistic t = ( x x ) ( μo) (94 0) 0 = = s n 6 4 s n The first step is to write our null and alternative hypothesis. Remember this is a two-sided hypothesis. We did not specify that either group would be lower. Next we need to decide with test statistic to use. We do not know sigma for either populations so we will use a t statistic, but which one? If we look at the ratio of the sample standard deviations, the larger over the smaller, we see that this value is greater than two. We do not assume the population standard deviations are the same and we do not pool the variance. The unpooled t value is

18 Hypothesis Testing Comparing Two Means: An Example Step 3: Calculate the p-value * p( t.789) = *.005 =.005 Degrees of freedom = 40 Step 4 : Make a conclusion p-value < α, then reject H o The data suggests a significant mean difference exists in intelligence scores for the two groups. 8 Step 3 is calculate our pvalue. We look at times the probability that a t with 40 degrees of freedom is less than Our conclusion is to reject Ho. This means the scores are significantly differenct at the alpha 0.05 level. Our sample means were not likely different by chance. It is likely the average score for the populations would have different locations. In other words, the data suggests a significant mean difference exists in intelligence scores for the two groups. 8

19 Hypothesis Testing: A Pooled T-test Example Independent random samples selected from two normal populations produced the sample means and standard deviations shown in the table: Sample size Mean Sample Standard deviation Sample Test the null hypothesis that the population means are equal vs. the alternative that they are not equal. Let α=0.05, this means we will reject the null hypothesis when it is true 5% of the time. 7 Sample 9 Here is an example where we would choose to use the pooled t test. Independent random samples selected from two normal populations produced the following results. There were 7 subjects in sample with a mean value of 5.4 and a sample standard deviation of 3.4. There were subjects in sample with a mean value of 7.9 and a standard deviation of 4.8. I want to test the null hypothesis that the population means are equal vs. the alternative that they are not equal. Let =0.05, this means we will reject the null hypothesis when it is true 5% of the time. Notice the ratio of the larger sample standard deviation divided by the smaller sample standard deviation is less than two. 9

20 Hypothesis Testing: A Pooled T-test Example. Ho: μ - μ =0 Ha: μ - μ 0. Calculate the test statistic: s p and ( n = ) s + ( n ) s n + n ( x x) μo t = = s + p n n ( ) 6.4 (7 )(3.4 ) + ( )(4.8 = =.645 ) = We choose to use the pooled t test. First, we need to figure out what the pooled estimate of the variance would be. We call this sp. It s value is 6.4. We use this value in the denominator for the t statistic. Our statistic yields a value of

21 Hypothesis Testing: A Pooled T-test Example. This test statistic follows the t-distribution with 7 degrees of freedom. 3. P-value=*P(T>.645) =0. (answer from calculator). 4. Therefore we fail to reject the null hypothesis based on an α-level of 0.05 and conclude that the two population means are not likely different. This test statistic follows the t-distribution with 7 degrees of freedom. This is n + n. The P-value=*P(T>.645) =0.. I obtained this answer from a calculator of a computer program. You cannot get an exact value using the table in your book. Our p-value leads us to fail to reject the null hypothesis based on an?-level of 0.05 and conclude that the two population means are not likely different. This assumes we had the power to detect a difference should there be one. This ends lesson c. Please go to self assessment c.

Part 3. Comparing Groups. Chapter 7 Comparing Paired Groups 189. Chapter 8 Comparing Two Independent Groups 217

Part 3. Comparing Groups. Chapter 7 Comparing Paired Groups 189. Chapter 8 Comparing Two Independent Groups 217 Part 3 Comparing Groups Chapter 7 Comparing Paired Groups 189 Chapter 8 Comparing Two Independent Groups 217 Chapter 9 Comparing More Than Two Groups 257 188 Elementary Statistics Using SAS Chapter 7 Comparing

More information

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.

More information

Module 5 Hypotheses Tests: Comparing Two Groups

Module 5 Hypotheses Tests: Comparing Two Groups Module 5 Hypotheses Tests: Comparing Two Groups Objective: In medical research, we often compare the outcomes between two groups of patients, namely exposed and unexposed groups. At the completion of this

More information

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

More information

EXST SAS Lab Lab #9: Two-sample t-tests

EXST SAS Lab Lab #9: Two-sample t-tests EXST700X Lab Spring 014 EXST SAS Lab Lab #9: Two-sample t-tests Objectives 1. Input a CSV file (data set #1) and do a one-tailed two-sample t-test. Input a TXT file (data set #) and do a two-tailed two-sample

More information

THE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7.

THE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7. THERE ARE TWO WAYS TO DO HYPOTHESIS TESTING WITH STATCRUNCH: WITH SUMMARY DATA (AS IN EXAMPLE 7.17, PAGE 236, IN ROSNER); WITH THE ORIGINAL DATA (AS IN EXAMPLE 8.5, PAGE 301 IN ROSNER THAT USES DATA FROM

More information

Statistics for Clinical Trial SAS Programmers 1: paired t-test Kevin Lee, Covance Inc., Conshohocken, PA

Statistics for Clinical Trial SAS Programmers 1: paired t-test Kevin Lee, Covance Inc., Conshohocken, PA Statistics for Clinical Trial SAS Programmers 1: paired t-test Kevin Lee, Covance Inc., Conshohocken, PA ABSTRACT This paper is intended for SAS programmers who are interested in understanding common statistical

More information

Confidence Intervals for the Difference Between Two Means

Confidence Intervals for the Difference Between Two Means Chapter 47 Confidence Intervals for the Difference Between Two Means Introduction This procedure calculates the sample size necessary to achieve a specified distance from the difference in sample means

More information

NCSS Statistical Software

NCSS Statistical Software Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the

More information

One-sample normal hypothesis Testing, paired t-test, two-sample normal inference, normal probability plots

One-sample normal hypothesis Testing, paired t-test, two-sample normal inference, normal probability plots 1 / 27 One-sample normal hypothesis Testing, paired t-test, two-sample normal inference, normal probability plots Timothy Hanson Department of Statistics, University of South Carolina Stat 704: Data Analysis

More information

Hypothesis testing - Steps

Hypothesis testing - Steps Hypothesis testing - Steps Steps to do a two-tailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =

More information

3. Nonparametric methods

3. Nonparametric methods 3. Nonparametric methods If the probability distributions of the statistical variables are unknown or are not as required (e.g. normality assumption violated), then we may still apply nonparametric tests

More information

Unit 29 Chi-Square Goodness-of-Fit Test

Unit 29 Chi-Square Goodness-of-Fit Test Unit 29 Chi-Square Goodness-of-Fit Test Objectives: To perform the chi-square hypothesis test concerning proportions corresponding to more than two categories of a qualitative variable To perform the Bonferroni

More information

Two-Sample T-Tests Assuming Equal Variance (Enter Means)

Two-Sample T-Tests Assuming Equal Variance (Enter Means) Chapter 4 Two-Sample T-Tests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the variances of

More information

Business Statistics. Lecture 8: More Hypothesis Testing

Business Statistics. Lecture 8: More Hypothesis Testing Business Statistics Lecture 8: More Hypothesis Testing 1 Goals for this Lecture Review of t-tests Additional hypothesis tests Two-sample tests Paired tests 2 The Basic Idea of Hypothesis Testing Start

More information

Hypothesis Testing or How to Decide to Decide Edpsy 580

Hypothesis Testing or How to Decide to Decide Edpsy 580 Hypothesis Testing or How to Decide to Decide Edpsy 580 Carolyn J. Anderson Department of Educational Psychology University of Illinois at Urbana-Champaign Hypothesis Testing or How to Decide to Decide

More information

EXST SAS Lab Lab #7: Hypothesis testing with Paired t-tests and One-tailed t-tests

EXST SAS Lab Lab #7: Hypothesis testing with Paired t-tests and One-tailed t-tests EXST SAS Lab Lab #7: Hypothesis testing with Paired t-tests and One-tailed t-tests Objectives 1. Infile two external data sets (TXT files) 2. Calculate a difference between two variables in the data step

More information

Two-Sample T-Tests Allowing Unequal Variance (Enter Difference)

Two-Sample T-Tests Allowing Unequal Variance (Enter Difference) Chapter 45 Two-Sample T-Tests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when no assumption

More information

SIMPLE LINEAR CORRELATION. r can range from -1 to 1, and is independent of units of measurement. Correlation can be done on two dependent variables.

SIMPLE LINEAR CORRELATION. r can range from -1 to 1, and is independent of units of measurement. Correlation can be done on two dependent variables. SIMPLE LINEAR CORRELATION Simple linear correlation is a measure of the degree to which two variables vary together, or a measure of the intensity of the association between two variables. Correlation

More information

Two Related Samples t Test

Two Related Samples t Test Two Related Samples t Test In this example 1 students saw five pictures of attractive people and five pictures of unattractive people. For each picture, the students rated the friendliness of the person

More information

Let s explore SAS Proc T-Test

Let s explore SAS Proc T-Test Let s explore SAS Proc T-Test Ana Yankovsky Research Statistical Analyst Screening Programs, AHS Ana.Yankovsky@albertahealthservices.ca Goals of the presentation: 1. Look at the structure of Proc TTEST;

More information

Two-Sample T-Test from Means and SD s

Two-Sample T-Test from Means and SD s Chapter 07 Two-Sample T-Test from Means and SD s Introduction This procedure computes the two-sample t-test and several other two-sample tests directly from the mean, standard deviation, and sample size.

More information

Hypothesis Testing Level I Quantitative Methods. IFT Notes for the CFA exam

Hypothesis Testing Level I Quantitative Methods. IFT Notes for the CFA exam Hypothesis Testing 2014 Level I Quantitative Methods IFT Notes for the CFA exam Contents 1. Introduction... 3 2. Hypothesis Testing... 3 3. Hypothesis Tests Concerning the Mean... 10 4. Hypothesis Tests

More information

Chapter 6: t test for dependent samples

Chapter 6: t test for dependent samples Chapter 6: t test for dependent samples ****This chapter corresponds to chapter 11 of your book ( t(ea) for Two (Again) ). What it is: The t test for dependent samples is used to determine whether the

More information

Inferences About Differences Between Means Edpsy 580

Inferences About Differences Between Means Edpsy 580 Inferences About Differences Between Means Edpsy 580 Carolyn J. Anderson Department of Educational Psychology University of Illinois at Urbana-Champaign Inferences About Differences Between Means Slide

More information

Independent t- Test (Comparing Two Means)

Independent t- Test (Comparing Two Means) Independent t- Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent t-test when to use the independent t-test the use of SPSS to complete an independent

More information

Chapter 7 Part 2. Hypothesis testing Power

Chapter 7 Part 2. Hypothesis testing Power Chapter 7 Part 2 Hypothesis testing Power November 6, 2008 All of the normal curves in this handout are sampling distributions Goal: To understand the process of hypothesis testing and the relationship

More information

The Paired t-test and Hypothesis Testing. John McGready Johns Hopkins University

The Paired t-test and Hypothesis Testing. John McGready Johns Hopkins University This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Lecture Notes Module 1

Lecture Notes Module 1 Lecture Notes Module 1 Study Populations A study population is a clearly defined collection of people, animals, plants, or objects. In psychological research, a study population usually consists of a specific

More information

NCSS Statistical Software. One-Sample T-Test

NCSS Statistical Software. One-Sample T-Test Chapter 205 Introduction This procedure provides several reports for making inference about a population mean based on a single sample. These reports include confidence intervals of the mean or median,

More information

Chapter Five: Paired Samples Methods 1/38

Chapter Five: Paired Samples Methods 1/38 Chapter Five: Paired Samples Methods 1/38 5.1 Introduction 2/38 Introduction Paired data arise with some frequency in a variety of research contexts. Patients might have a particular type of laser surgery

More information

t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon

t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon t-tests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com www.excelmasterseries.com

More information

Recall this chart that showed how most of our course would be organized:

Recall this chart that showed how most of our course would be organized: Chapter 4 One-Way ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical

More information

Introduction. Hypothesis Testing. Hypothesis Testing. Significance Testing

Introduction. Hypothesis Testing. Hypothesis Testing. Significance Testing Introduction Hypothesis Testing Mark Lunt Arthritis Research UK Centre for Ecellence in Epidemiology University of Manchester 13/10/2015 We saw last week that we can never know the population parameters

More information

Section 13, Part 1 ANOVA. Analysis Of Variance

Section 13, Part 1 ANOVA. Analysis Of Variance Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability

More information

13 Two-Sample T Tests

13 Two-Sample T Tests www.ck12.org CHAPTER 13 Two-Sample T Tests Chapter Outline 13.1 TESTING A HYPOTHESIS FOR DEPENDENT AND INDEPENDENT SAMPLES 270 www.ck12.org Chapter 13. Two-Sample T Tests 13.1 Testing a Hypothesis for

More information

Paired vs. 2 sample comparisons. Comparing means. Paired comparisons allow us to account for a lot of extraneous variation.

Paired vs. 2 sample comparisons. Comparing means. Paired comparisons allow us to account for a lot of extraneous variation. Comparing means! Tests with one categorical and one numerical variable Paired vs. sample comparisons! Goal: to compare the mean of a numerical variable for different groups. Paired comparisons allow us

More information

Chapter 8 Introduction to Hypothesis Testing

Chapter 8 Introduction to Hypothesis Testing Chapter 8 Student Lecture Notes 8-1 Chapter 8 Introduction to Hypothesis Testing Fall 26 Fundamentals of Business Statistics 1 Chapter Goals After completing this chapter, you should be able to: Formulate

More information

Sociology 6Z03 Topic 15: Statistical Inference for Means

Sociology 6Z03 Topic 15: Statistical Inference for Means Sociology 6Z03 Topic 15: Statistical Inference for Means John Fox McMaster University Fall 2016 John Fox (McMaster University) Soc 6Z03: Statistical Inference for Means Fall 2016 1 / 41 Outline: Statistical

More information

1.5 Oneway Analysis of Variance

1.5 Oneway Analysis of Variance Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments

More information

Study Guide for the Final Exam

Study Guide for the Final Exam Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make

More information

Statistics for Management II-STAT 362-Final Review

Statistics for Management II-STAT 362-Final Review Statistics for Management II-STAT 362-Final Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The ability of an interval estimate to

More information

Chapter Additional: Standard Deviation and Chi- Square

Chapter Additional: Standard Deviation and Chi- Square Chapter Additional: Standard Deviation and Chi- Square Chapter Outline: 6.4 Confidence Intervals for the Standard Deviation 7.5 Hypothesis testing for Standard Deviation Section 6.4 Objectives Interpret

More information

General Procedure for Hypothesis Test. Five types of statistical analysis. 1. Formulate H 1 and H 0. General Procedure for Hypothesis Test

General Procedure for Hypothesis Test. Five types of statistical analysis. 1. Formulate H 1 and H 0. General Procedure for Hypothesis Test Five types of statistical analysis General Procedure for Hypothesis Test Descriptive Inferential Differences Associative Predictive What are the characteristics of the respondents? What are the characteristics

More information

How to Conduct a Hypothesis Test

How to Conduct a Hypothesis Test How to Conduct a Hypothesis Test The idea of hypothesis testing is relatively straightforward. In various studies we observe certain events. We must ask, is the event due to chance alone, or is there some

More information

Inferential Statistics

Inferential Statistics Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are

More information

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of

More information

Statistics 104: Section 7

Statistics 104: Section 7 Statistics 104: Section 7 Section Overview Reminders Comments on Midterm Common Mistakes on Problem Set 6 Statistical Week in Review Comments on Midterm Overall, the midterms were good with one notable

More information

Two-sample hypothesis testing, II 9.07 3/16/2004

Two-sample hypothesis testing, II 9.07 3/16/2004 Two-sample hypothesis testing, II 9.07 3/16/004 Small sample tests for the difference between two independent means For two-sample tests of the difference in mean, things get a little confusing, here,

More information

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as... HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

More information

9-3.4 Likelihood ratio test. Neyman-Pearson lemma

9-3.4 Likelihood ratio test. Neyman-Pearson lemma 9-3.4 Likelihood ratio test Neyman-Pearson lemma 9-1 Hypothesis Testing 9-1.1 Statistical Hypotheses Statistical hypothesis testing and confidence interval estimation of parameters are the fundamental

More information

3.4 Statistical inference for 2 populations based on two samples

3.4 Statistical inference for 2 populations based on two samples 3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted

More information

Introduction to Stata

Introduction to Stata Introduction to Stata September 23, 2014 Stata is one of a few statistical analysis programs that social scientists use. Stata is in the mid-range of how easy it is to use. Other options include SPSS,

More information

Good luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name:

Good luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name: Glo bal Leadership M BA BUSINESS STATISTICS FINAL EXAM Name: INSTRUCTIONS 1. Do not open this exam until instructed to do so. 2. Be sure to fill in your name before starting the exam. 3. You have two hours

More information

Paired T-Test. Chapter 208. Introduction. Technical Details. Research Questions

Paired T-Test. Chapter 208. Introduction. Technical Details. Research Questions Chapter 208 Introduction This procedure provides several reports for making inference about the difference between two population means based on a paired sample. These reports include confidence intervals

More information

Compare birds living near a toxic waste site with birds living in a pristine area.

Compare birds living near a toxic waste site with birds living in a pristine area. STT 430/630/ES 760 Lecture Notes: Chapter 7: Two-Sample Inference 1 February 27, 2009 Chapter 7: Two Sample Inference Chapter 6 introduced hypothesis testing in the one-sample setting: one sample is obtained

More information

PASS Sample Size Software. Linear Regression

PASS Sample Size Software. Linear Regression Chapter 855 Introduction Linear regression is a commonly used procedure in statistical analysis. One of the main objectives in linear regression analysis is to test hypotheses about the slope (sometimes

More information

Comparing Two Groups. Standard Error of ȳ 1 ȳ 2. Setting. Two Independent Samples

Comparing Two Groups. Standard Error of ȳ 1 ȳ 2. Setting. Two Independent Samples Comparing Two Groups Chapter 7 describes two ways to compare two populations on the basis of independent samples: a confidence interval for the difference in population means and a hypothesis test. The

More information

Unit 26 Estimation with Confidence Intervals

Unit 26 Estimation with Confidence Intervals Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference

More information

Chapter 7 Notes - Inference for Single Samples. You know already for a large sample, you can invoke the CLT so:

Chapter 7 Notes - Inference for Single Samples. You know already for a large sample, you can invoke the CLT so: Chapter 7 Notes - Inference for Single Samples You know already for a large sample, you can invoke the CLT so: X N(µ, ). Also for a large sample, you can replace an unknown σ by s. You know how to do a

More information

2 Sample t-test (unequal sample sizes and unequal variances)

2 Sample t-test (unequal sample sizes and unequal variances) Variations of the t-test: Sample tail Sample t-test (unequal sample sizes and unequal variances) Like the last example, below we have ceramic sherd thickness measurements (in cm) of two samples representing

More information

Hypothesis Testing - II

Hypothesis Testing - II -3σ -2σ +σ +2σ +3σ Hypothesis Testing - II Lecture 9 0909.400.01 / 0909.400.02 Dr. P. s Clinic Consultant Module in Probability & Statistics in Engineering Today in P&S -3σ -2σ +σ +2σ +3σ Review: Hypothesis

More information

Example for testing one population mean:

Example for testing one population mean: Today: Sections 13.1 to 13.3 ANNOUNCEMENTS: We will finish hypothesis testing for the 5 situations today. See pages 586-587 (end of Chapter 13) for a summary table. Quiz for week 8 starts Wed, ends Monday

More information

4.4. Further Analysis within ANOVA

4.4. Further Analysis within ANOVA 4.4. Further Analysis within ANOVA 1) Estimation of the effects Fixed effects model: α i = µ i µ is estimated by a i = ( x i x) if H 0 : µ 1 = µ 2 = = µ k is rejected. Random effects model: If H 0 : σa

More information

AP Statistics 2002 Scoring Guidelines

AP Statistics 2002 Scoring Guidelines AP Statistics 2002 Scoring Guidelines The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must be sought

More information

Chapter 9, Part A Hypothesis Tests. Learning objectives

Chapter 9, Part A Hypothesis Tests. Learning objectives Chapter 9, Part A Hypothesis Tests Slide 1 Learning objectives 1. Understand how to develop Null and Alternative Hypotheses 2. Understand Type I and Type II Errors 3. Able to do hypothesis test about population

More information

UNDERSTANDING THE DEPENDENT-SAMPLES t TEST

UNDERSTANDING THE DEPENDENT-SAMPLES t TEST UNDERSTANDING THE DEPENDENT-SAMPLES t TEST A dependent-samples t test (a.k.a. matched or paired-samples, matched-pairs, samples, or subjects, simple repeated-measures or within-groups, or correlated groups)

More information

Basic Statistical and Modeling Procedures Using SAS

Basic Statistical and Modeling Procedures Using SAS Basic Statistical and Modeling Procedures Using SAS One-Sample Tests The statistical procedures illustrated in this handout use two datasets. The first, Pulse, has information collected in a classroom

More information

1 Confidence intervals

1 Confidence intervals Math 143 Inference for Means 1 Statistical inference is inferring information about the distribution of a population from information about a sample. We re generally talking about one of two things: 1.

More information

General Method: Difference of Means. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n 1, n 2 ) 1.

General Method: Difference of Means. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n 1, n 2 ) 1. General Method: Difference of Means 1. Calculate x 1, x 2, SE 1, SE 2. 2. Combined SE = SE1 2 + SE2 2. ASSUMES INDEPENDENT SAMPLES. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n

More information

HYPOTHESIS TESTING: POWER OF THE TEST

HYPOTHESIS TESTING: POWER OF THE TEST HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9-step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,

More information

Chapter 9. Two-Sample Tests. Effect Sizes and Power Paired t Test Calculation

Chapter 9. Two-Sample Tests. Effect Sizes and Power Paired t Test Calculation Chapter 9 Two-Sample Tests Paired t Test (Correlated Groups t Test) Effect Sizes and Power Paired t Test Calculation Summary Independent t Test Chapter 9 Homework Power and Two-Sample Tests: Paired Versus

More information

Null Hypothesis H 0. The null hypothesis (denoted by H 0

Null Hypothesis H 0. The null hypothesis (denoted by H 0 Hypothesis test In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing a claim about a property

More information

Testing: is my coin fair?

Testing: is my coin fair? Testing: is my coin fair? Formally: we want to make some inference about P(head) Try it: toss coin several times (say 7 times) Assume that it is fair ( P(head)= ), and see if this assumption is compatible

More information

Chapter 2 Probability Topics SPSS T tests

Chapter 2 Probability Topics SPSS T tests Chapter 2 Probability Topics SPSS T tests Data file used: gss.sav In the lecture about chapter 2, only the One-Sample T test has been explained. In this handout, we also give the SPSS methods to perform

More information

Introduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures.

Introduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures. Introduction to Hypothesis Testing Point estimation and confidence intervals are useful statistical inference procedures. Another type of inference is used frequently used concerns tests of hypotheses.

More information

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96 1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

More information

Chapter 8. Hypothesis Testing

Chapter 8. Hypothesis Testing Chapter 8 Hypothesis Testing Hypothesis In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing

More information

Chapter 7. Comparing Means in SPSS (t-tests) Compare Means analyses. Specifically, we demonstrate procedures for running Dependent-Sample (or

Chapter 7. Comparing Means in SPSS (t-tests) Compare Means analyses. Specifically, we demonstrate procedures for running Dependent-Sample (or 1 Chapter 7 Comparing Means in SPSS (t-tests) This section covers procedures for testing the differences between two means using the SPSS Compare Means analyses. Specifically, we demonstrate procedures

More information

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as... HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

More information

One-Way Analysis of Variance

One-Way Analysis of Variance One-Way Analysis of Variance Note: Much of the math here is tedious but straightforward. We ll skim over it in class but you should be sure to ask questions if you don t understand it. I. Overview A. We

More information

CALCULATIONS & STATISTICS

CALCULATIONS & STATISTICS CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents

More information

Sample Size Determination

Sample Size Determination Sample Size Determination Population A: 10,000 Population B: 5,000 Sample 10% Sample 15% Sample size 1000 Sample size 750 The process of obtaining information from a subset (sample) of a larger group (population)

More information

Math 62 Statistics Sample Exam Questions

Math 62 Statistics Sample Exam Questions Math 62 Statistics Sample Exam Questions 1. (10) Explain the difference between the distribution of a population and the sampling distribution of a statistic, such as the mean, of a sample randomly selected

More information

We have already discussed hypothesis testing in study unit 13. In this

We have already discussed hypothesis testing in study unit 13. In this 14 study unit fourteen hypothesis tests applied to means: two related samples We have already discussed hypothesis testing in study unit 13. In this study unit we shall test a hypothesis empirically in

More information

Chapter 7 Section 7.1: Inference for the Mean of a Population

Chapter 7 Section 7.1: Inference for the Mean of a Population Chapter 7 Section 7.1: Inference for the Mean of a Population Now let s look at a similar situation Take an SRS of size n Normal Population : N(, ). Both and are unknown parameters. Unlike what we used

More information

An Introduction to Statistical Tests for the SAS Programmer Sara Beck, Fred Hutchinson Cancer Research Center, Seattle, WA

An Introduction to Statistical Tests for the SAS Programmer Sara Beck, Fred Hutchinson Cancer Research Center, Seattle, WA ABSTRACT An Introduction to Statistical Tests for the SAS Programmer Sara Beck, Fred Hutchinson Cancer Research Center, Seattle, WA Often SAS Programmers find themselves in situations where performing

More information

Null Hypothesis Significance Testing Signifcance Level, Power, t-tests. 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom

Null Hypothesis Significance Testing Signifcance Level, Power, t-tests. 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom Null Hypothesis Significance Testing Signifcance Level, Power, t-tests 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom Simple and composite hypotheses Simple hypothesis: the sampling distribution is

More information

" Y. Notation and Equations for Regression Lecture 11/4. Notation:

 Y. Notation and Equations for Regression Lecture 11/4. Notation: Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through

More information

Part 2: Analysis of Relationship Between Two Variables

Part 2: Analysis of Relationship Between Two Variables Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable

More information

Hypothesis Testing for Two Variances

Hypothesis Testing for Two Variances Hypothesis Testing for Two Variances The standard version of the two-sample t test is used when the variances of the underlying populations are either known or assumed to be equal In other situations,

More information

ANOVA - Analysis of Variance

ANOVA - Analysis of Variance ANOVA - Analysis of Variance ANOVA - Analysis of Variance Extends independent-samples t test Compares the means of groups of independent observations Don t be fooled by the name. ANOVA does not compare

More information

The calculations lead to the following values: d 2 = 46, n = 8, s d 2 = 4, s d = 2, SEof d = s d n s d n

The calculations lead to the following values: d 2 = 46, n = 8, s d 2 = 4, s d = 2, SEof d = s d n s d n EXAMPLE 1: Paired t-test and t-interval DBP Readings by Two Devices The diastolic blood pressures (DBP) of 8 patients were determined using two techniques: the standard method used by medical personnel

More information

T adult = 96 T child = 114.

T adult = 96 T child = 114. Homework Solutions Do all tests at the 5% level and quote p-values when possible. When answering each question uses sentences and include the relevant JMP output and plots (do not include the data in your

More information

7.1 Inference for comparing means of two populations

7.1 Inference for comparing means of two populations Objectives 7.1 Inference for comparing means of two populations Matched pair t confidence interval Matched pair t hypothesis test http://onlinestatbook.com/2/tests_of_means/correlated.html Overview of

More information

Chi-square test Fisher s Exact test

Chi-square test Fisher s Exact test Lesson 1 Chi-square test Fisher s Exact test McNemar s Test Lesson 1 Overview Lesson 11 covered two inference methods for categorical data from groups Confidence Intervals for the difference of two proportions

More information

An example ANOVA situation. 1-Way ANOVA. Some notation for ANOVA. Are these differences significant? Example (Treating Blisters)

An example ANOVA situation. 1-Way ANOVA. Some notation for ANOVA. Are these differences significant? Example (Treating Blisters) An example ANOVA situation Example (Treating Blisters) 1-Way ANOVA MATH 143 Department of Mathematics and Statistics Calvin College Subjects: 25 patients with blisters Treatments: Treatment A, Treatment

More information

Stat 411/511 THE RANDOMIZATION TEST. Charlotte Wickham. stat511.cwick.co.nz. Oct 16 2015

Stat 411/511 THE RANDOMIZATION TEST. Charlotte Wickham. stat511.cwick.co.nz. Oct 16 2015 Stat 411/511 THE RANDOMIZATION TEST Oct 16 2015 Charlotte Wickham stat511.cwick.co.nz Today Review randomization model Conduct randomization test What about CIs? Using a t-distribution as an approximation

More information

Chapter 12 Sample Size and Power Calculations. Chapter Table of Contents

Chapter 12 Sample Size and Power Calculations. Chapter Table of Contents Chapter 12 Sample Size and Power Calculations Chapter Table of Contents Introduction...253 Hypothesis Testing...255 Confidence Intervals...260 Equivalence Tests...264 One-Way ANOVA...269 Power Computation

More information

NCSS Statistical Software

NCSS Statistical Software Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the

More information