# Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing

Size: px
Start display at page:

Download "Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing"

Transcription

1 Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim About a Proportion 8-5 Testing a Claim About a Mean: s Not Known 8-6 Testing a Claim About a Standard Deviation or Variance Overview Hypothesis Definition in statistics, is a claim or statement about a property of a population 3

2 8-1 Overview Definition Hypothesis Test is a standard procedure for testing a claim about a property of a population 4 Rare Event Rule for Inferential Statistics If, under a given assumption, the probability of a particular observed event is exceptionally small, we conclude that the assumption is probably not correct. 2 5 Example: ProCare ProCare Industries, Ltd., once provided a product called Gender Choice, which, according to advertising claims, allowed couples to increase your chances of having a boy up to 85%, a girl up to 80%. Suppose we conduct an experiment with 100 couples who want to have baby girls, and they all follow the Gender Choice directions in the pink package. For the purpose of testing the claim of an increased likelihood for girls, we will assume that Gender Choice has no effect. Using common sense and no formal statistical methods, what should we conclude about the assumption of no effect from Gender Choice if 100 couples using Gender Choice have 100 babies consisting of a) 52 girls?; b) 97 girls? 6

3 Example:ProCare Industries, Ltd.: Part a) a) We normally expect around 50 girls in 100 births. The results of 52 girls is close to 50, so we should not conclude that the Gender Choice product is effective. If the 100 couples used no special method of gender selection, the result of 52 girls could easily occur by chance. The assumption of no effect from Gender Choice appears to be correct. There isn t sufficient evidence to say that Gender Choice is effective. 7 Example:ProCare Industries, Ltd.: Part b) b) The result of 97 girls in 100 births is extremely unlikely to occur by chance. We could explain the occurrence of 97 girls in one of two ways: Either an extremelyrare rare event has occurred by chance, or Gender Choice is effective. The extremely low probability of getting 97 girls is strong evidence against the assumption that Gender Choice has no effect. It does appear to be effective Basics of Hypothesis Testing 9

4 8-2 Section Objectives Given a claim, identify the null hypothesis, and the alternative hypothesis, and express them both in symbolic form. Given a claim and sample data, calculate the value of the test statistic. Given a significance level, identify the critical value(s). Given a value of the test statistic, identify the P- value. State the conclusion of a hypothesis test in simple, non-technical terms. Identify the type I and type II errors that could be made when testing a given claim. 10 Example: Let Let s again refer to the Gender Choice product that was once distributed by ProCare Industries. ProCareIndustries claimed that couple using the pink packages of Gender Choice would have girls at a rate that is greater than 50% or 0.5. Let s again consider an experiment whereby 100 couples use Gender Choice in an attempt to have a baby girl; let s assume that the 100 babies include exactly 52 girls, and let s formalize some of the analysis. Under normal circumstances the proportion of girls is 0.5, so a claim that Gender Choice is effective can be expressed as p > Using a normal distribution as an approximation to the binomial distribution, we find P(52 or more girls in 100 births) = continued 11 Example: Let Let s again refer to the Gender Choice product that was once distributed by ProCare Industries. ProCareIndustries claimed that couple using the pink packages of Gender Choice would have girls at a rate that is greater than 50% or 0.5. Let s again consider an experiment whereby 100 couples use Gender Choice in an attempt to have a baby girl; let s assume that the 100 babies include exactly 52 girls, and let s formalize some of the analysis. Figure 8-1 shows that with a probability of 0.5, the outcome of 52 girls in 100 births is not unusual. continued 12

5 Figure 8-1 We do not reject random chance as a reasonable explanation. We conclude that the proportion of girls born to couples using Gender Choice is not significantly greater than the number that we would expect by random chance. 13 Key Points Claim: For couples using Gender Choice, the proportion of girls is p > 0.5. Working assumption: The proportion of girls is p = 0.5 (with no effect from Gender Choice). The sample resulted in 52 girls among 100 births, so the sample proportion is ˆ p = 52/100 = Key Points Assuming that p = 0.5,, we use a normal distribution as an approximation to the binomial distribution to find that P(at least 52 girls in 100 births) = There are two possible explanation for the result of 52 girls in 100 births: Either a random chance event (with probability ) has occurred, or the proportion of girls born to couples using Gender Choice is greater than 0.5. There isn t sufficient evidence to support Gender Choice s claim. 15

6 Components of a Formal Hypothesis Test 16 Null Hypothesis: H 0 Statement about value of population parameter that is equal to some claimed value H 0 : p = 0.5 H 0 : m = 98.6 H 0 : s = 15 Test the Null Hypothesis directly Reject H 0 or fail to reject H Alternative Hypothesis: H 1 the statement that the parameter has a value that somehow differs from the null Must be true if H 0 is false,, <, > 18

7 Claim: Using math symbols H 0 : Must contain equality H 1 : Will contain,, <, > 19 Note about Identifying H and H 0 1 Figure Note about Forming Your Own Claims (Hypotheses) If you are conducting a study and want to use a hypothesis test to support your claim, the claim must be worded so that it becomes the alternative hypothesis. This means your claim must be expressed using only expressed using only,, <, > 21

8 Test Statistic The test statistic is a value computed from the sample data, and it is used in making the decision about the rejection of the null hypothesis. /\ z = p - p pq n Test statistic for proportions 22 Test Statistic The test statistic is a value computed from the sample data, and it is used in making the decision about the rejection of the null hypothesis. 8 z = x - µ x s n Test statistic for mean 23 Test Statistic The test statistic is a value computed from the sample data, and it is used in making the decision about the rejection of the null hypothesis. t = x - µ x s n Test statistic for mean 24

9 Test Statistic The test statistic is a value computed from the sample data, and it is used in making the decision about the rejection of the null hypothesis. c 2 = (n 1)s2 s 2 Test statistic for standard deviation 25 Example: A survey of n = 880 randomly selected adult drivers showed that 56%(or p = 0.56) of those respondents admitted to running red ˆ lights. Find the value of the test statistic for the claim that the majority of all adult drivers admit to running red lights. (In Section 8-3 we will see that there are assumptions that must be verified. For this example, assume that the required assumptions are satisfied and focus on finding the indicated test statistic.) 9 26 Solution: The preceding example showed that the given claim results in the following null and alternative hypotheses: H 0 : p = 0.5 and H 1 : p > 0.5. Because we work under the assumption that the null hypothesis is true with p = 0.5, we get the following test statistic: /\ z = p p pq n = (0.5)(0.5) 880 =

10 Interpretation: We know from previous chapters that a z score of 3.56 is exceptionally large. It appears that in addition to being more than half, the sample result of 56% is significantly more than 50%. We could show that the sample proportion of 0.56 (from 56%) does fall within the range of values considered to be significant because they are so far above 0.5 that they are not likely to occur by chance (assuming that the population proportion is p = 0.5) Critical Region (or Rejection Region) Set of all values of the test statistic that would cause a rejection of the null hypothesis 30

11 Critical Region Set of all values of the test statistic that would cause a rejection of the null hypothesis Critical Region 31 Critical Region Set of all values of the test statistic that would cause a rejection of the null hypothesis Critical Region Critical Region Set of all values of the test statistic that would cause a rejection of the null hypothesis Critical Regions 33

12 Significance Level denoted by a the probability that the test statistic will fall in the critical region when the null hypothesis is actually true. same a introduced in Section 7-2. common choices are 0.05, 0.01, and Critical Value Any value that separates the critical region (where we reject the null hypothesis) from the values of the test statistic that do not lead to a rejection of the null hypothesis Critical Value Any value that separates the critical region (where we reject the null hypothesis) from the values of the test statistic that do not lead to a rejection of the null hypothesis Critical Value ( z score ) 36

13 Critical Value Any value that separates the critical region (where we reject the null hypothesis) from the values of the test statistic that do not lead to a rejection of the null hypothesis Reject H 0 Fail to reject H 0 Critical Value ( z score ) 37 Two-tailed, Right-tailed, tailed, Left-tailed tailed Tests The tails in a distribution are the extreme regions bounded by critical values Two-tailed Test H : = 0 H 1 : Means less than or greater than a is divided equally between the two tails of the critical region Values that differ significantly from H 0 39

14 Right-tailed tailed Test H 0 : = H : > 1 Points Right Values that differ significantly from H o 40 Points Left Left-tailed tailed Test H 0 : = H : < 1 14 Values that differ significantly from H o 41 P-Value The P-value (or p-value or probability value) is the probability of getting a value of the test statistic that is at least as extremeas the one representing the sample data, assuming that the null hypothesis is true. The null hypothesis is rejected if the P-value is very small, such as 0.05 or less. 42

15 Example: Finding P-values Figure Conclusions in Hypothesis Testing always test the null hypothesis 1. Reject the H Fail to reject the H 0 44 Decision Criterion Traditional method: Reject H 0 if the test statistic falls within the critical region. Fail to reject H 0 if the test statistic does not fall within the critical region. 45

16 Decision Criterion P-value method: Reject H 0 if P-value a (where a is the significance level, such as 0.05). Fail to reject H 0 if P-value > a. 46 Decision Criterion Another option: Instead of using a significance level such as 0.05, simply identify the P-value and leave the decision to the reader Decision Criterion Confidence Intervals: Because a confidence interval estimate of a population parameter contains the likely values of that parameter, reject a claim that the population parameter has a value that is not included in the confidence interval. 48

17 Wording the Final Conclusion 49 Wording of Final Conclusion 17 Figure Accept versus Fail to Reject Some texts use accept the null hypothesis We are not proving the null hypothesis Sample evidence is not strong enough to warrant rejection (such as not enough evidence to convict a suspect) 51

18 Type I Error A Type I error is the mistake of rejecting the null hypothesis when it is true. The symbol a (alpha) is used to represent the probability of a type I error. 52 Type II Error A Type II error is the mistake of failing to reject the null hypothesis when it is false. The symbol b (beta) is used to represent the probability of a type II error

19 Controlling Type I and Type II Errors For any fixed a,, an increase in the sample size n will cause a decrease in b. For any fixed sample size n, a decrease in a will cause an increase in b.. Conversely, an increase in a will cause a decrease in b. To decrease both a and b,, increase the sample size. 55 Definition Power of a Hypothesis Test The power of a hypothesis test is the probability (1 - b ) of rejecting a false null hypothesis, which is computed by using a particular significance level a and a particular value of the population parameter that is an alternative to the value assumed true in the null hypothesis Comprehensive Hypothesis Test 57

20 Comprehensive Hypothesis Test 58 Comprehensive Hypothesis Test A confidence interval estimate of a population parameter contains the likely values of that parameter. We should therefore reject a claim that the population parameter has a value that is not included in the confidence interval Comprehensive Hypothesis Test Caution: In some cases, a conclusion based on a confidence interval may be different from a conclusion based on a hypothesis test. See the comments in the individual sections. 60

21 61 21

### Hypothesis Testing --- One Mean

Hypothesis Testing --- One Mean A hypothesis is simply a statement that something is true. Typically, there are two hypotheses in a hypothesis test: the null, and the alternative. Null Hypothesis The hypothesis

### Section 7.1. Introduction to Hypothesis Testing. Schrodinger s cat quantum mechanics thought experiment (1935)

Section 7.1 Introduction to Hypothesis Testing Schrodinger s cat quantum mechanics thought experiment (1935) Statistical Hypotheses A statistical hypothesis is a claim about a population. Null hypothesis

### Introduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses

Introduction to Hypothesis Testing 1 Hypothesis Testing A hypothesis test is a statistical procedure that uses sample data to evaluate a hypothesis about a population Hypothesis is stated in terms of the

### HYPOTHESIS TESTING: POWER OF THE TEST

HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9-step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,

### HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

### Hypothesis Testing: Two Means, Paired Data, Two Proportions

Chapter 10 Hypothesis Testing: Two Means, Paired Data, Two Proportions 10.1 Hypothesis Testing: Two Population Means and Two Population Proportions 1 10.1.1 Student Learning Objectives By the end of this

### Hypothesis Testing. Reminder of Inferential Statistics. Hypothesis Testing: Introduction

Hypothesis Testing PSY 360 Introduction to Statistics for the Behavioral Sciences Reminder of Inferential Statistics All inferential statistics have the following in common: Use of some descriptive statistic

### Mind on Statistics. Chapter 12

Mind on Statistics Chapter 12 Sections 12.1 Questions 1 to 6: For each statement, determine if the statement is a typical null hypothesis (H 0 ) or alternative hypothesis (H a ). 1. There is no difference

### Non-Parametric Tests (I)

Lecture 5: Non-Parametric Tests (I) KimHuat LIM lim@stats.ox.ac.uk http://www.stats.ox.ac.uk/~lim/teaching.html Slide 1 5.1 Outline (i) Overview of Distribution-Free Tests (ii) Median Test for Two Independent

### Introduction to Hypothesis Testing OPRE 6301

Introduction to Hypothesis Testing OPRE 6301 Motivation... The purpose of hypothesis testing is to determine whether there is enough statistical evidence in favor of a certain belief, or hypothesis, about

### An Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10- TWO-SAMPLE TESTS

The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 130) Spring Semester 011 Chapter 10- TWO-SAMPLE TESTS Practice

### BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420

BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 1. Which of the following will increase the value of the power in a statistical test

### HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

### 5/31/2013. Chapter 8 Hypothesis Testing. Hypothesis Testing. Hypothesis Testing. Outline. Objectives. Objectives

C H 8A P T E R Outline 8 1 Steps in Traditional Method 8 2 z Test for a Mean 8 3 t Test for a Mean 8 4 z Test for a Proportion 8 6 Confidence Intervals and Copyright 2013 The McGraw Hill Companies, Inc.

### Hypothesis testing - Steps

Hypothesis testing - Steps Steps to do a two-tailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =

### C. The null hypothesis is not rejected when the alternative hypothesis is true. A. population parameters.

Sample Multiple Choice Questions for the material since Midterm 2. Sample questions from Midterms and 2 are also representative of questions that may appear on the final exam.. A randomly selected sample

### How To Test For Significance On A Data Set

Non-Parametric Univariate Tests: 1 Sample Sign Test 1 1 SAMPLE SIGN TEST A non-parametric equivalent of the 1 SAMPLE T-TEST. ASSUMPTIONS: Data is non-normally distributed, even after log transforming.

### Experimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test

Experimental Design Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 To this point in the semester, we have largely

### Math 251, Review Questions for Test 3 Rough Answers

Math 251, Review Questions for Test 3 Rough Answers 1. (Review of some terminology from Section 7.1) In a state with 459,341 voters, a poll of 2300 voters finds that 45 percent support the Republican candidate,

### Name: (b) Find the minimum sample size you should use in order for your estimate to be within 0.03 of p when the confidence level is 95%.

Chapter 7-8 Exam Name: Answer the questions in the spaces provided. If you run out of room, show your work on a separate paper clearly numbered and attached to this exam. Please indicate which program

### THE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7.

THERE ARE TWO WAYS TO DO HYPOTHESIS TESTING WITH STATCRUNCH: WITH SUMMARY DATA (AS IN EXAMPLE 7.17, PAGE 236, IN ROSNER); WITH THE ORIGINAL DATA (AS IN EXAMPLE 8.5, PAGE 301 IN ROSNER THAT USES DATA FROM

### Correlational Research

Correlational Research Chapter Fifteen Correlational Research Chapter Fifteen Bring folder of readings The Nature of Correlational Research Correlational Research is also known as Associational Research.

### 3.4 Statistical inference for 2 populations based on two samples

3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted

### Hypothesis testing. c 2014, Jeffrey S. Simonoff 1

Hypothesis testing So far, we ve talked about inference from the point of estimation. We ve tried to answer questions like What is a good estimate for a typical value? or How much variability is there

### A) 0.1554 B) 0.0557 C) 0.0750 D) 0.0777

Math 210 - Exam 4 - Sample Exam 1) What is the p-value for testing H1: µ < 90 if the test statistic is t=-1.592 and n=8? A) 0.1554 B) 0.0557 C) 0.0750 D) 0.0777 2) The owner of a football team claims that

### Lesson 9 Hypothesis Testing

Lesson 9 Hypothesis Testing Outline Logic for Hypothesis Testing Critical Value Alpha (α) -level.05 -level.01 One-Tail versus Two-Tail Tests -critical values for both alpha levels Logic for Hypothesis

### Introduction to Hypothesis Testing

I. Terms, Concepts. Introduction to Hypothesis Testing A. In general, we do not know the true value of population parameters - they must be estimated. However, we do have hypotheses about what the true

### 22. HYPOTHESIS TESTING

22. HYPOTHESIS TESTING Often, we need to make decisions based on incomplete information. Do the data support some belief ( hypothesis ) about the value of a population parameter? Is OJ Simpson guilty?

### Chapter 2. Hypothesis testing in one population

Chapter 2. Hypothesis testing in one population Contents Introduction, the null and alternative hypotheses Hypothesis testing process Type I and Type II errors, power Test statistic, level of significance

### Simple Linear Regression Inference

Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

### Comparing Two Groups. Standard Error of ȳ 1 ȳ 2. Setting. Two Independent Samples

Comparing Two Groups Chapter 7 describes two ways to compare two populations on the basis of independent samples: a confidence interval for the difference in population means and a hypothesis test. The

### Psychology 60 Fall 2013 Practice Exam Actual Exam: Next Monday. Good luck!

Psychology 60 Fall 2013 Practice Exam Actual Exam: Next Monday. Good luck! Name: 1. The basic idea behind hypothesis testing: A. is important only if you want to compare two populations. B. depends on

### UNDERSTANDING THE TWO-WAY ANOVA

UNDERSTANDING THE e have seen how the one-way ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables

### Sample Size and Power in Clinical Trials

Sample Size and Power in Clinical Trials Version 1.0 May 011 1. Power of a Test. Factors affecting Power 3. Required Sample Size RELATED ISSUES 1. Effect Size. Test Statistics 3. Variation 4. Significance

### BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394

BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394 1. Does vigorous exercise affect concentration? In general, the time needed for people to complete

### p ˆ (sample mean and sample

Chapter 6: Confidence Intervals and Hypothesis Testing When analyzing data, we can t just accept the sample mean or sample proportion as the official mean or proportion. When we estimate the statistics

### WISE Power Tutorial All Exercises

ame Date Class WISE Power Tutorial All Exercises Power: The B.E.A.. Mnemonic Four interrelated features of power can be summarized using BEA B Beta Error (Power = 1 Beta Error): Beta error (or Type II

### Introduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.

Introduction to Hypothesis Testing CHAPTER 8 LEARNING OBJECTIVES After reading this chapter, you should be able to: 1 Identify the four steps of hypothesis testing. 2 Define null hypothesis, alternative

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Sample Practice problems - chapter 12-1 and 2 proportions for inference - Z Distributions Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide

### Statistics 2014 Scoring Guidelines

AP Statistics 2014 Scoring Guidelines College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central is the official online home

### 1 Hypothesis Testing. H 0 : population parameter = hypothesized value:

1 Hypothesis Testing In Statistics, a hypothesis proposes a model for the world. Then we look at the data. If the data are consistent with that model, we have no reason to disbelieve the hypothesis. Data

### 5.1 Identifying the Target Parameter

University of California, Davis Department of Statistics Summer Session II Statistics 13 August 20, 2012 Date of latest update: August 20 Lecture 5: Estimation with Confidence intervals 5.1 Identifying

### HYPOTHESIS TESTING WITH SPSS:

HYPOTHESIS TESTING WITH SPSS: A NON-STATISTICIAN S GUIDE & TUTORIAL by Dr. Jim Mirabella SPSS 14.0 screenshots reprinted with permission from SPSS Inc. Published June 2006 Copyright Dr. Jim Mirabella CHAPTER

### Understand the role that hypothesis testing plays in an improvement project. Know how to perform a two sample hypothesis test.

HYPOTHESIS TESTING Learning Objectives Understand the role that hypothesis testing plays in an improvement project. Know how to perform a two sample hypothesis test. Know how to perform a hypothesis test

### In the past, the increase in the price of gasoline could be attributed to major national or global

Chapter 7 Testing Hypotheses Chapter Learning Objectives Understanding the assumptions of statistical hypothesis testing Defining and applying the components in hypothesis testing: the research and null

### 8 6 X 2 Test for a Variance or Standard Deviation

Section 8 6 x 2 Test for a Variance or Standard Deviation 437 This test uses the P-value method. Therefore, it is not necessary to enter a significance level. 1. Select MegaStat>Hypothesis Tests>Proportion

### 1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

### Review. March 21, 2011. 155S7.1 2_3 Estimating a Population Proportion. Chapter 7 Estimates and Sample Sizes. Test 2 (Chapters 4, 5, & 6) Results

MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 7 Estimates and Sample Sizes 7 1 Review and Preview 7 2 Estimating a Population Proportion 7 3 Estimating a Population

### Chapter 7 TEST OF HYPOTHESIS

Chapter 7 TEST OF HYPOTHESIS In a certain perspective, we can view hypothesis testing just like a jury in a court trial. In a jury trial, the null hypothesis is similar to the jury making a decision of

### Stat 411/511 THE RANDOMIZATION TEST. Charlotte Wickham. stat511.cwick.co.nz. Oct 16 2015

Stat 411/511 THE RANDOMIZATION TEST Oct 16 2015 Charlotte Wickham stat511.cwick.co.nz Today Review randomization model Conduct randomization test What about CIs? Using a t-distribution as an approximation

### research/scientific includes the following: statistical hypotheses: you have a null and alternative you accept one and reject the other

1 Hypothesis Testing Richard S. Balkin, Ph.D., LPC-S, NCC 2 Overview When we have questions about the effect of a treatment or intervention or wish to compare groups, we use hypothesis testing Parametric

### Independent t- Test (Comparing Two Means)

Independent t- Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent t-test when to use the independent t-test the use of SPSS to complete an independent

### WHERE DOES THE 10% CONDITION COME FROM?

1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay

### II. DISTRIBUTIONS distribution normal distribution. standard scores

Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,

### Two-Sample T-Tests Assuming Equal Variance (Enter Means)

Chapter 4 Two-Sample T-Tests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the variances of

### Stats Review Chapters 9-10

Stats Review Chapters 9-10 Created by Teri Johnson Math Coordinator, Mary Stangler Center for Academic Success Examples are taken from Statistics 4 E by Michael Sullivan, III And the corresponding Test

### UNDERSTANDING THE DEPENDENT-SAMPLES t TEST

UNDERSTANDING THE DEPENDENT-SAMPLES t TEST A dependent-samples t test (a.k.a. matched or paired-samples, matched-pairs, samples, or subjects, simple repeated-measures or within-groups, or correlated groups)

### Estimation of σ 2, the variance of ɛ

Estimation of σ 2, the variance of ɛ The variance of the errors σ 2 indicates how much observations deviate from the fitted surface. If σ 2 is small, parameters β 0, β 1,..., β k will be reliably estimated

### Unit 26 Estimation with Confidence Intervals

Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference

### AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

Ms. Foglia Date AP: LAB 8: THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

### Module 2 Probability and Statistics

Module 2 Probability and Statistics BASIC CONCEPTS Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The standard deviation of a standard normal distribution

### LAB : THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

Period Date LAB : THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

### Two-Sample T-Tests Allowing Unequal Variance (Enter Difference)

Chapter 45 Two-Sample T-Tests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when no assumption

### Business Statistics, 9e (Groebner/Shannon/Fry) Chapter 9 Introduction to Hypothesis Testing

Business Statistics, 9e (Groebner/Shannon/Fry) Chapter 9 Introduction to Hypothesis Testing 1) Hypothesis testing and confidence interval estimation are essentially two totally different statistical procedures

### Chapter 8: Hypothesis Testing for One Population Mean, Variance, and Proportion

Chapter 8: Hypothesis Testing for One Population Mean, Variance, and Proportion Learning Objectives Upon successful completion of Chapter 8, you will be able to: Understand terms. State the null and alternative

### SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Ch. 10 Chi SquareTests and the F-Distribution 10.1 Goodness of Fit 1 Find Expected Frequencies Provide an appropriate response. 1) The frequency distribution shows the ages for a sample of 100 employees.

### Statistiek II. John Nerbonne. October 1, 2010. Dept of Information Science j.nerbonne@rug.nl

Dept of Information Science j.nerbonne@rug.nl October 1, 2010 Course outline 1 One-way ANOVA. 2 Factorial ANOVA. 3 Repeated measures ANOVA. 4 Correlation and regression. 5 Multiple regression. 6 Logistic

### Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1)

Spring 204 Class 9: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the

### Online 12 - Sections 9.1 and 9.2-Doug Ensley

Student: Date: Instructor: Doug Ensley Course: MAT117 01 Applied Statistics - Ensley Assignment: Online 12 - Sections 9.1 and 9.2 1. Does a P-value of 0.001 give strong evidence or not especially strong

### Chapter 7 Notes - Inference for Single Samples. You know already for a large sample, you can invoke the CLT so:

Chapter 7 Notes - Inference for Single Samples You know already for a large sample, you can invoke the CLT so: X N(µ, ). Also for a large sample, you can replace an unknown σ by s. You know how to do a

### Introduction. Hypothesis Testing. Hypothesis Testing. Significance Testing

Introduction Hypothesis Testing Mark Lunt Arthritis Research UK Centre for Ecellence in Epidemiology University of Manchester 13/10/2015 We saw last week that we can never know the population parameters

### 1 Nonparametric Statistics

1 Nonparametric Statistics When finding confidence intervals or conducting tests so far, we always described the population with a model, which includes a set of parameters. Then we could make decisions

### Premaster Statistics Tutorial 4 Full solutions

Premaster Statistics Tutorial 4 Full solutions Regression analysis Q1 (based on Doane & Seward, 4/E, 12.7) a. Interpret the slope of the fitted regression = 125,000 + 150. b. What is the prediction for

### ELEMENTARY STATISTICS

ELEMENTARY STATISTICS Study Guide Dr. Shinemin Lin Table of Contents 1. Introduction to Statistics. Descriptive Statistics 3. Probabilities and Standard Normal Distribution 4. Estimates and Sample Sizes

### Final Exam Practice Problem Answers

Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal

### Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

### November 08, 2010. 155S8.6_3 Testing a Claim About a Standard Deviation or Variance

Chapter 8 Hypothesis Testing 8 1 Review and Preview 8 2 Basics of Hypothesis Testing 8 3 Testing a Claim about a Proportion 8 4 Testing a Claim About a Mean: σ Known 8 5 Testing a Claim About a Mean: σ

### LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.

### Point and Interval Estimates

Point and Interval Estimates Suppose we want to estimate a parameter, such as p or µ, based on a finite sample of data. There are two main methods: 1. Point estimate: Summarize the sample by a single number

### Inference for two Population Means

Inference for two Population Means Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison October 27 November 1, 2011 Two Population Means 1 / 65 Case Study Case Study Example

### Opgaven Onderzoeksmethoden, Onderdeel Statistiek

Opgaven Onderzoeksmethoden, Onderdeel Statistiek 1. What is the measurement scale of the following variables? a Shoe size b Religion c Car brand d Score in a tennis game e Number of work hours per week

### Lecture Notes Module 1

Lecture Notes Module 1 Study Populations A study population is a clearly defined collection of people, animals, plants, or objects. In psychological research, a study population usually consists of a specific

### " Y. Notation and Equations for Regression Lecture 11/4. Notation:

Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through

Chapter 11 Testing Hypotheses About Proportions Hypothesis testing method: uses data from a sample to judge whether or not a statement about a population may be true. Steps in Any Hypothesis Test 1. Determine

### DDBA 8438: The t Test for Independent Samples Video Podcast Transcript

DDBA 8438: The t Test for Independent Samples Video Podcast Transcript JENNIFER ANN MORROW: Welcome to The t Test for Independent Samples. My name is Dr. Jennifer Ann Morrow. In today's demonstration,

### Two-sample hypothesis testing, II 9.07 3/16/2004

Two-sample hypothesis testing, II 9.07 3/16/004 Small sample tests for the difference between two independent means For two-sample tests of the difference in mean, things get a little confusing, here,

### HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HOD 2990 10 November 2010 Lecture Background This is a lightning speed summary of introductory statistical methods for senior undergraduate

### Introduction. Statistics Toolbox

Introduction A hypothesis test is a procedure for determining if an assertion about a characteristic of a population is reasonable. For example, suppose that someone says that the average price of a gallon

### Review #2. Statistics

Review #2 Statistics Find the mean of the given probability distribution. 1) x P(x) 0 0.19 1 0.37 2 0.16 3 0.26 4 0.02 A) 1.64 B) 1.45 C) 1.55 D) 1.74 2) The number of golf balls ordered by customers of

### Tests for Two Proportions

Chapter 200 Tests for Two Proportions Introduction This module computes power and sample size for hypothesis tests of the difference, ratio, or odds ratio of two independent proportions. The test statistics

### NONPARAMETRIC STATISTICS 1. depend on assumptions about the underlying distribution of the data (or on the Central Limit Theorem)

NONPARAMETRIC STATISTICS 1 PREVIOUSLY parametric statistics in estimation and hypothesis testing... construction of confidence intervals computing of p-values classical significance testing depend on assumptions

### Step 6: Writing Your Hypotheses Written and Compiled by Amanda J. Rockinson-Szapkiw

Step 6: Writing Your Hypotheses Written and Compiled by Amanda J. Rockinson-Szapkiw Introduction To determine if a theory has the ability to explain, predict, or describe, you conduct experimentation and

### Confidence intervals

Confidence intervals Today, we re going to start talking about confidence intervals. We use confidence intervals as a tool in inferential statistics. What this means is that given some sample statistics,

### Example 1. so the Binomial Distrubtion can be considered normal

Chapter 6 8B: Examples of Using a Normal Distribution to Approximate a Binomial Probability Distribution Example 1 The probability of having a boy in any single birth is 50%. Use a normal distribution

### Hypothesis Testing for Beginners

Hypothesis Testing for Beginners Michele Piffer LSE August, 2011 Michele Piffer (LSE) Hypothesis Testing for Beginners August, 2011 1 / 53 One year ago a friend asked me to put down some easy-to-read notes

### Tutorial 5: Hypothesis Testing

Tutorial 5: Hypothesis Testing Rob Nicholls nicholls@mrc-lmb.cam.ac.uk MRC LMB Statistics Course 2014 Contents 1 Introduction................................ 1 2 Testing distributional assumptions....................

### Difference of Means and ANOVA Problems

Difference of Means and Problems Dr. Tom Ilvento FREC 408 Accounting Firm Study An accounting firm specializes in auditing the financial records of large firm It is interested in evaluating its fee structure,particularly