Experimental Designs (revisited)


 Sheryl Hamilton
 2 years ago
 Views:
Transcription
1 Introduction to ANOVA Copyright 2000, 2011, J. Toby Mordkoff Probably, the best way to start thinking about ANOVA is in terms of factors with levels. (I say this because this is how they are described when researchers talk to each other and this is how the initial analysis is conducted.) As defined in the chapter on experimental design (back in Part 1), a factor is an independent variable (i.e., some property, characteristic, or quality that can be manipulated) that is being used as a predictor or explainer of variance in the data analysis. In most cases, each specific value of the IV defines a level within the factor, but that doesn t have to be true, so we have two different labels. The way to keep these straight is to remember that an IV is created and exists when the experiment is being run; a factor is part of the analysis. Sometimes, for any of a variety of reasons, you can change your mind about the best way to approach the experiment between the time that you collected the data (and had levels of the IV) and when you conduct the analysis (and have levels of the factor). For example, sometimes we collapse two or more levels of an IV into one level of a factor. Experimental Designs (revisited) There are two manners in which experimental designs are described. The simple method only specifies the number of factors, as in oneway or twoway for experiments with one or two factors, respectively. The more complicated method specifies both the number of factors and the number of levels within each factor. For example, if an experiment involves two factors, one of which has two levels and the other of which has three levels, then the experiment is said to employ a twobythree design. The number of numbers in this description tells you how many factors; each of the numbers tells you how many levels. I suggest that you use the more complicated manner in most situations. Note: it is traditional to list the factors from smallest to largest; thus, one would not often say threebytwo design, but you can if that really would be better. It is also a good habit to specify whether the factors are within or betweensubjects. If all of the factors are of the same sort, just append the label at the end of factors & levels description; e.g., twobythree, betweensubjects design or twobythree, withinsubjects design. If the factor types are mixed, append the compound modifier mixedfactor and then say which factor or factors are within subjects using the label repeated measures ; e.g., twobythree, mixedfactor design, with repeated measures on the first factor if the twolevel factor is withinsubjects and the threelevel factor is betweensubjects. Note: be very careful to call these mixedfactor designs; do not, for example, call them mixedeffect designs, because those are a very different thing. Note, also, that there are other ways to say these things. For example, factorial is another label for a completely betweensubjects design. Oneway, Betweensubjects ANOVA The easiest way to describe the theory behind ANOVA is to talk about a oneway (i.e., onefactor), betweensubjects experiment. In fact, maybe because of its simplicity, SPSS lists this very specific type of analysis separately from all other forms of ANOVA; SPSS puts oneway, betweensubject ANOVA with the ttests, under Analyze... Compare Means... But don t be fooled by where it appears in the menus; this is an ANOVA, not a ttest. (Plus, I don t suggest using this version; use Analyze... General Linear Model Univariate, instead, for several reasons.)
2 For the purposes of discussion, imagine that we have conducted an experiment concerning motionsickness with three groups of subjects. One group was in the control condition, which we ll call C; nothing was given or done to these subjects other than putting them in a rotating drum and asking them to report how ill they feel on a tenpoint scale. Another group was given Dramamine, so this is group D, and then they, too, were put in the drum and asked for an illness value. The last group was given a placebo that looks like Dramamine before being put in the drum; this is group P. There were seven subjects in each group. To be clear (and to recap some issues that were covered above or before): we have one nominal IV which took on three values (C, D, or P) and was manipulated between subjects. Paralleling this, in the analysis we ll have one betweensubjects factor with three levels. The DV was quantitative and discrete, because the ratings were whole numbers between one and ten. Therefore, the data file will have two columns: one control variable that specifies condition (C, D, or P) and one data variable that contains the illness ratings (110). There were seven subjects in each group, so our data file will have 21 rows. The null hypothesis is that the population means for C, D, and P are all the same. This should written as H 0 : μ C = μ D = μ P. The big question is how does a oneway ANOVA test this hypothesis? Before answering this question, try thinking about this one, instead: if you took 21 random and independent samples from a single population (that has nonzero variance), then randomly divided these 21 observations into three groups of seven and calculated the mean for each of the groups, would the three means be exactly the same? If that is too abstract, imagine that you rolled a die 21 times, put the first seven rolls in Group 1, the next seven in Group 2, and the last seven in Group 3. The correct answer (to the question: would the three means be exactly the same? ) is no or, at least, not very often. By random chance, one of the groups will have the highest mean and another will have the lowest. In other words, even if the null hypothesis is exactly true (because the three samples were taken from the same population), we do not expect the three sample means to be the same. We would only expect them to be the same if the samples were very, very large and/or the variance within the population was very, very small. With that in mind, we can now go back and address the question of how oneway ANOVA works. There are, of course, a variety of ways to think about this; the following is my favorite because it parallels how I like to think about ttests. According to the null hypothesis, the three populations that were being sampled have the same mean. Under all forms of ANOVA, the three populations are assumed to have the same variance and are assumed to be normally distributed. Therefore, according to the null hypothesis, the three populations are exactly the same, because they have the same center, spread, and shape. Because of this, we can pool all of the data to calculate one, common, hypothetical sampling distribution of the mean. In contrast to the independentsample ttest, where we had the clinical trials version to fall back on, there is no such thing as an equalvariancenotassumed version of ANOVA. If the equalvariance assumption is violated, then you have to do something to correct the problem or
3 switch to a different form of analysis. Even more: because SPSS has no clue what to do about a violation of the equalvariance assumption if it happens, it won t even test the assumption unless you ask it to. As always for parametric statistics, the hypothetical sampling distribution (for the mean) is assumed to be normal with a spread that depends on two things: the variance in the sampled population and the size(s) of the sample(s). Back when we were doing ttests, we talked about the spread of the sampling distribution in terms of its standard deviation, which is called the standard error. (Read that again if this isn t already something that you re comfortable with: the standard deviation of the sampling distribution for the mean is the standard error; the standard error is the standard deviation of the hypothetical sampling distribution of the mean.) The calculation of the standard error for a ttest is simple: it s your best guess about the standard deviation (s) divided by the squareroot of the size of the sample. Now that we re doing ANOVA, we need to work in terms of variance, instead of standard deviations (for reasons you ll see soon). So, we now talk about the variance of the sampling distribution for the mean, which is just your best guess about the variance in the population divided by the sample size. Now you ve got everything that you need: a center, a spread (albeit in variance format), and a shape. With this hypothetical sampling distribution in hand, it is relatively easy to calculate the probability of observing three sample means that are as different and extreme (i.e., as far from the overall mean) as the three that we have. If this probability is very small (i.e., less than 5%), then we reject the idea that the three samples came from the same population. In particular, we reject the idea that the population means are the same; we don t reject (or even question) any of the assumptions. This is the same bassackward logic that we use for ttests, complete with the special status for assumptions over null hypotheses. We are not calculating the probability that the null hypothesis is true given the data; we are calculating the probability of getting the data given the null. A second way to think about oneway, betweensubjects ANOVA is in terms of a ratio of variances. The story starts out the same as the above, but doesn t use the hypothetical sampling distribution of the mean to calculate the probability of observing the three sample means. Instead, it refers to the spread of the hypothetical distribution as the withingroup or unexplained variance. This version also doesn t talk about the three sample means as being different from each other in a pairwise sense, but simply calculates the variance across these three values and calls this the betweengroup or explained variance. Then it calculates a ratio by dividing the betweengroup variance by the withingroup variance. This value is compared to a critical value in a table; if the observed ratio is above the critical  implying that the group means are too variable to be consistent with the idea that they all came from the same population and are only different due to chance  then the null hypothesis is rejected. Puzzler: assume that you take three samples of 10 each from a single population that has a true variance (σ 2 ) of (I.e., I m telling you that the null hypothesis is true; the three samples came from the same distribution.) What do you expect the bestguess variance across the three sample means to be? Note: I m not asking you about the bestguess variance across all of the
4 data; that s , because s 2 is an unbiased estimator of σ 2 and we know that σ 2 is I m asking you about the variance across the three means. Hey! Did you actually solve the puzzler  or, at least, spend some time on it  or did you just keep reading like it was just another paragraph? If you took it seriously and worked on it, then you have my apologies for the interruption (as well as for the unflattering inference behind it); please carry on. If you just breezed on by, however, then please go back and try to solve it. It wasn t a koan (i.e., an unsolvable problem that helps you to achieve enlightenment through some process that I don t understand); it was a real problem that I was hoping that you could solve. Hint: Deep Thought might be helpful. A third way to think about oneway ANOVA is close to the second, but even farther removed from the way that we talk about ttests. This is the approach from which ANOVA gets its name, because it analyzes (i.e., breaks up) the total variance into various components. We start with a general model that says that all observed values are the sum of several components. Because summing is linear, the model is called the General Linear Model (GLM). In the case of oneway, betweensubjects ANOVA, the GLM equation for each observed value is: O ki = F k + S i + ε where O ki is the observed value for subject i who was in condition k; F k is the fixed effect of the condition k, which is a level of the factor; S i is the fixed mean of subject i; and ε is normallydistributed error. Because it isn t possible to separate the effect of the subject from the error (because we only measure each subject once), it is useful to think of the above as: O ki = F k + ( S i + ε ) The version of the GLM equation that I ve given here embodies the claim that the observed value is determined by the mean of the subject plus two additive influences (viz., the factor effect and the random error). Other people prefer to use a slightly different equation which is a little less focused on the subjects  O ki = M + F k + S i + ε  which claims that the observed value is determined by some overall mean for all subjects (M), plus additive effects from the factor, the subject, and the error. These two versions are equivalent because ANOVA concerns variance, so whether you have a separate overall mean or put this into the subjects is irrelevant because an additive constant (such as M) has no variance, and adding or subtracting the overall mean from each of the subjects would not have any effect on variance across subjects. Before going on, note or recall the following rule regarding variance values: the variance of the sum (of two or more statisticallyindependent variables) is equal to the sum of the variances. This is a key to ANOVA, which is why you were probably asked to memorize some version of this statement during undergrad stats; it is why we use variance, instead of standard deviations. Because of the additivity of variance, the GLM equation above implies this: Which can also be written as: σ 2 O = σ 2 F + σ 2 S + σ 2 ε σ 2 O = σ 2 F + σ 2 S+ε
5 This last equation can be read as: the variance of the observed values equals the variance of the fixed factor effects plus the variance of the sum of the subject means and the error. As mentioned above, in betweensubjects ANOVA we use the second version of the variance equation, because we have no way of separating the variance due to subjects from the variance due to error (because we only measure each subject one time). The first computational step to oneway ANOVA calculates the total variance in the sample. This step ignores that there are separate conditions and simply gets an estimate of the variance across all values of the DV. This is σ 2 O. The second step uses the means in each of the conditions to estimate the values of F k. (Note that the F k values are deviations from the overall mean, so they must sum to zero.) The variance across these values is used to estimate σ 2 F. The third step notes that, if σ 2 O = σ 2 F + σ 2 S+ε, then σ 2 S+ε = σ 2 O σ 2 F (by some simple algebra). So we can use the difference between of our estimates of σ 2 O and σ 2 F to estimate σ 2 S+ε. We have now analyzed or partitioned the total variance into two components: one component that is associated with differences between conditions and another that is associated with differences between subjects (within each of the conditions) plus error. These are often referred to as explained and unexplained variance, respectively, on the grounds that the former can be explained in terms of the experimental manipulation that defines the conditions, while the latter cannot be explained. Because σ 2 F is estimated (and should, therefore, probably be written as s 2 F but noone does that), it has an associated degrees of freedom. Because it was estimated using the k condition means and we always lose one degree of freedom to the overall mean of any set of values (because the mean is needed to calculate variance), it has k 1 degrees of freedom. Because σ 2 F is going to end up in the numerator of something called the Fratio, k 1 is the numerator degrees of freedom. Likewise, because σ 2 S+ε is estimated (albeit by subtracting two other values), it also has a certain number of degrees of freedom. Because it was estimated using N pieces of data which were divided into k groups, each with their own mean (which each had to be calculated), it has N k degrees of freedom. Finally, because σ 2 S+ε will be in the denominator of the Fratio, N k is the denominator degrees of freedom. That s enough for now.
The Assumption(s) of Normality
The Assumption(s) of Normality Copyright 2000, 2011, J. Toby Mordkoff This is very complicated, so I ll provide two versions. At a minimum, you should know the short one. It would be great if you knew
More information" Y. Notation and Equations for Regression Lecture 11/4. Notation:
Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through
More informationChapter 7. Oneway ANOVA
Chapter 7 Oneway ANOVA Oneway ANOVA examines equality of population means for a quantitative outcome and a single categorical explanatory variable with any number of levels. The ttest of Chapter 6 looks
More informationANOVA ANOVA. TwoWay ANOVA. OneWay ANOVA. When to use ANOVA ANOVA. Analysis of Variance. Chapter 16. A procedure for comparing more than two groups
ANOVA ANOVA Analysis of Variance Chapter 6 A procedure for comparing more than two groups independent variable: smoking status nonsmoking one pack a day > two packs a day dependent variable: number of
More informationTesting Group Differences using Ttests, ANOVA, and Nonparametric Measures
Testing Group Differences using Ttests, ANOVA, and Nonparametric Measures Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 354870348 Phone:
More informationStudy Guide for the Final Exam
Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make
More informationRecall this chart that showed how most of our course would be organized:
Chapter 4 OneWay ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical
More informationOneWay Analysis of Variance
OneWay Analysis of Variance Note: Much of the math here is tedious but straightforward. We ll skim over it in class but you should be sure to ask questions if you don t understand it. I. Overview A. We
More informationStatistics Review PSY379
Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses
More informationANOVA Analysis of Variance
ANOVA Analysis of Variance What is ANOVA and why do we use it? Can test hypotheses about mean differences between more than 2 samples. Can also make inferences about the effects of several different IVs,
More informationThe F distribution and the basic principle behind ANOVAs. Situating ANOVAs in the world of statistical tests
Tutorial The F distribution and the basic principle behind ANOVAs Bodo Winter 1 Updates: September 21, 2011; January 23, 2014; April 24, 2014; March 2, 2015 This tutorial focuses on understanding rather
More informationReporting Statistics in Psychology
This document contains general guidelines for the reporting of statistics in psychology research. The details of statistical reporting vary slightly among different areas of science and also among different
More informationAn analysis method for a quantitative outcome and two categorical explanatory variables.
Chapter 11 TwoWay ANOVA An analysis method for a quantitative outcome and two categorical explanatory variables. If an experiment has a quantitative outcome and two categorical explanatory variables that
More informationProfile analysis is the multivariate equivalent of repeated measures or mixed ANOVA. Profile analysis is most commonly used in two cases:
Profile Analysis Introduction Profile analysis is the multivariate equivalent of repeated measures or mixed ANOVA. Profile analysis is most commonly used in two cases: ) Comparing the same dependent variables
More informationMain Effects and Interactions
Main Effects & Interactions page 1 Main Effects and Interactions So far, we ve talked about studies in which there is just one independent variable, such as violence of television program. You might randomly
More informationNCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )
Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates
More informationChapter 6: t test for dependent samples
Chapter 6: t test for dependent samples ****This chapter corresponds to chapter 11 of your book ( t(ea) for Two (Again) ). What it is: The t test for dependent samples is used to determine whether the
More informationLAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.
More informationIntroduction to Regression. Dr. Tom Pierce Radford University
Introduction to Regression Dr. Tom Pierce Radford University In the chapter on correlational techniques we focused on the Pearson R as a tool for learning about the relationship between two variables.
More informationComparing Means in Two Populations
Comparing Means in Two Populations Overview The previous section discussed hypothesis testing when sampling from a single population (either a single mean or two means from the same population). Now we
More informationTwosample hypothesis testing, II 9.07 3/16/2004
Twosample hypothesis testing, II 9.07 3/16/004 Small sample tests for the difference between two independent means For twosample tests of the difference in mean, things get a little confusing, here,
More informationInference in Regression Analysis. Dr. Frank Wood
Inference in Regression Analysis Dr. Frank Wood Inference in the Normal Error Regression Model Y i = β 0 + β 1 X i + ɛ i Y i value of the response variable in the i th trial β 0 and β 1 are parameters
More informationChapter 9. TwoSample Tests. Effect Sizes and Power Paired t Test Calculation
Chapter 9 TwoSample Tests Paired t Test (Correlated Groups t Test) Effect Sizes and Power Paired t Test Calculation Summary Independent t Test Chapter 9 Homework Power and TwoSample Tests: Paired Versus
More informationIntroduction to Analysis of Variance (ANOVA) Limitations of the ttest
Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One Way ANOVA Limitations of the ttest Although the ttest is commonly used, it has limitations Can only
More informationRegression Analysis Prof. Soumen Maity Department of Mathematics Indian Institute of Technology, Kharagpur
Regression Analysis Prof. Soumen Maity Department of Mathematics Indian Institute of Technology, Kharagpur Lecture  7 Multiple Linear Regression (Contd.) This is my second lecture on Multiple Linear Regression
More informationCase Study in Data Analysis Does a drug prevent cardiomegaly in heart failure?
Case Study in Data Analysis Does a drug prevent cardiomegaly in heart failure? Harvey Motulsky hmotulsky@graphpad.com This is the first case in what I expect will be a series of case studies. While I mention
More informationThe Dummy s Guide to Data Analysis Using SPSS
The Dummy s Guide to Data Analysis Using SPSS Mathematics 57 Scripps College Amy Gamble April, 2001 Amy Gamble 4/30/01 All Rights Rerserved TABLE OF CONTENTS PAGE Helpful Hints for All Tests...1 Tests
More informationChapter 5 Analysis of variance SPSS Analysis of variance
Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means Oneway ANOVA To test the null hypothesis that several population means are equal,
More informationUNDERSTANDING ANALYSIS OF COVARIANCE (ANCOVA)
UNDERSTANDING ANALYSIS OF COVARIANCE () In general, research is conducted for the purpose of explaining the effects of the independent variable on the dependent variable, and the purpose of research design
More informationInferential Statistics
Inferential Statistics Sampling and the normal distribution Zscores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are
More informationMultivariate Analysis of Variance (MANOVA): I. Theory
Gregory Carey, 1998 MANOVA: I  1 Multivariate Analysis of Variance (MANOVA): I. Theory Introduction The purpose of a t test is to assess the likelihood that the means for two groups are sampled from the
More informationINTERPRETING THE ONEWAY ANALYSIS OF VARIANCE (ANOVA)
INTERPRETING THE ONEWAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the oneway ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of
More informationToday: Dummy variables. Dummy variables in a multiple regression, regression wrap up.
Today: Dummy variables. Dummy variables in a multiple regression, regression wrap up. Looking back in regression, we ve looked at how an interval data response y changes as an interval data explanatory
More information15. Analysis of Variance
15. Analysis of Variance A. Introduction B. ANOVA Designs C. OneFactor ANOVA (BetweenSubjects) D. MultiFactor ANOVA (BetweenSubjects) E. Unequal Sample Sizes F. Tests Supplementing ANOVA G. WithinSubjects
More informationLesson 1: Comparison of Population Means Part c: Comparison of Two Means
Lesson : Comparison of Population Means Part c: Comparison of Two Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis
More information1 Theory: The General Linear Model
QMIN GLM Theory  1.1 1 Theory: The General Linear Model 1.1 Introduction Before digital computers, statistics textbooks spoke of three procedures regression, the analysis of variance (ANOVA), and the
More informationOneWay Analysis of Variance (ANOVA) Example Problem
OneWay Analysis of Variance (ANOVA) Example Problem Introduction Analysis of Variance (ANOVA) is a hypothesistesting technique used to test the equality of two or more population (or treatment) means
More information1.5 Oneway Analysis of Variance
Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments
More informationRandomized Block Analysis of Variance
Chapter 565 Randomized Block Analysis of Variance Introduction This module analyzes a randomized block analysis of variance with up to two treatment factors and their interaction. It provides tables of
More informationCHAPTER 14 NONPARAMETRIC TESTS
CHAPTER 14 NONPARAMETRIC TESTS Everything that we have done up until now in statistics has relied heavily on one major fact: that our data is normally distributed. We have been able to make inferences
More informationSPSS Explore procedure
SPSS Explore procedure One useful function in SPSS is the Explore procedure, which will produce histograms, boxplots, stemandleaf plots and extensive descriptive statistics. To run the Explore procedure,
More informationUnit 31: OneWay ANOVA
Unit 31: OneWay ANOVA Summary of Video A vase filled with coins takes center stage as the video begins. Students will be taking part in an experiment organized by psychology professor John Kelly in which
More informationFactor B: Curriculum New Math Control Curriculum (B (B 1 ) Overall Mean (marginal) Females (A 1 ) Factor A: Gender Males (A 2) X 21
1 Factorial ANOVA The ANOVA designs we have dealt with up to this point, known as simple ANOVA or oneway ANOVA, had only one independent grouping variable or factor. However, oftentimes a researcher has
More informationPart 2: Analysis of Relationship Between Two Variables
Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable
More information2. Simple Linear Regression
Research methods  II 3 2. Simple Linear Regression Simple linear regression is a technique in parametric statistics that is commonly used for analyzing mean response of a variable Y which changes according
More informationANOVA  Analysis of Variance
ANOVA  Analysis of Variance ANOVA  Analysis of Variance Extends independentsamples t test Compares the means of groups of independent observations Don t be fooled by the name. ANOVA does not compare
More informationQUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NONPARAMETRIC TESTS
QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NONPARAMETRIC TESTS This booklet contains lecture notes for the nonparametric work in the QM course. This booklet may be online at http://users.ox.ac.uk/~grafen/qmnotes/index.html.
More informationAnalysis of Variance. MINITAB User s Guide 2 31
3 Analysis of Variance Analysis of Variance Overview, 32 OneWay Analysis of Variance, 35 TwoWay Analysis of Variance, 311 Analysis of Means, 313 Overview of Balanced ANOVA and GLM, 318 Balanced
More informationAnalysis of Data. Organizing Data Files in SPSS. Descriptive Statistics
Analysis of Data Claudia J. Stanny PSY 67 Research Design Organizing Data Files in SPSS All data for one subject entered on the same line Identification data Betweensubjects manipulations: variable to
More information13 TwoSample T Tests
www.ck12.org CHAPTER 13 TwoSample T Tests Chapter Outline 13.1 TESTING A HYPOTHESIS FOR DEPENDENT AND INDEPENDENT SAMPLES 270 www.ck12.org Chapter 13. TwoSample T Tests 13.1 Testing a Hypothesis for
More informationThe scatterplot indicates a positive linear relationship between waist size and body fat percentage:
STAT E150 Statistical Methods Multiple Regression Three percent of a man's body is essential fat, which is necessary for a healthy body. However, too much body fat can be dangerous. For men between the
More informationSection 13, Part 1 ANOVA. Analysis Of Variance
Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability
More informationOutline. Topic 4  Analysis of Variance Approach to Regression. Partitioning Sums of Squares. Total Sum of Squares. Partitioning sums of squares
Topic 4  Analysis of Variance Approach to Regression Outline Partitioning sums of squares Degrees of freedom Expected mean squares General linear test  Fall 2013 R 2 and the coefficient of correlation
More informationTwosample ttests.  Independent samples  Pooled standard devation  The equal variance assumption
Twosample ttests.  Independent samples  Pooled standard devation  The equal variance assumption Last time, we used the mean of one sample to test against the hypothesis that the true mean was a particular
More informationStatistical Significance and Bivariate Tests
Statistical Significance and Bivariate Tests BUS 735: Business Decision Making and Research 1 1.1 Goals Goals Specific goals: Refamiliarize ourselves with basic statistics ideas: sampling distributions,
More informationA Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution
A Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 4: September
More informationSimple Regression Theory II 2010 Samuel L. Baker
SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the
More informationContrasts and Post Hoc Tests for OneWay Independent ANOVA Using SPSS
Contrasts and Post Hoc Tests for OneWay Independent ANOVA Using SPSS Running the Analysis In last week s lecture we came across an example, from Field (2013), about the drug Viagra, which is a sexual
More informationANOVA must be modified to take correlated errors into account when multiple measurements are made for each subject.
Chapter 14 WithinSubjects Designs ANOVA must be modified to take correlated errors into account when multiple measurements are made for each subject. 14.1 Overview of withinsubjects designs Any categorical
More informationFactorial Analysis of Variance
Chapter 560 Factorial Analysis of Variance Introduction A common task in research is to compare the average response across levels of one or more factor variables. Examples of factor variables are income
More informationSCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES
SCHOOL OF HEALTH AND HUMAN SCIENCES Using SPSS Topics addressed today: 1. Differences between groups 2. Graphing Use the s4data.sav file for the first part of this session. DON T FORGET TO RECODE YOUR
More informationChapter 7 Part 2. Hypothesis testing Power
Chapter 7 Part 2 Hypothesis testing Power November 6, 2008 All of the normal curves in this handout are sampling distributions Goal: To understand the process of hypothesis testing and the relationship
More informationMultivariate Analysis of Variance (MANOVA)
Multivariate Analysis of Variance (MANOVA) Aaron French, Marcelo Macedo, John Poulsen, Tyler Waterson and Angela Yu Keywords: MANCOVA, special cases, assumptions, further reading, computations Introduction
More informationSPSS: Descriptive and Inferential Statistics. For Windows
For Windows August 2012 Table of Contents Section 1: Summarizing Data...3 1.1 Descriptive Statistics...3 Section 2: Inferential Statistics... 10 2.1 ChiSquare Test... 10 2.2 T tests... 11 2.3 Correlation...
More informationTABLE OF CONTENTS. About Chi Squares... 1. What is a CHI SQUARE?... 1. Chi Squares... 1. Hypothesis Testing with Chi Squares... 2
About Chi Squares TABLE OF CONTENTS About Chi Squares... 1 What is a CHI SQUARE?... 1 Chi Squares... 1 Goodness of fit test (Oneway χ 2 )... 1 Test of Independence (Twoway χ 2 )... 2 Hypothesis Testing
More informationContrasts ask specific questions as opposed to the general ANOVA null vs. alternative
Chapter 13 Contrasts and Custom Hypotheses Contrasts ask specific questions as opposed to the general ANOVA null vs. alternative hypotheses. In a oneway ANOVA with a k level factor, the null hypothesis
More informationINTERPRETING THE REPEATEDMEASURES ANOVA
INTERPRETING THE REPEATEDMEASURES ANOVA USING THE SPSS GENERAL LINEAR MODEL PROGRAM RM ANOVA In this scenario (based on a RM ANOVA example from Leech, Barrett, and Morgan, 2005) each of 12 participants
More informationUNDERSTANDING THE TWOWAY ANOVA
UNDERSTANDING THE e have seen how the oneway ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables
More informationANOVA MULTIPLE CHOICE QUESTIONS. In the following multiplechoice questions, select the best answer.
ANOVA MULTIPLE CHOICE QUESTIONS In the following multiplechoice questions, select the best answer. 1. Analysis of variance is a statistical method of comparing the of several populations. a. standard
More informationAdditional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm
Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm
More informationMULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS
MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS MSR = Mean Regression Sum of Squares MSE = Mean Squared Error RSS = Regression Sum of Squares SSE = Sum of Squared Errors/Residuals α = Level of Significance
More informationIntroduction to Statistics for Computer Science Projects
Introduction Introduction to Statistics for Computer Science Projects Peter Coxhead Whole modules are devoted to statistics and related topics in many degree programmes, so in this short session all I
More informationOneWay Analysis of Variance: A Guide to Testing Differences Between Multiple Groups
OneWay Analysis of Variance: A Guide to Testing Differences Between Multiple Groups In analysis of variance, the main research question is whether the sample means are from different populations. The
More informationMINITAB ASSISTANT WHITE PAPER
MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. OneWay
More informationInternational Statistical Institute, 56th Session, 2007: Phil Everson
Teaching Regression using American Football Scores Everson, Phil Swarthmore College Department of Mathematics and Statistics 5 College Avenue Swarthmore, PA198, USA Email: peverso1@swarthmore.edu 1. Introduction
More informationRepeated Measures Analysis of Variance
Chapter 214 Repeated Measures Analysis of Variance Introduction This procedure performs an analysis of variance on repeated measures (withinsubject) designs using the general linear models approach. The
More informationLecture 7: Binomial Test, Chisquare
Lecture 7: Binomial Test, Chisquare Test, and ANOVA May, 01 GENOME 560, Spring 01 Goals ANOVA Binomial test Chi square test Fisher s exact test Su In Lee, CSE & GS suinlee@uw.edu 1 Whirlwind Tour of One/Two
More informationNonInferiority Tests for Two Means using Differences
Chapter 450 oninferiority Tests for Two Means using Differences Introduction This procedure computes power and sample size for noninferiority tests in twosample designs in which the outcome is a continuous
More informationHow To Run Statistical Tests in Excel
How To Run Statistical Tests in Excel Microsoft Excel is your best tool for storing and manipulating data, calculating basic descriptive statistics such as means and standard deviations, and conducting
More informationJMP for Basic Univariate and Multivariate Statistics
JMP for Basic Univariate and Multivariate Statistics Methods for Researchers and Social Scientists Second Edition Ann Lehman, Norm O Rourke, Larry Hatcher and Edward J. Stepanski Lehman, Ann, Norm O Rourke,
More informationJoint Probability Distributions and Random Samples (Devore Chapter Five)
Joint Probability Distributions and Random Samples (Devore Chapter Five) 101634501 Probability and Statistics for Engineers Winter 20102011 Contents 1 Joint Probability Distributions 1 1.1 Two Discrete
More informationABSORBENCY OF PAPER TOWELS
ABSORBENCY OF PAPER TOWELS 15. Brief Version of the Case Study 15.1 Problem Formulation 15.2 Selection of Factors 15.3 Obtaining Random Samples of Paper Towels 15.4 How will the Absorbency be measured?
More informationIntroduction to Regression and Data Analysis
Statlab Workshop Introduction to Regression and Data Analysis with Dan Campbell and Sherlock Campbell October 28, 2008 I. The basics A. Types of variables Your variables may take several forms, and it
More information9.63 Laboratory in Cognitive Science. Interaction: memory experiment
9.63 Laboratory in Cognitive Science Fall 25 Lecture 6 Factorial Design: Complex design Aude Oliva Ben Balas, Charles Kemp Interaction: memory experiment Goal: In an experiment, you compare the explicit
More informationCS 147: Computer Systems Performance Analysis
CS 147: Computer Systems Performance Analysis OneFactor Experiments CS 147: Computer Systems Performance Analysis OneFactor Experiments 1 / 42 Overview Introduction Overview Overview Introduction Finding
More informationThis chapter discusses some of the basic concepts in inferential statistics.
Research Skills for Psychology Majors: Everything You Need to Know to Get Started Inferential Statistics: Basic Concepts This chapter discusses some of the basic concepts in inferential statistics. Details
More informationIntroduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.
Introduction to Hypothesis Testing CHAPTER 8 LEARNING OBJECTIVES After reading this chapter, you should be able to: 1 Identify the four steps of hypothesis testing. 2 Define null hypothesis, alternative
More informationAnalysis of Variance ANOVA
Analysis of Variance ANOVA Overview We ve used the t test to compare the means from two independent groups. Now we ve come to the final topic of the course: how to compare means from more than two populations.
More informationDDBA 8438: The t Test for Independent Samples Video Podcast Transcript
DDBA 8438: The t Test for Independent Samples Video Podcast Transcript JENNIFER ANN MORROW: Welcome to The t Test for Independent Samples. My name is Dr. Jennifer Ann Morrow. In today's demonstration,
More informationOneWay ANOVA using SPSS 11.0. SPSS ANOVA procedures found in the Compare Means analyses. Specifically, we demonstrate
1 OneWay ANOVA using SPSS 11.0 This section covers steps for testing the difference between three or more group means using the SPSS ANOVA procedures found in the Compare Means analyses. Specifically,
More informationStatistics: revision
NST 1B Experimental Psychology Statistics practical 5 Statistics: revision Rudolf Cardinal & Mike Aitken 3 / 4 May 2005 Department of Experimental Psychology University of Cambridge Slides at pobox.com/~rudolf/psychology
More informationAn example ANOVA situation. 1Way ANOVA. Some notation for ANOVA. Are these differences significant? Example (Treating Blisters)
An example ANOVA situation Example (Treating Blisters) 1Way ANOVA MATH 143 Department of Mathematics and Statistics Calvin College Subjects: 25 patients with blisters Treatments: Treatment A, Treatment
More informationAbout Single Factor ANOVAs
About Single Factor ANOVAs TABLE OF CONTENTS About Single Factor ANOVAs... 1 What is a SINGLE FACTOR ANOVA... 1 Single Factor ANOVA... 1 Calculating Single Factor ANOVAs... 2 STEP 1: State the hypotheses...
More informationANSWERS TO EXERCISES AND REVIEW QUESTIONS
ANSWERS TO EXERCISES AND REVIEW QUESTIONS PART FIVE: STATISTICAL TECHNIQUES TO COMPARE GROUPS Before attempting these questions read through the introduction to Part Five and Chapters 1621 of the SPSS
More informationIntro to Parametric & Nonparametric Statistics
Intro to Parametric & Nonparametric Statistics Kinds & definitions of nonparametric statistics Where parametric stats come from Consequences of parametric assumptions Organizing the models we will cover
More informationModule 9: Nonparametric Tests. The Applied Research Center
Module 9: Nonparametric Tests The Applied Research Center Module 9 Overview } Nonparametric Tests } Parametric vs. Nonparametric Tests } Restrictions of Nonparametric Tests } OneSample ChiSquare Test
More informationComparing Two Populations OPRE 6301
Comparing Two Populations OPRE 6301 Introduction... In many applications, we are interested in hypotheses concerning differences between the means of two populations. For example, we may wish to decide
More informationProbability Using Dice
Using Dice One Page Overview By Robert B. Brown, The Ohio State University Topics: Levels:, Statistics Grades 5 8 Problem: What are the probabilities of rolling various sums with two dice? How can you
More informationSupplement on the KruskalWallis test. So what do you do if you don t meet the assumptions of an ANOVA?
Supplement on the KruskalWallis test So what do you do if you don t meet the assumptions of an ANOVA? {There are other ways of dealing with things like unequal variances and nonnormal data, but we won
More informationProjects Involving Statistics (& SPSS)
Projects Involving Statistics (& SPSS) Academic Skills Advice Starting a project which involves using statistics can feel confusing as there seems to be many different things you can do (charts, graphs,
More information