Research Methods & Experimental Design
|
|
- Erick Silvester Lawrence
- 1 years ago
- Views:
Transcription
1 Research Methods & Experimental Design Human Supervisory Control April 2004
2 Research Methods Qualitative vs. quantitative Understanding the relationship between objectives (research question) and variables is critical Information Data Information=data + analysis Planning in advance is a must To include how data will be analyzed
3 Qualitative Research Methods Social & cultural phenomenon Case studies Focus groups Observations Usability testing Can be quantitative Interviews Questionnaires
4 Quantitative Research Methods Natural phenomenon Mathematical modeling Experiments Optimization Game theory Surveys Bottom line statistics are a must
5 Project Assignment Design and conduct an experiment in which you explore some measure of human performance through testing, analyze the results, and discuss the broader implications. Design an actual display that uses automation for decision support While formal experimental testing is not required, a small group of users should be used to identify problems with the design to include functionality evaluation as well as recommendation for future improvements and systems integration.
6 The Experimental Design Process Research Question (Hypothesis) Design Experiment Collect Data Analyze Data Draw Conclusions
7 Experimental Design Design of Experiments (DOE) defined: A theory concerning the minimum number of experiments necessary to develop an empirical model of a research question and a methodology for setting up the necessary experiments. A parsimony model Human subject vs. object experimentation Other DOE Constraints Time Money
8 Experimental Design Basics Two kinds of data gathering methodologies Observation Can t prove cause & effect but can establish associations. Hawthorne effect, social facilitation Experimental Cause & effect Variables of interest factors vs. treatments Independent variable Treatment manipulations of variables of interest Treatment vs. control group Dependent variable is what you are measuring
9 More Basics Confounds Randomization Concerns Randomization prevents experimental bias Assignment by experimenter Counterbalancing Statistical assumptions A requirement for statistical tests of significance Why would you use the observation methodology instead of experiments?
10 DOE Terminology Replications Independent observations of a single treatment. Variance The measuring stick that compares different treatments. Internal validity The extent to which an experiment accomplishes its goal(s). Reproducibility Given the appropriate information, the ability of others to replicate the experiment.
11 DOE Terminology (cont.) External validity How representative of the target population is the sample? Can the results be generalized? Generalizations for field experiments are easier to justify than lab experiments because of artificialities. Medical Trials Placebo Double Blind If so, what is the population to which it can be generalized? Can the results be generalized to the real world?
12 ANOVA Within group variance is noise and between group variance is information we seek. ANOVA separates these out. Data Analysis Data Types Variables Categorical Numerical Scales of Measurement Nominal Ordinal Interval Computer Programs Excel, SAS, S+, SPSS
13 Basic Statistical Tests Assumptions for comparison of means Independent & random Normality Variances roughly equal t-tests One or two samples Chi-square tests NID(0,1) Categorical data, non-parametric Chi square important because any sum of squares in normal random variables divided by the variance is chi-square distributed
14 Null Hypothesis: H o Defined: The difference in two different populations parameters is 0. H o : µ 1 = u 2 H a : µ 1 u 2 H o : Always predicts absence of a relationship & assumed to be true. If the null hypothesis is NOT rejected, we CANNOT conclude that there is no difference, only that the method did not detect any difference. p <.05????
15 A Very Important Research Question Does drinking cappuccino one hour before a test improve results? What is the metric (dependent variable)? Experimental Design Treatment group vs. control group A single comparison Experimental efficiency Perhaps we want to look at who makes the cappuccino (Seattle s, Starbucks, Pete s) as well as the difference between coffee and cappuccino. 2X3 Factorial Interaction effects
16 Caffeine/Performance Experiment Capp Coffee GB SB ER We now know the general layout of the experiment but what is missing?
17 Caffeine/Performance Experiment How many subjects do we need? Sample Size Related to power the complement of a Type II error Decision Ho True Ho False Type I error Correct decision Reject Ho p = α p = 1 - β = POWER Fail to reject Ho Correct decision p = 1 - α Type II error p = β Ask what Ho is? Null hypothesis no significant difference exists between experimental groups.
18 Don t Panic
19 Caffeine/Performance Experiment So how do you determine sample size? Sensitivity is an issue # of factors influences sample size Recruitment Issues Population selection How do we assign subjects to treatment categories? Confounds Experience Self-selection Control techniques
20 Other Subject Considerations What is the most efficient way to use human subjects? Between subjects Within subjects Repeated measures Increases power but Confounds practice & fatigue Counterbalance Mixed subjects Pre-test/post-test Tests over time
21 Pre/post Test Considerations Between Subjects Intervention A Intervention B Pre-Test Post-Test Within Subjects Ideally pre-test scores will be equivalent You want to see a difference between the experimental and control group.
22 Statistical Tests (cont.) Analysis of variances (ANOVA) Testing the differences between two or more independent means (or groups) on one dependent measure (either a single or multiple independent variables). One way vs. factorial F test ratio of variances MANOVA
23 Other DOE considerations: Full Factorial Blocking More homogenous grouping Coffee of the day v. another kind Starbuck s at the Marriott vs. Galleria Pairing Increases precision by eliminating the variation between experimental units Randomization still possible Many others Full factorial should be run twice Tennis shoe example try to find out which sole is better for shoes so each boy wears two different shoes. Randomization comes in assigning which shoe to which foot.
24 What test to use? Pearson Correlation No Includes a Categorical variable Yes Only One Independent Variable No Only Between Subjects Variable No Mixed Two-Way ANOVA Yes Yes One-Way Analysis of Variance No Only Two Levels Between-Subjects 2-Way ANOVA Yes Only Between Subjects Variable No Within-Subjects t-test Yes Between Subjects t-test Adapted from University of Maryland Psychology World.
25 Example Experiment Are web-based case studies better than print versions. How can we test this? This question was tested with 2 classes with 2 different professors. What are the independent & dependent variables? Was it within/between/mixed? What statistical test should we use?
26 Results Dependent Variable: GRADES Source Corrected Model Intercept PROF TYPE PROF * TYPE Error Total Corrected Total Tests of Between-Subjects Effects Type III Sum of Squares df Mean Square F Sig a a. R Squared =.045 (Adjusted R Squared = -.001)
27 Estimated Marginal Means Interactions Estimated Marginal Means of GRADES PROF TYPE 86.0 D 85.5 P B L Interaction effect: the response of one variable depends on effect of another variable No interaction parallel lines Significant interaction: Which professor would you rather have?
28 Non-Parametric Tests Use when you have no good information about an underlying distribution Parametric tests: Parametric form - parameters either assumed to be known or estimated from the data The mean and variance of a normal distribution Null hypothesis can be stated in terms of parameters and the test statistic follows a known distribution. Non-parametric tests are still hypothesis tests, but they look at the overall distribution instead of a single parameter Particularly useful for small samples
29 All data is not normal. Parametric Correlation & Association Pearson T-tests Independent & dependent ANOVA Factorial Repeated measures MANOVA Linear regression Non-parametric Association Spearman Chi-Square Contingency tables Kruskal-Wallis test Sign-test Friedman ANOVA Logistic regression
Module 9: Nonparametric Tests. The Applied Research Center
Module 9: Nonparametric Tests The Applied Research Center Module 9 Overview } Nonparametric Tests } Parametric vs. Nonparametric Tests } Restrictions of Nonparametric Tests } One-Sample Chi-Square Test
Descriptive Statistics
Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize
Overview of Non-Parametric Statistics PRESENTER: ELAINE EISENBEISZ OWNER AND PRINCIPAL, OMEGA STATISTICS
Overview of Non-Parametric Statistics PRESENTER: ELAINE EISENBEISZ OWNER AND PRINCIPAL, OMEGA STATISTICS About Omega Statistics Private practice consultancy based in Southern California, Medical and Clinical
Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm
Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm
Study Guide for the Final Exam
Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make
SPSS ADVANCED ANALYSIS WENDIANN SETHI SPRING 2011
SPSS ADVANCED ANALYSIS WENDIANN SETHI SPRING 2011 Statistical techniques to be covered Explore relationships among variables Correlation Regression/Multiple regression Logistic regression Factor analysis
ANSWERS TO EXERCISES AND REVIEW QUESTIONS
ANSWERS TO EXERCISES AND REVIEW QUESTIONS PART FIVE: STATISTICAL TECHNIQUES TO COMPARE GROUPS Before attempting these questions read through the introduction to Part Five and Chapters 16-21 of the SPSS
T-test & factor analysis
Parametric tests T-test & factor analysis Better than non parametric tests Stringent assumptions More strings attached Assumes population distribution of sample is normal Major problem Alternatives Continue
Post-hoc comparisons & two-way analysis of variance. Two-way ANOVA, II. Post-hoc testing for main effects. Post-hoc testing 9.
Two-way ANOVA, II Post-hoc comparisons & two-way analysis of variance 9.7 4/9/4 Post-hoc testing As before, you can perform post-hoc tests whenever there s a significant F But don t bother if it s a main
Chapter 5 Analysis of variance SPSS Analysis of variance
Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means One-way ANOVA To test the null hypothesis that several population means are equal,
SPSS Tests for Versions 9 to 13
SPSS Tests for Versions 9 to 13 Chapter 2 Descriptive Statistic (including median) Choose Analyze Descriptive statistics Frequencies... Click on variable(s) then press to move to into Variable(s): list
Bivariate Analysis. Correlation. Correlation. Pearson's Correlation Coefficient. Variable 1. Variable 2
Bivariate Analysis Variable 2 LEVELS >2 LEVELS COTIUOUS Correlation Used when you measure two continuous variables. Variable 2 2 LEVELS X 2 >2 LEVELS X 2 COTIUOUS t-test X 2 X 2 AOVA (F-test) t-test AOVA
Variables and Data A variable contains data about anything we measure. For example; age or gender of the participants or their score on a test.
The Analysis of Research Data The design of any project will determine what sort of statistical tests you should perform on your data and how successful the data analysis will be. For example if you decide
SCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES
SCHOOL OF HEALTH AND HUMAN SCIENCES Using SPSS Topics addressed today: 1. Differences between groups 2. Graphing Use the s4data.sav file for the first part of this session. DON T FORGET TO RECODE YOUR
UNDERSTANDING THE TWO-WAY ANOVA
UNDERSTANDING THE e have seen how the one-way ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables
Projects Involving Statistics (& SPSS)
Projects Involving Statistics (& SPSS) Academic Skills Advice Starting a project which involves using statistics can feel confusing as there seems to be many different things you can do (charts, graphs,
Inferential Statistics. Probability. From Samples to Populations. Katie Rommel-Esham Education 504
Inferential Statistics Katie Rommel-Esham Education 504 Probability Probability is the scientific way of stating the degree of confidence we have in predicting something Tossing coins and rolling dice
Data Analysis, Research Study Design and the IRB
Minding the p-values p and Quartiles: Data Analysis, Research Study Design and the IRB Don Allensworth-Davies, MSc Research Manager, Data Coordinating Center Boston University School of Public Health IRB
Chapter Eight: Quantitative Methods
Chapter Eight: Quantitative Methods RESEARCH DESIGN Qualitative, Quantitative, and Mixed Methods Approaches Third Edition John W. Creswell Chapter Outline Defining Surveys and Experiments Components of
Some Critical Information about SOME Statistical Tests and Measures of Correlation/Association
Some Critical Information about SOME Statistical Tests and Measures of Correlation/Association This information is adapted from and draws heavily on: Sheskin, David J. 2000. Handbook of Parametric and
UNDERSTANDING ANALYSIS OF COVARIANCE (ANCOVA)
UNDERSTANDING ANALYSIS OF COVARIANCE () In general, research is conducted for the purpose of explaining the effects of the independent variable on the dependent variable, and the purpose of research design
Statistics Review PSY379
Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses
DATA COLLECTION AND ANALYSIS
DATA COLLECTION AND ANALYSIS Quality Education for Minorities (QEM) Network HBCU-UP Fundamentals of Education Research Workshop Gerunda B. Hughes, Ph.D. August 23, 2013 Objectives of the Discussion 2 Discuss
Nonparametric Statistics
Nonparametric Statistics J. Lozano University of Goettingen Department of Genetic Epidemiology Interdisciplinary PhD Program in Applied Statistics & Empirical Methods Graduate Seminar in Applied Statistics
Introduction to Analysis of Variance (ANOVA) Limitations of the t-test
Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One- Way ANOVA Limitations of the t-test Although the t-test is commonly used, it has limitations Can only
Hypothesis Testing & Data Analysis. Statistics. Descriptive Statistics. What is the difference between descriptive and inferential statistics?
2 Hypothesis Testing & Data Analysis 5 What is the difference between descriptive and inferential statistics? Statistics 8 Tools to help us understand our data. Makes a complicated mess simple to understand.
Inferential Statistics
Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are
Introduction to Statistics and Quantitative Research Methods
Introduction to Statistics and Quantitative Research Methods Purpose of Presentation To aid in the understanding of basic statistics, including terminology, common terms, and common statistical methods.
Rank-Based Non-Parametric Tests
Rank-Based Non-Parametric Tests Reminder: Student Instructional Rating Surveys You have until May 8 th to fill out the student instructional rating surveys at https://sakai.rutgers.edu/portal/site/sirs
Statistics and research
Statistics and research Usaneya Perngparn Chitlada Areesantichai Drug Dependence Research Center (WHOCC for Research and Training in Drug Dependence) College of Public Health Sciences Chulolongkorn University,
1. Why the hell do we need statistics?
1. Why the hell do we need statistics? There are three kind of lies: lies, damned lies, and statistics, British Prime Minister Benjamin Disraeli (as credited by Mark Twain): It is easy to lie with statistics,
UNIVERSITY OF NAIROBI
UNIVERSITY OF NAIROBI MASTERS IN PROJECT PLANNING AND MANAGEMENT NAME: SARU CAROLYNN ELIZABETH REGISTRATION NO: L50/61646/2013 COURSE CODE: LDP 603 COURSE TITLE: RESEARCH METHODS LECTURER: GAKUU CHRISTOPHER
Research Methods 1 Handouts, Graham Hole,COGS - version 1.0, September 2000: Page 1:
Research Methods 1 Handouts, Graham Hole,COGS - version 1.0, September 000: Page 1: NON-PARAMETRIC TESTS: What are non-parametric tests? Statistical tests fall into two kinds: parametric tests assume that
Fairfield Public Schools
Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity
The Dummy s Guide to Data Analysis Using SPSS
The Dummy s Guide to Data Analysis Using SPSS Mathematics 57 Scripps College Amy Gamble April, 2001 Amy Gamble 4/30/01 All Rights Rerserved TABLE OF CONTENTS PAGE Helpful Hints for All Tests...1 Tests
How to choose a statistical test. Francisco J. Candido dos Reis DGO-FMRP University of São Paulo
How to choose a statistical test Francisco J. Candido dos Reis DGO-FMRP University of São Paulo Choosing the right test One of the most common queries in stats support is Which analysis should I use There
Factor B: Curriculum New Math Control Curriculum (B (B 1 ) Overall Mean (marginal) Females (A 1 ) Factor A: Gender Males (A 2) X 21
1 Factorial ANOVA The ANOVA designs we have dealt with up to this point, known as simple ANOVA or oneway ANOVA, had only one independent grouping variable or factor. However, oftentimes a researcher has
TABLE OF CONTENTS. About Chi Squares... 1. What is a CHI SQUARE?... 1. Chi Squares... 1. Hypothesis Testing with Chi Squares... 2
About Chi Squares TABLE OF CONTENTS About Chi Squares... 1 What is a CHI SQUARE?... 1 Chi Squares... 1 Goodness of fit test (One-way χ 2 )... 1 Test of Independence (Two-way χ 2 )... 2 Hypothesis Testing
DEPARTMENT OF HEALTH AND HUMAN SCIENCES HS900 RESEARCH METHODS
DEPARTMENT OF HEALTH AND HUMAN SCIENCES HS900 RESEARCH METHODS Using SPSS Session 2 Topics addressed today: 1. Recoding data missing values, collapsing categories 2. Making a simple scale 3. Standardisation
INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)
INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of
Data analysis process
Data analysis process Data collection and preparation Collect data Prepare codebook Set up structure of data Enter data Screen data for errors Exploration of data Descriptive Statistics Graphs Analysis
Analysis of Data. Organizing Data Files in SPSS. Descriptive Statistics
Analysis of Data Claudia J. Stanny PSY 67 Research Design Organizing Data Files in SPSS All data for one subject entered on the same line Identification data Between-subjects manipulations: variable to
EBM Cheat Sheet- Measurements Card
EBM Cheat Sheet- Measurements Card Basic terms: Prevalence = Number of existing cases of disease at a point in time / Total population. Notes: Numerator includes old and new cases Prevalence is cross-sectional
WHAT IS A JOURNAL CLUB?
WHAT IS A JOURNAL CLUB? With its September 2002 issue, the American Journal of Critical Care debuts a new feature, the AJCC Journal Club. Each issue of the journal will now feature an AJCC Journal Club
PASS Sample Size Software
Chapter 250 Introduction The Chi-square test is often used to test whether sets of frequencies or proportions follow certain patterns. The two most common instances are tests of goodness of fit using multinomial
INTERPRETING THE REPEATED-MEASURES ANOVA
INTERPRETING THE REPEATED-MEASURES ANOVA USING THE SPSS GENERAL LINEAR MODEL PROGRAM RM ANOVA In this scenario (based on a RM ANOVA example from Leech, Barrett, and Morgan, 2005) each of 12 participants
II. DISTRIBUTIONS distribution normal distribution. standard scores
Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,
Hypothesis testing S2
Basic medical statistics for clinical and experimental research Hypothesis testing S2 Katarzyna Jóźwiak k.jozwiak@nki.nl 2nd November 2015 1/43 Introduction Point estimation: use a sample statistic to
CREIGHTON UNIVERSITY GRADUATE COLLEGE Fall Semester 2014. Biostatistics & Analysis of Clinical Data for Evidence-based Practice
CREIGHTON UNIVERSITY GRADUATE COLLEGE Fall Semester 2014 Course Number: Course Title: Credit Allocation: Placement: CTS 601 Biostatistics & Analysis of Clinical Data for Evidence-based Practice 3 semester
Independent t- Test (Comparing Two Means)
Independent t- Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent t-test when to use the independent t-test the use of SPSS to complete an independent
SPSS Explore procedure
SPSS Explore procedure One useful function in SPSS is the Explore procedure, which will produce histograms, boxplots, stem-and-leaf plots and extensive descriptive statistics. To run the Explore procedure,
Quantitative Data Analysis: Choosing a statistical test Prepared by the Office of Planning, Assessment, Research and Quality
Quantitative Data Analysis: Choosing a statistical test Prepared by the Office of Planning, Assessment, Research and Quality 1 To help choose which type of quantitative data analysis to use either before
1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
Applications of Intermediate/Advanced Statistics in Institutional Research
Applications of Intermediate/Advanced Statistics in Institutional Research Edited by Mary Ann Coughlin THE ASSOCIATION FOR INSTITUTIONAL RESEARCH Number Sixteen Resources in Institional Research 2005 Association
Parametric and non-parametric statistical methods for the life sciences - Session I
Why nonparametric methods What test to use? Rank Tests Parametric and non-parametric statistical methods for the life sciences - Session I Liesbeth Bruckers Geert Molenberghs Interuniversity Institute
An Introduction to the Critical Appraisal Section (including example questions)
An Introduction to the Critical Appraisal Section (including example questions) Introduction This section is common to the specialties of Dental Public Health, Oral Medicine, Oral Surgery, Orthodontics,
SPSS: Descriptive and Inferential Statistics. For Windows
For Windows August 2012 Table of Contents Section 1: Summarizing Data...3 1.1 Descriptive Statistics...3 Section 2: Inferential Statistics... 10 2.1 Chi-Square Test... 10 2.2 T tests... 11 2.3 Correlation...
Lecture 7: Binomial Test, Chisquare
Lecture 7: Binomial Test, Chisquare Test, and ANOVA May, 01 GENOME 560, Spring 01 Goals ANOVA Binomial test Chi square test Fisher s exact test Su In Lee, CSE & GS suinlee@uw.edu 1 Whirlwind Tour of One/Two
Data Analysis. Lecture Empirical Model Building and Methods (Empirische Modellbildung und Methoden) SS Analysis of Experiments - Introduction
Data Analysis Lecture Empirical Model Building and Methods (Empirische Modellbildung und Methoden) Prof. Dr. Dr. h.c. Dieter Rombach Dr. Andreas Jedlitschka SS 2014 Analysis of Experiments - Introduction
Chapter 16 Multiple Choice Questions (The answers are provided after the last question.)
Chapter 16 Multiple Choice Questions (The answers are provided after the last question.) 1. Which of the following symbols represents a population parameter? a. SD b. σ c. r d. 0 2. If you drew all possible
STA-201-TE. 5. Measures of relationship: correlation (5%) Correlation coefficient; Pearson r; correlation and causation; proportion of common variance
Principles of Statistics STA-201-TE This TECEP is an introduction to descriptive and inferential statistics. Topics include: measures of central tendency, variability, correlation, regression, hypothesis
Bivariate Analysis. Comparisons of proportions: Chi Square Test (X 2 test) Variable 1. Variable 2 2 LEVELS >2 LEVELS CONTINUOUS
Bivariate Analysis Variable 1 2 LEVELS >2 LEVELS CONTINUOUS Variable 2 2 LEVELS X 2 chi square test >2 LEVELS X 2 chi square test CONTINUOUS t-test X 2 chi square test X 2 chi square test ANOVA (F-test)
Nursing Journal Toolkit: Critiquing a Quantitative Research Article
A Virtual World Consortium: Using Second Life to Facilitate Nursing Journal Clubs Nursing Journal Toolkit: Critiquing a Quantitative Research Article 1. Guidelines for Critiquing a Quantitative Research
Tests of relationships between variables Chi-square Test Binomial Test Run Test for Randomness One-Sample Kolmogorov-Smirnov Test.
N. Uttam Singh, Aniruddha Roy & A. K. Tripathi ICAR Research Complex for NEH Region, Umiam, Meghalaya uttamba@gmail.com, aniruddhaubkv@gmail.com, aktripathi2020@yahoo.co.in Non Parametric Tests: Hands
This chapter discusses some of the basic concepts in inferential statistics.
Research Skills for Psychology Majors: Everything You Need to Know to Get Started Inferential Statistics: Basic Concepts This chapter discusses some of the basic concepts in inferential statistics. Details
IBM SPSS Statistics 23 Part 4: Chi-Square and ANOVA
IBM SPSS Statistics 23 Part 4: Chi-Square and ANOVA Winter 2016, Version 1 Table of Contents Introduction... 2 Downloading the Data Files... 2 Chi-Square... 2 Chi-Square Test for Goodness-of-Fit... 2 With
Semester 2 Statistics Short courses
Semester 2 Statistics Short courses Course: STAA0001 - Basic Statistics Blackboard Site: STAA0001 Dates: Sat 10 th Sept and 22 Oct 2016 (9 am 5 pm) Room EN409 Assumed Knowledge: None Day 1: Exploratory
UCLA STAT 13 Statistical Methods - Final Exam Review Solutions Chapter 7 Sampling Distributions of Estimates
UCLA STAT 13 Statistical Methods - Final Exam Review Solutions Chapter 7 Sampling Distributions of Estimates 1. (a) (i) µ µ (ii) σ σ n is exactly Normally distributed. (c) (i) is approximately Normally
Research Methodology: Tools
MSc Business Administration Research Methodology: Tools Applied Data Analysis (with SPSS) Lecture 11: Nonparametric Methods May 2014 Prof. Dr. Jürg Schwarz Lic. phil. Heidi Bruderer Enzler Contents Slide
SPSS Guide: Regression Analysis
SPSS Guide: Regression Analysis I put this together to give you a step-by-step guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar
CHAPTER 11 CHI-SQUARE: NON-PARAMETRIC COMPARISONS OF FREQUENCY
CHAPTER 11 CHI-SQUARE: NON-PARAMETRIC COMPARISONS OF FREQUENCY The hypothesis testing statistics detailed thus far in this text have all been designed to allow comparison of the means of two or more samples
ANOVA MULTIPLE CHOICE QUESTIONS. In the following multiple-choice questions, select the best answer.
ANOVA MULTIPLE CHOICE QUESTIONS In the following multiple-choice questions, select the best answer. 1. Analysis of variance is a statistical method of comparing the of several populations. a. standard
EPS 625 INTERMEDIATE STATISTICS FRIEDMAN TEST
EPS 625 INTERMEDIATE STATISTICS The Friedman test is an extension of the Wilcoxon test. The Wilcoxon test can be applied to repeated-measures data if participants are assessed on two occasions or conditions
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a
DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9
DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9 Analysis of covariance and multiple regression So far in this course,
The Chi Square Test. Diana Mindrila, Ph.D. Phoebe Balentyne, M.Ed. Based on Chapter 23 of The Basic Practice of Statistics (6 th ed.
The Chi Square Test Diana Mindrila, Ph.D. Phoebe Balentyne, M.Ed. Based on Chapter 23 of The Basic Practice of Statistics (6 th ed.) Concepts: Two-Way Tables The Problem of Multiple Comparisons Expected
Correlational Research
Correlational Research Chapter Fifteen Correlational Research Chapter Fifteen Bring folder of readings The Nature of Correlational Research Correlational Research is also known as Associational Research.
dbstat 2.0
dbstat Statistical Package for Biostatistics Software Development 1990 Survival Analysis Program 1992 dbstat for DOS 1.0 1993 Database Statistics Made Easy (Book) 1996 dbstat for DOS 2.0 2000 dbstat for
SEMBIT SQA Unit Code F9HM 04 Applying hypothesis testing
Overview This unit covers the competences required for applying hypothesis testing. It involves calculating the correct sample size to ensure the statistical validity of the hypothesis test, and producing
Chapter Seven. Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS
Chapter Seven Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS Section : An introduction to multiple regression WHAT IS MULTIPLE REGRESSION? Multiple
Outline. Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test
The t-test Outline Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test - Dependent (related) groups t-test - Independent (unrelated) groups t-test Comparing means Correlation
Hypothesis Testing. Chapter 7
Hypothesis Testing Chapter 7 Hypothesis Testing Time to make the educated guess after answering: What the population is, how to extract the sample, what characteristics to measure in the sample, After
Chi Square Analysis. When do we use chi square?
Chi Square Analysis When do we use chi square? More often than not in psychological research, we find ourselves collecting scores from participants. These data are usually continuous measures, and might
QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NON-PARAMETRIC TESTS
QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NON-PARAMETRIC TESTS This booklet contains lecture notes for the nonparametric work in the QM course. This booklet may be online at http://users.ox.ac.uk/~grafen/qmnotes/index.html.
Understanding and Interpreting the Chi-square Statistic (x 2 ) Rose Ann DiMaria, PhD, RN WVU-School of Nursing Charleston Division
Understanding and Interpreting the Chi-square Statistic (x 2 ) Rose Ann DiMaria, PhD, RN WVU-School of Nursing Charleston Division Inferential statistics Make judgments about accuracy of given sample in
Chapter 13 Introduction to Linear Regression and Correlation Analysis
Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing
Experimental Designs. Y520 Strategies for Educational Inquiry
Experimental Designs Y520 Strategies for Educational Inquiry Experimental designs-1 Research Methodology Is concerned with how the design is implemented and how the research is carried out. The methodology
Statistics: revision
NST 1B Experimental Psychology Statistics practical 5 Statistics: revision Rudolf Cardinal & Mike Aitken 3 / 4 May 2005 Department of Experimental Psychology University of Cambridge Slides at pobox.com/~rudolf/psychology
Mathematics within the Psychology Curriculum
Mathematics within the Psychology Curriculum Statistical Theory and Data Handling Statistical theory and data handling as studied on the GCSE Mathematics syllabus You may have learnt about statistics and
AMS7: WEEK 8. CLASS 1. Correlation Monday May 18th, 2015
AMS7: WEEK 8. CLASS 1 Correlation Monday May 18th, 2015 Type of Data and objectives of the analysis Paired sample data (Bivariate data) Determine whether there is an association between two variables This
Mixed 2 x 3 ANOVA. Notes
Mixed 2 x 3 ANOVA This section explains how to perform an ANOVA when one of the variables takes the form of repeated measures and the other variable is between-subjects that is, independent groups of participants
BIOSTATISTICS QUIZ ANSWERS
BIOSTATISTICS QUIZ ANSWERS 1. When you read scientific literature, do you know whether the statistical tests that were used were appropriate and why they were used? a. Always b. Mostly c. Rarely d. Never
Semester 1 Statistics Short courses
Semester 1 Statistics Short courses Course: STAA0001 Basic Statistics Blackboard Site: STAA0001 Dates: Sat. March 12 th and Sat. April 30 th (9 am 5 pm) Assumed Knowledge: None Course Description Statistical
Null Hypothesis H 0. The null hypothesis (denoted by H 0
Hypothesis test In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing a claim about a property
research/scientific includes the following: statistical hypotheses: you have a null and alternative you accept one and reject the other
1 Hypothesis Testing Richard S. Balkin, Ph.D., LPC-S, NCC 2 Overview When we have questions about the effect of a treatment or intervention or wish to compare groups, we use hypothesis testing Parametric
Chapter 8 Lecture 8. Hypothesis Testing, Validity & Threats to Validity
Chapter 8 Lecture 8 Hypothesis Testing, Validity & Threats to Validity Hypothesis Question Initial Idea (0ften Vague) Initial Observations Search Existing Lit. Statement of the problem Operational definition
Chapter 21 Section D
Chapter 21 Section D Statistical Tests for Ordinal Data The rank-sum test. You can perform the rank-sum test in SPSS by selecting 2 Independent Samples from the Analyze/ Nonparametric Tests menu. The first
Chris Slaughter, DrPH. GI Research Conference June 19, 2008
Chris Slaughter, DrPH Assistant Professor, Department of Biostatistics Vanderbilt University School of Medicine GI Research Conference June 19, 2008 Outline 1 2 3 Factors that Impact Power 4 5 6 Conclusions
Chapter 3: Nonparametric Tests
B. Weaver (15-Feb-00) Nonparametric Tests... 1 Chapter 3: Nonparametric Tests 3.1 Introduction Nonparametric, or distribution free tests are so-called because the assumptions underlying their use are fewer
Design of Experiments and Experimental Data Processing
Design of Experiments and Experimental Data Processing Course plan October 9, 2008 Fall 2008 Prof. Ivan Kalaykov Room: T-1224, Tel. 019-303625, ivan.kalaykov@oru.se 1 Course objectives In order to discover