Size: px
Start display at page:

Download ""

Transcription

1

2

3

4

5 α α

6 λ α = = λ λ α ψ = = α α α λ λ ψ α = + β = > θ θ β > β β θ θ θ β θ β

7 γ θ β = γ θ > β > γ θ β γ = θ β = θ β = θ β = β θ = β β θ = = = β β θ

8 = +

9 α α

10 α

11

12

13

14 α α = = λ λ λ λ λ λ λ = λ λ α α α α λ ψ + α = α =

15 = = β θ = θ θ β β

16

17

18

The University of Kansas

The University of Kansas All Greek Summary Rank Chapter Name Total Membership Chapter GPA 1 Beta Theta Pi 3.57 2 Chi Omega 3.42 3 Kappa Alpha Theta 3.36 4 Kappa Kappa Gamma 3.28 *5 Pi Beta Phi 3.27 *5 Gamma Phi Beta 3.27 *7 Alpha

More information

Fraternity & Sorority Academic Report Spring 2016

Fraternity & Sorority Academic Report Spring 2016 Fraternity & Sorority Academic Report Organization Overall GPA Triangle 17-17 1 Delta Chi 88 12 100 2 Alpha Epsilon Pi 77 3 80 3 Alpha Delta Chi 28 4 32 4 Alpha Delta Pi 190-190 4 Phi Gamma Delta 85 3

More information

Fraternity & Sorority Academic Report Fall 2015

Fraternity & Sorority Academic Report Fall 2015 Fraternity & Sorority Academic Report Organization Lambda Upsilon Lambda 1-1 1 Delta Chi 77 19 96 2 Alpha Delta Chi 30 1 31 3 Alpha Delta Pi 134 62 196 4 Alpha Sigma Phi 37 13 50 5 Sigma Alpha Epsilon

More information

The University of Kansas

The University of Kansas Fall 2011 Scholarship Report All Greek Summary Rank Chapter Name Chapter GPA 1 Beta Theta Pi 3.57 2 Chi Omega 3.42 3 Kappa Alpha Theta 3.36 *4 Gamma Phi Beta 3.28 4 Kappa Kappa Gamma 3.28 6 Pi Beta Phi

More information

it = α + β i + γ 1 t + γ 2 t + γ 3 t +λ 1 ( i ) + λ 2 ( i ) + λ 3 ( i ) +δx i + ϵ it, it i i t t t i λ 1 λ 3 t t t i = α + β i + δx i + ϵ i i i i 12 Harrison Cleveland McKinley Roosevelt 10 8 6

More information

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report University of Maryland Fraternity & Sorority Life Academic Report Academic and Population Statistics Population: # of Students: # of New Members: Avg. Size: Avg. GPA: % of the Undergraduate Population

More information

2. Illustration of the Nikkei 225 option data

2. Illustration of the Nikkei 225 option data 1. Introduction 2. Illustration of the Nikkei 225 option data 2.1 A brief outline of the Nikkei 225 options market τ 2.2 Estimation of the theoretical price τ = + ε ε = = + ε + = + + + = + ε + ε + ε =

More information

IU Fraternity & Sorority Spring 2012 Grade Report

IU Fraternity & Sorority Spring 2012 Grade Report SORORITY CHAPTER RANKINGS 1 Chi Delta Phi 3.550 2 Alpha Omicron Pi 3.470 3 Kappa Delta 3.447 4 Alpha Gamma Delta 3.440 5 Delta Gamma 3.431 6 Alpha Chi Omega 3.427 7 Phi Mu 3.391 8 Chi Omega 3.372 8 Kappa

More information

SPRING 2011 FRATERNITY/SORORITY GRADE REPORT SORORITY CHAPTER RANKINGS

SPRING 2011 FRATERNITY/SORORITY GRADE REPORT SORORITY CHAPTER RANKINGS SPRING 2011 FRATERNITY/SORORITY GRADE REPORT SORORITY CHAPTER RANKINGS 1 Kappa Alpha Theta 3.4643 2 Phi Mu 3.4273 3 Kappa Delta 3.4260 4 Alpha Omicron Pi 3.4072 5 Delta Gamma 3.4072 6 Alpha Chi Omega 3.3989

More information

(k 1)! e (m 1)/N v(k). (k 1)!

(k 1)! e (m 1)/N v(k). (k 1)! m N 1/N k v : N R m k 1 k B(k 1, m 1; 1/N) = ( ) ( m 1 1 k 1 N ) k 1 ( ) m k N 1. N m N (m 1)/N P ((m 1)/N; k 1) = 1 (k 1)! m EV (m) = k=1 1 (k 1)! ( ) k 1 m 1 e (m 1)/N. N ( ) k 1 m 1 e (m 1)/N v(k).

More information

x o R n a π(a, x o ) A R n π(a, x o ) π(a, x o ) A R n a a x o x o x n X R n δ(x n, x o ) d(a, x n ) d(, ) δ(, ) R n x n X d(a, x n ) δ(x n, x o ) a = a A π(a, xo ) a a A = X = R π(a, x o ) = (x o + ρ)

More information

Mizzou Homecoming Announcements. October 11, 2015

Mizzou Homecoming Announcements. October 11, 2015 Mizzou Homecoming Announcements October 11, 2015 Greek Groupings Blood Fifth Delta Delta Delta, Delta Upsilon & Kappa Sigma Fourth Zeta Tau Alpha & Phi Gamma Delta Sigma Kappa Third Sigma Sigma Sigma,

More information

1. Pomfret 1,400 points 2. Buchanan Droke/Gladson Ripley Hall 800 points 3. Holcomb/Futrall Hall 650 points 4. Maple Hill 650 points

1. Pomfret 1,400 points 2. Buchanan Droke/Gladson Ripley Hall 800 points 3. Holcomb/Futrall Hall 650 points 4. Maple Hill 650 points Homecoming 2012 Winners Overall Winners: Greek Category 1,850 2. Chi Omega, Order, Sigma Pi, Sigma Alpha Epsilon 1,800 Sigma Iota Alpha 3. Zeta Tau Alpha, Kappa Sigma, Alpha Phi Alpha 1,500 Residence Hall

More information

PRESENTATION OF DATA AVAILABLE

PRESENTATION OF DATA AVAILABLE Statistical analysis and definition of blockages-prediction formulae for the wastewater network of Oslo by evolutionary computing ABSTRACT KEYWORDS INTRODUCTION PRESENTATION OF DATA AVAILABLE Figure 1

More information

Fraternity, Sorority and Cooperative Life: Fall 2013 Semester Report

Fraternity, Sorority and Cooperative Life: Fall 2013 Semester Report Fraternity, Sorority and Cooperative Life: Fall 2013 Report Undergraduate Enrollment: 29,440; Undergraduate Men: 16,843; Undergraduate Women: 12,597 Total Fraternity and Sorority Membership: 5,429 Interfraternity

More information

Fraternity, Sorority & Cooperative Life: Spring 2013 Semester Report

Fraternity, Sorority & Cooperative Life: Spring 2013 Semester Report Fraternity, Sorority & Cooperative Life: Spring 2013 Report Undergraduate Enrollment: 28,023 Total Fraternity & Sorority Membership: 5,452 Interfraternity (IFC): 2,946 Multicultural Greek (MGC): 108 National

More information

Chapter Number Chapter Name STTI Global Region 001 Alpha North America Region 9 002 Gamma North America Region 4 003 Delta North America Region 3 004

Chapter Number Chapter Name STTI Global Region 001 Alpha North America Region 9 002 Gamma North America Region 4 003 Delta North America Region 3 004 Chapter Number Chapter Name STTI Global Region 001 Alpha North America Region 9 002 Gamma North America Region 4 003 Delta North America Region 3 004 Epsilon North America Region 9 005 Zeta North America

More information

Fraternity, Sorority and Cooperative Life: Spring 2016 Semester Report

Fraternity, Sorority and Cooperative Life: Spring 2016 Semester Report Fraternity, Sorority and Cooperative Life: Spring 2016 Report Undergraduate Enrollment: 27,679; Undergraduate Men: 15,782; Undergraduate Women: 11,897 Total Fraternity and Sorority Membership: 6,486 Interfraternity

More information

Fraternity, Sorority and Cooperative Life: Fall 2015 Semester Report

Fraternity, Sorority and Cooperative Life: Fall 2015 Semester Report Fraternity, Sorority and Cooperative Life: Fall 2015 Report Undergraduate Enrollment: 29,497; Undergraduate Men: 16,903; Undergraduate Women: 12,594 Total Fraternity and Sorority hip: 5,849 Interfraternity

More information

Fraternity, Sorority and Cooperative Life: Spring 2014 Semester Report

Fraternity, Sorority and Cooperative Life: Spring 2014 Semester Report Fraternity, Sorority and Cooperative Life: Spring 2014 Report Undergraduate Enrollment: 27,619; Undergraduate Men: 15,696; Undergraduate Women: 11,923 Total Fraternity and Sorority Membership: 5,363 Interfraternity

More information

1 Sufficient statistics

1 Sufficient statistics 1 Sufficient statistics A statistic is a function T = rx 1, X 2,, X n of the random sample X 1, X 2,, X n. Examples are X n = 1 n s 2 = = X i, 1 n 1 the sample mean X i X n 2, the sample variance T 1 =

More information

University of Delaware University Student Centers Fraternity and Sorority Life. Spring Semester 2016 Chapter Assessment Program Summary

University of Delaware University Student Centers Fraternity and Sorority Life. Spring Semester 2016 Chapter Assessment Program Summary University of Delaware University Student Centers Fraternity and Sorority Life Spring Semester 2016 Chapter Assessment Program Summary University of Delaware Student Centers Fraternity and Sorority Life

More information

Detailed Product Information for Greek Stationery and Sorority Stationery

Detailed Product Information for Greek Stationery and Sorority Stationery Sorority Stationery Sorority Stationary Sorority Letterhead Many Layouts Sorority Envelopes Self Seal Envelopes Mailing Envelopes Security Envelopes Window Envelopes Large Envelopes Sorority Notecards

More information

VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA

VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA Csilla Csendes University of Miskolc, Hungary Department of Applied Mathematics ICAM 2010 Probability density functions A random variable X has density

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for

More information

M1 in Economics and Economics and Statistics Applied multivariate Analysis - Big data analytics Worksheet 1 - Bootstrap

M1 in Economics and Economics and Statistics Applied multivariate Analysis - Big data analytics Worksheet 1 - Bootstrap Nathalie Villa-Vialanei Année 2015/2016 M1 in Economics and Economics and Statistics Applied multivariate Analsis - Big data analtics Worksheet 1 - Bootstrap This worksheet illustrates the use of nonparametric

More information

Stochastic Models for Inventory Management at Service Facilities

Stochastic Models for Inventory Management at Service Facilities Stochastic Models for Inventory Management at Service Facilities O. Berman, E. Kim Presented by F. Zoghalchi University of Toronto Rotman School of Management Dec, 2012 Agenda 1 Problem description Deterministic

More information

Lecture 3 SU(2) January 26, 2011. Lecture 3

Lecture 3 SU(2) January 26, 2011. Lecture 3 Lecture 3 SU(2) January 26, 2 Lecture 3 A Little Group Theory A group is a set of elements plus a compostion rule, such that:. Combining two elements under the rule gives another element of the group.

More information

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015.

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015. Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment -3, Probability and Statistics, March 05. Due:-March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x

More information

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v, 1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It

More information

OHIO REGION PHI THETA KAPPA 2012-13

OHIO REGION PHI THETA KAPPA 2012-13 OHIO REGION PHI THETA KAPPA REGION HALLMARK AWARDS HONORS IN ACTION HALLMARK WINNER Alpha Rho Epsilon Columbus State Community College HONORS IN ACTION HALLMARK FIRST RUNNER-UP Washington State Community

More information

Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page

Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page Errata for ASM Exam C/4 Study Manual (Sixteenth Edition) Sorted by Page 1 Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page Practice exam 1:9, 1:22, 1:29, 9:5, and 10:8

More information

Chapter 9: Hypothesis Testing Sections

Chapter 9: Hypothesis Testing Sections Chapter 9: Hypothesis Testing Sections 9.1 Problems of Testing Hypotheses Skip: 9.2 Testing Simple Hypotheses Skip: 9.3 Uniformly Most Powerful Tests Skip: 9.4 Two-Sided Alternatives 9.5 The t Test 9.6

More information

6.2 Permutations continued

6.2 Permutations continued 6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of

More information

Modelling spousal mortality dependence: evidence of heterogeneities and implications

Modelling spousal mortality dependence: evidence of heterogeneities and implications 1/23 Modelling spousal mortality dependence: evidence of heterogeneities and implications Yang Lu Scor and Aix-Marseille School of Economics Lyon, September 2015 2/23 INTRODUCTION 3/23 Motivation It has

More information

Mathematics. (www.tiwariacademy.com : Focus on free Education) (Chapter 5) (Complex Numbers and Quadratic Equations) (Class XI)

Mathematics. (www.tiwariacademy.com : Focus on free Education) (Chapter 5) (Complex Numbers and Quadratic Equations) (Class XI) ( : Focus on free Education) Miscellaneous Exercise on chapter 5 Question 1: Evaluate: Answer 1: 1 ( : Focus on free Education) Question 2: For any two complex numbers z1 and z2, prove that Re (z1z2) =

More information

Notes on the Negative Binomial Distribution

Notes on the Negative Binomial Distribution Notes on the Negative Binomial Distribution John D. Cook October 28, 2009 Abstract These notes give several properties of the negative binomial distribution. 1. Parameterizations 2. The connection between

More information

EXPERIENCE SO R O R I TI E S AND FRATERNITIES AT THE UNIV E RS ITY OF A LA BA MA

EXPERIENCE SO R O R I TI E S AND FRATERNITIES AT THE UNIV E RS ITY OF A LA BA MA Define your EXPERIENCE SO R O R I TI E S AND FRATERNITIES AT THE UNIV E RS ITY OF A LA BA MA INSIDE Alabama Panhellenic Association 3 Greek Meal Plan 7 National Pan-Hellenic Council 4 Financial Information

More information

WORKED EXAMPLES 1 TOTAL PROBABILITY AND BAYES THEOREM

WORKED EXAMPLES 1 TOTAL PROBABILITY AND BAYES THEOREM WORKED EXAMPLES 1 TOTAL PROBABILITY AND BAYES THEOREM EXAMPLE 1. A biased coin (with probability of obtaining a Head equal to p > 0) is tossed repeatedly and independently until the first head is observed.

More information

Basic Quantum Mechanics Prof. Ajoy Ghatak Department of Physics. Indian Institute of Technology, Delhi

Basic Quantum Mechanics Prof. Ajoy Ghatak Department of Physics. Indian Institute of Technology, Delhi Basic Quantum Mechanics Prof. Ajoy Ghatak Department of Physics. Indian Institute of Technology, Delhi Module No. # 02 Simple Solutions of the 1 Dimensional Schrodinger Equation Lecture No. # 7. The Free

More information

Devon Henry Eastern 1st Vice Below Bronze Level Chapters. Timothy Jones Southwestern Region

Devon Henry Eastern 1st Vice Below Bronze Level Chapters. Timothy Jones Southwestern Region Devon Henry Eastern 1st Vice Below Bronze Level Chapters Dale Harris Robert Paris France Darrell Woods Issac Everette Alpha Alpha Beta Sigma 13 Delta Epsilon Sigma 9 Eta Phi Sigma 1 Kappa Omega Sigma 9

More information

ASCII CODES WITH GREEK CHARACTERS

ASCII CODES WITH GREEK CHARACTERS ASCII CODES WITH GREEK CHARACTERS Dec Hex Char Description 0 0 NUL (Null) 1 1 SOH (Start of Header) 2 2 STX (Start of Text) 3 3 ETX (End of Text) 4 4 EOT (End of Transmission) 5 5 ENQ (Enquiry) 6 6 ACK

More information

Charles Jones: US Economic Growth in a World of Ideas and other Jones Papers. January 22, 2014

Charles Jones: US Economic Growth in a World of Ideas and other Jones Papers. January 22, 2014 Charles Jones: US Economic Growth in a World of Ideas and other Jones Papers January 22, 2014 U.S. GDP per capita, log scale Old view: therefore the US is in some kind of Solow steady state (i.e. Balanced

More information

INSURANCE RISK THEORY (Problems)

INSURANCE RISK THEORY (Problems) INSURANCE RISK THEORY (Problems) 1 Counting random variables 1. (Lack of memory property) Let X be a geometric distributed random variable with parameter p (, 1), (X Ge (p)). Show that for all n, m =,

More information

Chapter 9: Hypothesis Testing Sections

Chapter 9: Hypothesis Testing Sections Chapter 9: Hypothesis Testing Sections 9.1 Problems of Testing Hypotheses Skip: 9.2 Testing Simple Hypotheses Skip: 9.3 Uniformly Most Powerful Tests Skip: 9.4 Two-Sided Alternatives 9.6 Comparing the

More information

Table of Contents Appendix 4-9

Table of Contents Appendix 4-9 Table of Contents Appendix 4-9 Appendix Multi-Input Thermometer & Datalogger Software Manual v1.0 4-8 Table of Contents 1. Introduction...1-1 1.1 Operation Environment...1-1 1.2 Hardware...1-1 1.3 Connecting

More information

Towards a Structuralist Interpretation of Saving, Investment and Current Account in Turkey

Towards a Structuralist Interpretation of Saving, Investment and Current Account in Turkey Towards a Structuralist Interpretation of Saving, Investment and Current Account in Turkey MURAT ÜNGÖR Central Bank of the Republic of Turkey http://www.muratungor.com/ April 2012 We live in the age of

More information

Introduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures.

Introduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures. Introduction to Hypothesis Testing Point estimation and confidence intervals are useful statistical inference procedures. Another type of inference is used frequently used concerns tests of hypotheses.

More information

The epistemic structure of de Finetti s betting problem

The epistemic structure of de Finetti s betting problem The epistemic structure of de Finetti s betting problem Tommaso Flaminio 1 Hykel Hosni 2 1 IIIA - CSIC Universitat Autonoma de Barcelona (Spain) tommaso@iiia.csic.es www.iiia.csic.es/ tommaso 2 SNS Scuola

More information

U = x 1 2. 1 x 1 4. 2 x 1 4. What are the equilibrium relative prices of the three goods? traders has members who are best off?

U = x 1 2. 1 x 1 4. 2 x 1 4. What are the equilibrium relative prices of the three goods? traders has members who are best off? Chapter 7 General Equilibrium Exercise 7. Suppose there are 00 traders in a market all of whom behave as price takers. Suppose there are three goods and the traders own initially the following quantities:

More information

Transmission Lines. Smith Chart

Transmission Lines. Smith Chart Smith Chart The Smith chart is one of the most useful graphical tools for high frequency circuit applications. The chart provides a clever way to visualize complex functions and it continues to endure

More information

Greek Writing. ABC, 123 How did the Greeks do it? You have. Activity. Research Opportunities. Pen Paper Worksheets photocopied

Greek Writing. ABC, 123 How did the Greeks do it? You have. Activity. Research Opportunities. Pen Paper Worksheets photocopied Greek Writing ABC, 123 How did the Greeks do it? You have Pen Paper Worksheets photocopied Activity In this activity you can learn the Greek alphabet and decipher some words written in Greek. You will

More information

! # %!&% ( % )% & % + %, )./0 12 +3

! # %!&% ( % )% & % + %, )./0 12 +3 ! # %!&% ( % )% & % + %, )./0 12 +3 & 4 5 1( & 6 6 7 &.67 &2% /0 1 6 7 &.67 &2% 01 08, /0 1% 9 6 % : + 0 08 67 & /0 1 8;118 < Energy Efficient Network Function Virtualization in 5G Networks A. Al-Quzweeni,

More information

MS-Word File with Mathematical Symbols

MS-Word File with Mathematical Symbols MS-Word File with Mathematical Symbols First I give a list of symbols for both MS-Word and Powerpoint. Then I explain how to get summation and integration, how to put one thing above another, and, finally,

More information

θ = 45 θ = 135 θ = 225 θ = 675 θ = 45 θ = 135 θ = 225 θ = 675 Trigonometry (A): Trigonometry Ratios You will learn:

θ = 45 θ = 135 θ = 225 θ = 675 θ = 45 θ = 135 θ = 225 θ = 675 Trigonometry (A): Trigonometry Ratios You will learn: Trigonometr (A): Trigonometr Ratios You will learn: () Concept of Basic Angles () how to form simple trigonometr ratios in all 4 quadrants () how to find the eact values of trigonometr ratios for special

More information

Exact Confidence Intervals

Exact Confidence Intervals Math 541: Statistical Theory II Instructor: Songfeng Zheng Exact Confidence Intervals Confidence intervals provide an alternative to using an estimator ˆθ when we wish to estimate an unknown parameter

More information

Techniques algébriques en calcul quantique

Techniques algébriques en calcul quantique Techniques algébriques en calcul quantique E. Jeandel Laboratoire de l Informatique du Parallélisme LIP, ENS Lyon, CNRS, INRIA, UCB Lyon 8 Avril 25 E. Jeandel, LIP, ENS Lyon Techniques algébriques en calcul

More information

Introduction to Basic Reliability Statistics. James Wheeler, CMRP

Introduction to Basic Reliability Statistics. James Wheeler, CMRP James Wheeler, CMRP Objectives Introduction to Basic Reliability Statistics Arithmetic Mean Standard Deviation Correlation Coefficient Estimating MTBF Type I Censoring Type II Censoring Eponential Distribution

More information

6, No. 3 (2006) R11 R46 c World Scientific Publishing Company

6, No. 3 (2006) R11 R46 c World Scientific Publishing Company Fluctuation and Noise Letters Vol. 6, No. 3 (2006) R11 R46 c World Scientific Publishing Company R11 R12 S. Varró ν = ν ν Einstein s Fluctuation Formula R13 ν ν νν ν ν ν, ν ν ν R14 S. Varró ν ν ν ν ν )

More information

Section 4.4 Inner Product Spaces

Section 4.4 Inner Product Spaces Section 4.4 Inner Product Spaces In our discussion of vector spaces the specific nature of F as a field, other than the fact that it is a field, has played virtually no role. In this section we no longer

More information

Cyber-Security Analysis of State Estimators in Power Systems

Cyber-Security Analysis of State Estimators in Power Systems Cyber-Security Analysis of State Estimators in Electric Power Systems André Teixeira 1, Saurabh Amin 2, Henrik Sandberg 1, Karl H. Johansson 1, and Shankar Sastry 2 ACCESS Linnaeus Centre, KTH-Royal Institute

More information

Tips for Using MyMathLabs Plus

Tips for Using MyMathLabs Plus Tips for Using MyMathLab Plus Navigating the Text 1. To open you course section plan, select the MTE you are enrolled in. Then click on the section you wish to complete. Click on the section you wish to

More information

Imprecise probabilities, bets and functional analytic methods in Łukasiewicz logic.

Imprecise probabilities, bets and functional analytic methods in Łukasiewicz logic. Imprecise probabilities, bets and functional analytic methods in Łukasiewicz logic. Martina Fedel joint work with K.Keimel,F.Montagna,W.Roth Martina Fedel (UNISI) 1 / 32 Goal The goal of this talk is to

More information

Basic concepts and introduction to statistical inference

Basic concepts and introduction to statistical inference Basic concepts and introduction to statistical inference Anna Helga Jonsdottir Gunnar Stefansson Sigrun Helga Lund University of Iceland (UI) Basic concepts 1 / 19 A review of concepts Basic concepts Confidence

More information

Total Degrees and Nonsplitting Properties of Σ 0 2 Enumeration Degrees

Total Degrees and Nonsplitting Properties of Σ 0 2 Enumeration Degrees Total Degrees and Nonsplitting Properties of Σ 0 2 Enumeration Degrees M. M. Arslanov, S. B. Cooper, I. Sh. Kalimullin and M. I. Soskova Kazan State University, Russia University of Leeds, U.K. This paper

More information

MAT 242 Test 3 SOLUTIONS, FORM A

MAT 242 Test 3 SOLUTIONS, FORM A MAT Test SOLUTIONS, FORM A. Let v =, v =, and v =. Note that B = { v, v, v } is an orthogonal set. Also, let W be the subspace spanned by { v, v, v }. A = 8 a. [5 points] Find the orthogonal projection

More information

Deriving Demand Functions - Examples 1

Deriving Demand Functions - Examples 1 Deriving Demand Functions - Examples 1 What follows are some examples of different preference relations and their respective demand functions. In all the following examples, assume we have two goods x

More information

Addition and Subtraction of Vectors

Addition and Subtraction of Vectors ddition and Subtraction of Vectors 1 ppendi ddition and Subtraction of Vectors In this appendi the basic elements of vector algebra are eplored. Vectors are treated as geometric entities represented b

More information

BIG Event Volunteer Registration

BIG Event Volunteer Registration BIG Event Volunteer Registration Come volunteer your time on April 11th & 12th to say "Thank You" to the Conway community! To view the schedule and additional information go to our website! http://ucaofficeofstudentlife.orgsync.com/org/sga/big_event

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data Samy Bengio Statistical Machine Learning from Data 1 Statistical Machine Learning from Data Gaussian Mixture Models Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique

More information

7 Hypothesis testing - one sample tests

7 Hypothesis testing - one sample tests 7 Hypothesis testing - one sample tests 7.1 Introduction Definition 7.1 A hypothesis is a statement about a population parameter. Example A hypothesis might be that the mean age of students taking MAS113X

More information

Distributed Detection Systems. Hamidreza Ahmadi

Distributed Detection Systems. Hamidreza Ahmadi Channel Estimation Error in Distributed Detection Systems Hamidreza Ahmadi Outline Detection Theory Neyman-Pearson Method Classical l Distributed ib t Detection ti Fusion and local sensor rules Channel

More information

VI. Real Business Cycles Models

VI. Real Business Cycles Models VI. Real Business Cycles Models Introduction Business cycle research studies the causes and consequences of the recurrent expansions and contractions in aggregate economic activity that occur in most industrialized

More information

Differentiated Pricing of Urban Transportation Networks. Networks with Vehicle-Tracking Technologies

Differentiated Pricing of Urban Transportation Networks. Networks with Vehicle-Tracking Technologies of Urban Transportation Networks with Vehicle-Tracking Technologies Mahmood Zangui Yafeng Yin* Siriphong Lawphongpanich Shigang Chen Department of Civil and Coastal Engineering University of Florida July

More information

Section 3 Sequences and Limits, Continued.

Section 3 Sequences and Limits, Continued. Section 3 Sequences and Limits, Continued. Lemma 3.6 Let {a n } n N be a convergent sequence for which a n 0 for all n N and it α 0. Then there exists N N such that for all n N. α a n 3 α In particular

More information

Dot Product. Academic Resource Center

Dot Product. Academic Resource Center Dot Product Academic Resource Center In This Presentation We will give a definition Look at properties See the relationship in projections Look at vectors in different coordinate systems Do example problems

More information

Gaussian Conjugate Prior Cheat Sheet

Gaussian Conjugate Prior Cheat Sheet Gaussian Conjugate Prior Cheat Sheet Tom SF Haines 1 Purpose This document contains notes on how to handle the multivariate Gaussian 1 in a Bayesian setting. It focuses on the conjugate prior, its Bayesian

More information

Math Placement Test Practice Problems

Math Placement Test Practice Problems Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211

More information

A Theory of Capital Controls As Dynamic Terms of Trade Manipulation

A Theory of Capital Controls As Dynamic Terms of Trade Manipulation A Theory of Capital Controls As Dynamic Terms of Trade Manipulation Arnaud Costinot Guido Lorenzoni Iván Werning Central Bank of Chile, November 2013 Tariffs and capital controls Tariffs: Intratemporal

More information

The US dollar exchange rate and the demand for oil

The US dollar exchange rate and the demand for oil The US dollar exchange rate and the demand for oil Selien De Schryder Ghent University Gert Peersman Ghent University Norges Bank/ECB workshop on "Monetary Policy and Commodity Prices" 19-20 November 2012

More information

Tension Development and Lap Splice Lengths of Reinforcing Bars under ACI 318-02

Tension Development and Lap Splice Lengths of Reinforcing Bars under ACI 318-02 ENGINEERING DATA REPORT NUMBER 51 Tension Development and Lap Splice Lengths of Reinforcing Bars under ACI 318-02 A SERVICE OF THE CONCRETE REINFORCING STEEL INSTITUTE Introduction Section 1.2.1 in the

More information

Parabolic Equations. Chapter 5. Contents. 5.1.2 Well-Posed Initial-Boundary Value Problem. 5.1.3 Time Irreversibility of the Heat Equation

Parabolic Equations. Chapter 5. Contents. 5.1.2 Well-Posed Initial-Boundary Value Problem. 5.1.3 Time Irreversibility of the Heat Equation 7 5.1 Definitions Properties Chapter 5 Parabolic Equations Note that we require the solution u(, t bounded in R n for all t. In particular we assume that the boundedness of the smooth function u at infinity

More information

PREJUDICIAL PREFERENCES

PREJUDICIAL PREFERENCES PREJUDICIAL PREFERENCES The Discriminatory Selection Practices of Colby s Greek Letter Societies By: Katie Daigle COLBY FRATERNITIES AND SORORITIES Fraternities Sororities Local Chapter National Chapter

More information

Chapter 4 Statistical Inference in Quality Control and Improvement. Statistical Quality Control (D. C. Montgomery)

Chapter 4 Statistical Inference in Quality Control and Improvement. Statistical Quality Control (D. C. Montgomery) Chapter 4 Statistical Inference in Quality Control and Improvement 許 湘 伶 Statistical Quality Control (D. C. Montgomery) Sampling distribution I a random sample of size n: if it is selected so that the

More information

RISK SHARING AND EFFICIENCY IMPLICATIONS

RISK SHARING AND EFFICIENCY IMPLICATIONS IMPLICATIONS OF PROGRESSIVE PENSION ARRANGEMENTS UNIVERSITY OF WUERZBURG CONTENTS 1/18 CONTENTS 1. MOTIVATION 2. THE NUMERICAL GENERAL EQUILIBRIUM MODEL 3. SIMULATION RESULTS 4. CONCLUSIONS MOTIVATION

More information

Lecture 8: More Continuous Random Variables

Lecture 8: More Continuous Random Variables Lecture 8: More Continuous Random Variables 26 September 2005 Last time: the eponential. Going from saying the density e λ, to f() λe λ, to the CDF F () e λ. Pictures of the pdf and CDF. Today: the Gaussian

More information

AGGREGATE CLAIMS, SOLVENCY AND REINSURANCE. David Dickson, Centre for Actuarial Studies, University of Melbourne. Cherry Bud Workshop

AGGREGATE CLAIMS, SOLVENCY AND REINSURANCE. David Dickson, Centre for Actuarial Studies, University of Melbourne. Cherry Bud Workshop AGGREGATE CLAIMS, SOLVENCY AND REINSURANCE David Dickson, Centre for Actuarial Studies, University of Melbourne Cherry Bud Workshop Keio University, 27 March 2006 Basic General Insurance Risk Model where

More information

User Guide LabelManager 420P

User Guide LabelManager 420P User Guide LabelManager 420P 17 18 19 20 21 22 16 1 15 2 14 13 3 4, - + 5 % Shift 6 12 7 8 11 10 9 Figure 1DYMO LabelManager 420P label maker 1 Print 9 Accented characters 17 Format 2 Preview 10 Space

More information

Please contact HQ with any questions about this information.

Please contact HQ with any questions about this information. The chapters listed below took in their full complement (3% of FSL community), or more than 75 new members during the 2014-2015 academic year, and are eligible to have 3 members apply for our Fall Please

More information

WASHINGTON STATE UNIVERSITY Payroll Services COMPOSED ADDRESSES FOR RESIDENCE HALLS RM NO. RESIDENCE HALL NAME CITY STATE ZIP + 4

WASHINGTON STATE UNIVERSITY Payroll Services COMPOSED ADDRESSES FOR RESIDENCE HALLS RM NO. RESIDENCE HALL NAME CITY STATE ZIP + 4 COMPOSED ADDRESSES FOR RESIDENCE HALLS CODE RM NO. RESIDENCE HALL NAME CITY STATE ZIP + 4 79 COMAN HALL -5281 71 COMMUNITY / DUNCAN DUNN HALL -5282 68 GANNON HALL -5286 69 GOLDSWORTHY HALL -5287 67 HONORS

More information

The Notebook Series. The solution of cubic and quartic equations. R.S. Johnson. Professor of Applied Mathematics

The Notebook Series. The solution of cubic and quartic equations. R.S. Johnson. Professor of Applied Mathematics The Notebook Series The solution of cubic and quartic equations by R.S. Johnson Professor of Applied Mathematics School of Mathematics & Statistics University of Newcastle upon Tyne R.S.Johnson 006 CONTENTS

More information

Powers of Two in Generalized Fibonacci Sequences

Powers of Two in Generalized Fibonacci Sequences Revista Colombiana de Matemáticas Volumen 462012)1, páginas 67-79 Powers of Two in Generalized Fibonacci Sequences Potencias de dos en sucesiones generalizadas de Fibonacci Jhon J. Bravo 1,a,B, Florian

More information

Fertility, Female Labor Force Participation, and the Demographic Dividend

Fertility, Female Labor Force Participation, and the Demographic Dividend Fertility, Female Labor Force Participation, and the Demographic Dividend David E. Bloom David Canning Günther Fink Jocelyn E. Finlay Program on the Global Demography of Aging Harvard School of Public

More information

Technology adoption in health care

Technology adoption in health care Technology adoption in health care Pedro Pita Barros Universidade Nova de Lisboa and CEPR ppbarros@fe.unl.pt and Xavier Martinez-Giralt Universitat Autònoma de Barcelona and MOVE xavier.martinez.giralt@uab.eu

More information

American Criminal Justice Association Lambda Alpha Epsilon Psi Omega. Judicial Board Guidelines

American Criminal Justice Association Lambda Alpha Epsilon Psi Omega. Judicial Board Guidelines American Criminal Justice Association Lambda Alpha Epsilon Psi Omega Judicial Board Guidelines Created Submitted by: Sergeant- At- Arms Anthony Bouchard 2 The Sergeant-at-Arms shall be the chairperson

More information