Digital Integrated Circuit (IC) Layout and Design - Week 3, Lecture 5

Size: px
Start display at page:

Download "Digital Integrated Circuit (IC) Layout and Design - Week 3, Lecture 5"

Transcription

1 igital Integrated Circuit (IC) Layout and esign - Week 3, Lecture 5! EE134 1 Reading and Prelab " Week 1 - Read Chapter 1 of text. " Week - Read Chapter of text. " Week 3 - Read Chapter 3 of text. " Prelab - Lab 1.! Read insert A of text, pp ! The lab will make more sense if you read this before lab.! There is nothing to turn in. EE134 1

2 Agenda " Last Lecture! esign rules! Layout and esign! Ties to V and GN! Padframes! Pin Packages " Today s Lecture! Contacts! Basic MO transistor operation! Large-signal MO model for manual analysis! The CMO inverter EE134 3 Course Emphasis / esign tyles " Physical design of CMO digital ICs " Application pecific IC (AIC)! Full Custom (What we are doing) Most flexible approach Higher speed maller designs Expensive Requires device-level (i.e. transistor level) knowledge Push limits of a technology - must understand parasitics: stray C, L, pn jns., BJTs, breakdown, stored charge, latch-up, etc. Used for high-volume chips - µ processors & memory EE134 4

3 esign tyles (cont.) " AIC (cont.)! tandard Cell Logic gate level Low volume Quick turnaround Lower density! Gate Array (FPGA) Lowest density - speed - cost. EE134 5 efine circuit specs Circuit chematic Flowchart Circuit imulation Meet pecs? No Layout Parasitic Extraction (R,C) Re-simulate with Parasitics No Meet pecs? No Prototype Fabrication Test and Evaluate Meet pecs? Production EE134 6 Yes 3

4 Tie n-well n to V and ubstrate to Ground GN In V A A Out (a) Layout V V A A n p-substrate Field n + p + n Oxide p+ n + + EE134 7 Reason for GN and V Ties Parasitic iodes V out V p + p-substrate n + n + n p + n + p-substrate EE

5 Contacts to ilicon " Ohmic Contacts! Metal on highly doped n + or p + i.! What you want to pin the substrate to ground or the n-well to V. " chottky Contacts (we won t use these)! Metal on lightly doped n or p i.! Creates a chottky diode which has an I-V curve similar to a p-n junction diode. EE134 9 Ohmic contact " Metal on n + or p + i. " imple picture: " Need heavy doping to get the ultra short screening length needed for an OHMIC contact. EE

6 chottky Contact " Metal on n or p i. " imple picture: " Light n or p doping gives long screening length giving chottky Barrier. EE Ohmic Contacts for Voltage Pinning " Ohmic contact to the n-well " You need the! Active and elect to define the n+ region.! Contact to put hole in thick passivation ide / nitride so that the metal contacts the i. EE

7 Ohmic Contacts for Voltage Pinning " Ohmic contact to the p-substrate " You need the! Active and elect to define the p+ region.! Contact to put hole in thick passivation ide / nitride so that the metal contacts the i. EE Pin n-well n to V and p-substrate p to GN n+ p+ V M1 Power Bus PMO p+ n-well NMO n+ n+ p+ M1 GN Ground Bus EE

8 The Active Layer " Cut in the Field Oxide (FOX) to get down to the i. EE Active and elect Layers EE

9 Active and elect Layers (cont) EE Concepts to Remember: " Need to put down an n+ region on the n-well to make an ohmic contact to the n-well. " Need to put down a p+ region on the p- substrate to make an ohmic contact to the p-substrate. " These are your active / select layers. " Finally, you need a contact layer to drill through the thick ide / nitride passivation. EE

10 BA MO Layout " O NOT O THI!!!!!!! poly-gate active - hole cut in FOX n+ select elf-aligned process The Poly gate serves as an implant mask during the n+ implant. There is no gap between the source/gate and drain/gate. EE Outline Ch. 3 " MO Transistor! Basic Operation! Modes of Operation! eep sub-micron MO " CMO Inverter EE

11 What is a Transistor? An MO Transistor A witch! V G G V G V T Ron EE134 1 witch Model of CMO Transistor V G G V G < V T R on V G > V T EE134 11

12 Transistor Circuit ymbols " NMO rain We always want Gate Body (p-i substrate) G B ource G B = # G Body tied to ource EE134 3 NMO Body Terminal (B) A transistor is a 4 terminal device. n+ V p+ M1 Circuit chematic Layout PMO NMO p+ n+ n-well G B = = GN n+ M1 B p+ GN EE

13 Transistor Circuit ymbols " PMO ource We always want V Gate Body (n-well) G B rain G G B = # Body tied to ource EE134 5 PMO Body Terminal (B) = V n+ V M1 G B = = V p+ Layout PMO p+ n-well NMO n+ B n+ p+ M1 GN EE

14 NMO and PMO " PMO is complementary to NMO " Turn it upside down and switch all signs of voltages, V # V, V G # V G. NMO PMO + V G > 0 + G - G V G > 0 - EE134 7 Outline Ch. 3 " MO Transistor! Basic Operation! Modes of Operation! eep sub-micron MO " CMO Inverter EE

15 Threshold Voltage: Concept EE134 9 The Threshold Voltage Fermi Potential φ φ F T N = -φt ln n k B T = q A i φ F -0.6V for p-type substrates γ is the body factor V T0 = 0.76 V (NMO) 0.95 V (PMO) AMI C5 process EE

16 The Body Effect V T (V) reverse body bias V TO V B EE The rain Current " Charge in the channel is controlled by the gate voltage: i [ V V ( x V ] Q ( x) = C ) G " rain current is proportional to charge x velocity: I v n = v n dv ( x) = µ n ξ ( x) = µ n dx T ( x) Q ( x) W i C ε = t v n = velocity; W = channel width; ξ = electric field; µ n = mobility EE

17 The rain Current " Combining velocity and charge: I dx = µ C W ( V V V ) dv n " Integrating along the length of the channel from source to drain: L G V 0 I k n dx = I = µ C n = µ C n µ n 0 C W L µ n ε = t W G ( V V V ) G EE T T dv V ( VG VT ) V n + V G V(x) G + L V x n + I Outline Ch. 3 " MO Transistor! Basic Operation! Modes of Operation! eep sub-micron MO " CMO Inverter EE

18 Transistor in Linear Mode V G > V + V T evice turned on (V G > V T ) V < V G -V T V G G V I n + V(x) + n + L x I = µ C n W L p-substrate B V ( VG VT ) V EE Transistor in aturation V T < V G < V + V T V > V G -V T V G G V > V G - V T n+ - V G - V T + n+ I = µ C I n n C = µ W L W L V ( VG VT ) V ( V V ) G T Pinch-off EE

19 aturation " For V > V G -V T, the drain current 6 saturates: x I n C = µ W L ( V V ) G T I (A) V (V) " Including channel-length modulation: I µ n C W = G T 1 L ( V V ) ( + λv ) slope = λ V = V /V A V A = 1/λ = Early voltage EE Modes of Operation " Cutoff: V G < V T I = 0 " Resistive or Linear: V < V G -V T & V G > V T " aturation I = µ C n W L V ( VG VT ) V V > V G -V T C = µ W L n V G > V I ( VG VT ) T EE

20 Current-Voltage Relations A good ol Transistor -4 x 10 6 VG=.5 V I (A) Resistive aturation VG=.0 V V = V G -V T VG= 1.5 V Quadratic Relationship 1 VG= 1.0 V V (V) EE A model for manual analysis EE

21 Outline Ch. 3 " MO Transistor! Basic Operation! Modes of Operation! eep sub-micron MO " CMO Inverter EE Current-Voltage Relations The eep-ubmicron Era -4.5 x 10 Early aturation VG=.5 V I (A) VG=.0 V VG= 1.5 V Linear Relationship 0.5 VG= 1.0 V V (V) EE

22 Velocity aturation υ n (m/s) υ sat = 10 5 Constant velocity Constant mobility (slope = µ) ξ c = 1.5 ξ (V/µm) EE Velocity aturation I Long-channel device V G = V hort-channel device aturates sooner V AT V G -V T V EE134 44

23 I versus V G EE I versus V EE

24 Including Velocity aturation µ n chosen empirically so that µ n ξc = v sat # µ n depends on the PICE model. EE imple Cheesy erivation for Velocity aturation and Linear ependence on V G dv I = W µ C ( V V V ( x) ) I n velocity = W v ρ By definition, I I G TH dx ρ v µ ξ n = vsat dv = W C dv dx dx = W v C (charge density) v dv dx ( V V V ) G TH,sat ( V V ) sat G TH V,sat EE

25 I versus V EE Regions of Operation EE

26 A Unified Model for Manual Analysis EE imple Model versus PICE -4 x 10.5 V =V AT I (A) Linear Velocity aturated 0.5 V AT =V GT V =V GT aturated V (V) EE

27 A PMO Transistor 0 x 10-4 VG = -1.0V -0. VG = -1.5V -0.4 I (A) -0.6 VG = -.0V Assume all variables negative! -0.8 VG = -.5V V (V) EE ub-threshold Conduction (Cut-off) I (A) V = V Linear Quadratic I The lope Factor I ~ 0 e qvg nkt C n = 1 + C is V G for I /I 1 =10, Exponential V T V G (V) Typical values for : mv/decade = inverse subtheshold slope EE

28 ubthreshold " Inverse sub-threshold slope ()! Ideal T=300K, n=1, kbt = ln = 60 q ( 10)! For each 60 mv of V G, the current drops by a factor of 10. This is the best that you can do.! For V = 0.4V, the maximum on-off current ratio that you can have at T=300K is! At 373K, the ratio is mv decade = =.3 10 EE ubthreshold " Current in subthreshold I = I e VG nk T / q B e 1 V k T / q B ( 1+ λv ) " Inverse subthreshold slope definition ( I ) d log 10 dvg nkbt = ln 10 q 1 1 = ln 10 1 I di dv G 1 EE

29 ubthreshold Concepts " FETs turn off exponentially. " Inverse subthreshold slope, (mv/dec), is the figure of merit that tells how well they = ( ) = { o shut off. nkbt 60 7 C ln 10 q o n= C n 1 and typically 1.5 " The maximum possible on-off current ratio is Ion V I off = 10 max " 018 ITR node has V = 0.4V - hence the static power problem. Know this if you are in an interview with a semiconductor co. EE Transistor Model for Manual Analysis EE

Field-Effect (FET) transistors

Field-Effect (FET) transistors Field-Effect (FET) transistors References: Hayes & Horowitz (pp 142-162 and 244-266), Rizzoni (chapters 8 & 9) In a field-effect transistor (FET), the width of a conducting channel in a semiconductor and,

More information

The MOSFET Transistor

The MOSFET Transistor The MOSFET Transistor The basic active component on all silicon chips is the MOSFET Metal Oxide Semiconductor Field Effect Transistor Schematic symbol G Gate S Source D Drain The voltage on the gate controls

More information

CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor

CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor Study the characteristics of energy bands as a function of applied voltage in the metal oxide semiconductor structure known

More information

BJT Ebers-Moll Model and SPICE MOSFET model

BJT Ebers-Moll Model and SPICE MOSFET model Department of Electrical and Electronic Engineering mperial College London EE 2.3: Semiconductor Modelling in SPCE Course homepage: http://www.imperial.ac.uk/people/paul.mitcheson/teaching BJT Ebers-Moll

More information

Junction FETs. FETs. Enhancement Not Possible. n p n p n p

Junction FETs. FETs. Enhancement Not Possible. n p n p n p A11 An Introduction to FETs Introduction The basic principle of the field-effect transistor (FET) has been known since J. E. Lilienfeld s patent of 1925. The theoretical description of a FET made by hockley

More information

EDC Lesson 12: Transistor and FET Characteristics. 2008 EDCLesson12- ", Raj Kamal, 1

EDC Lesson 12: Transistor and FET Characteristics. 2008 EDCLesson12- , Raj Kamal, 1 EDC Lesson 12: Transistor and FET Characteristics Lesson-12: MOSFET (enhancement and depletion mode) Characteristics and Symbols 2008 EDCLesson12- ", Raj Kamal, 1 1. Metal Oxide Semiconductor Field Effect

More information

Lecture 9 MOSFET(II) MOSFET I-V CHARACTERISTICS(contd.)

Lecture 9 MOSFET(II) MOSFET I-V CHARACTERISTICS(contd.) Lecture 9 MOSFET(II) MOSFET I-V CHARACTERISTICS(contd.) Outline 1. The saturation regime 2. Backgate characteristics Reading Assignment: Howe and Sodini, Chapter 4, Section 4.4 Announcements: 1. Quiz#1:

More information

CONTENTS. Preface. 1.1.2. Energy bands of a crystal (intuitive approach)

CONTENTS. Preface. 1.1.2. Energy bands of a crystal (intuitive approach) CONTENTS Preface. Energy Band Theory.. Electron in a crystal... Two examples of electron behavior... Free electron...2. The particle-in-a-box approach..2. Energy bands of a crystal (intuitive approach)..3.

More information

Bob York. Transistor Basics - MOSFETs

Bob York. Transistor Basics - MOSFETs Bob York Transistor Basics - MOSFETs Transistors, Conceptually So far we have considered two-terminal devices that are described by a current-voltage relationship I=f(V Resistors: Capacitors: Inductors:

More information

Power MOSFET Basics By Vrej Barkhordarian, International Rectifier, El Segundo, Ca.

Power MOSFET Basics By Vrej Barkhordarian, International Rectifier, El Segundo, Ca. Power MOFET Basics By Vrej Barkhordarian, International Rectifier, El egundo, Ca. Breakdown Voltage... On-resistance... Transconductance... Threshold Voltage... iode Forward Voltage... Power issipation...

More information

The MOS Transistor in Weak Inversion

The MOS Transistor in Weak Inversion MOFE Operation in eak and Moderate nversion he MO ransistor in eak nversion n this section we will lore the behavior of the MO transistor in the subthreshold regime where the channel is weakly inverted.

More information

Advanced VLSI Design CMOS Processing Technology

Advanced VLSI Design CMOS Processing Technology Isolation of transistors, i.e., their source and drains, from other transistors is needed to reduce electrical interactions between them. For technologies

More information

Lecture 090 Large Signal MOSFET Model (3/24/10) Page 090-1

Lecture 090 Large Signal MOSFET Model (3/24/10) Page 090-1 Lecture 9 Large Signal MOSFET Model (3/24/1) Page 9-1 LECTURE 9 LARGE SIGNAL MOSFET MODEL LECTURE ORGANIZATION Outline Introduction to modeling Operation of the MOS transistor Simple large signal model

More information

Lecture 8 MOSFET(I) MOSFET I-V CHARACTERISTICS

Lecture 8 MOSFET(I) MOSFET I-V CHARACTERISTICS Lecture 8 MOSFET(I) MOSFET I-V CHARACTERISTICS Outline 1. MOSFET: cross-section, layout, symbols 2. Qualitative operation 3. I-V characteristics Reading Assignment: Howe and Sodini, Chapter 4, Sections

More information

Lecture 30: Biasing MOSFET Amplifiers. MOSFET Current Mirrors.

Lecture 30: Biasing MOSFET Amplifiers. MOSFET Current Mirrors. Whites, EE 320 Lecture 30 Page 1 of 8 Lecture 30: Biasing MOSFET Amplifiers. MOSFET Current Mirrors. There are two different environments in which MOSFET amplifiers are found, (1) discrete circuits and

More information

AN105. Introduction: The Nature of VCRs. Resistance Properties of FETs

AN105. Introduction: The Nature of VCRs. Resistance Properties of FETs Introduction: The Nature of s A voltage-controlled resistor () may be defined as a three-terminal variable resistor where the resistance value between two of the terminals is controlled by a voltage potential

More information

Module 7 : I/O PADs Lecture 33 : I/O PADs

Module 7 : I/O PADs Lecture 33 : I/O PADs Module 7 : I/O PADs Lecture 33 : I/O PADs Objectives In this lecture you will learn the following Introduction Electrostatic Discharge Output Buffer Tri-state Output Circuit Latch-Up Prevention of Latch-Up

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 11 MOSFET part 2 guntzel@inf.ufsc.br I D -V DS Characteristics

More information

CO2005: Electronics I (FET) Electronics I, Neamen 3th Ed. 1

CO2005: Electronics I (FET) Electronics I, Neamen 3th Ed. 1 CO2005: Electronics I The Field-Effect Transistor (FET) Electronics I, Neamen 3th Ed. 1 MOSFET The metal-oxide-semiconductor field-effect transistor (MOSFET) becomes a practical reality in the 1970s. The

More information

MOS Transistors as Switches

MOS Transistors as Switches MOS Transistors as Switches G (gate) nmos transistor: Closed (conducting) when Gate = 1 (V DD ) D (drain) S (source) Oen (non-conducting) when Gate = 0 (ground, 0V) G MOS transistor: Closed (conducting)

More information

Fabrication and Manufacturing (Basics) Batch processes

Fabrication and Manufacturing (Basics) Batch processes Fabrication and Manufacturing (Basics) Batch processes Fabrication time independent of design complexity Standard process Customization by masks Each mask defines geometry on one layer Lower-level masks

More information

Lecture 9 - MOSFET (I) MOSFET I-V Characteristics. October 6, 2005

Lecture 9 - MOSFET (I) MOSFET I-V Characteristics. October 6, 2005 6.12 - Microelectronic Devices and Circuits - Fall 25 Lecture 9-1 Lecture 9 - MOSFET (I) MOSFET I-V Characteristics October 6, 25 Contents: 1. MOSFET: cross-section, layout, symbols 2. Qualitative operation

More information

Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications

Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications TRIPTI SHARMA, K. G. SHARMA, B. P. SINGH, NEHA ARORA Electronics & Communication Department MITS Deemed University,

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-2 Transistor

More information

Here we introduced (1) basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices.

Here we introduced (1) basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices. Outline Here we introduced () basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices. Circuit Logic Gate A logic gate is an elemantary building block

More information

Lecture 21: Junction Field Effect Transistors. Source Follower Amplifier

Lecture 21: Junction Field Effect Transistors. Source Follower Amplifier Whites, EE 322 Lecture 21 Page 1 of 8 Lecture 21: Junction Fiel Effect Transistors. Source Follower Amplifier As mentione in Lecture 16, there are two major families of transistors. We ve worke with BJTs

More information

EE-612: Nanoscale Transistors (Advanced VLSI Devices) Spring 2005

EE-612: Nanoscale Transistors (Advanced VLSI Devices) Spring 2005 EE-612: Nanoscale Transistors (Advanced VLSI Devices) Spring 2005 Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA 765-494-3515 lundstro@purdue.edu 1 evolution

More information

BJT Characteristics and Amplifiers

BJT Characteristics and Amplifiers BJT Characteristics and Amplifiers Matthew Beckler beck0778@umn.edu EE2002 Lab Section 003 April 2, 2006 Abstract As a basic component in amplifier design, the properties of the Bipolar Junction Transistor

More information

Analog & Digital Electronics Course No: PH-218

Analog & Digital Electronics Course No: PH-218 Analog & Digital Electronics Course No: PH-218 Lec-28: Logic Gates & Family Course Instructor: Dr. A. P. VAJPEYI Department of Physics, Indian Institute of Technology Guwahati, India 1 Digital Logic Gates

More information

Chapter 10 Advanced CMOS Circuits

Chapter 10 Advanced CMOS Circuits Transmission Gates Chapter 10 Advanced CMOS Circuits NMOS Transmission Gate The active pull-up inverter circuit leads one to thinking about alternate uses of NMOS devices. Consider the circuit shown in

More information

An Introduction to the EKV Model and a Comparison of EKV to BSIM

An Introduction to the EKV Model and a Comparison of EKV to BSIM An Introduction to the EKV Model and a Comparison of EKV to BSIM Stephen C. Terry 2. 3.2005 Integrated Circuits & Systems Laboratory 1 Overview Characterizing MOSFET operating regions EKV model fundamentals

More information

LAB IV. SILICON DIODE CHARACTERISTICS

LAB IV. SILICON DIODE CHARACTERISTICS LAB IV. SILICON DIODE CHARACTERISTICS 1. OBJECTIVE In this lab you are to measure I-V characteristics of rectifier and Zener diodes in both forward and reverse-bias mode, as well as learn to recognize

More information

Transconductance. (Saturated) MOSFET Small-Signal Model. The small-signal drain current due to v gs is therefore given by

Transconductance. (Saturated) MOSFET Small-Signal Model. The small-signal drain current due to v gs is therefore given by 11 (Saturated) MOSFET Small-Signal Model Transconductance Concept: find an equivalent circuit which interrelates the incremental changes in i D v GS v DS etc. for the MOSFET in saturation The small-signal

More information

Introduction to CMOS VLSI Design

Introduction to CMOS VLSI Design Introduction to CMOS VLSI esign Slides adapted from: N. Weste,. Harris, CMOS VLSI esign, Addison-Wesley, 3/e, 24 Introduction Integrated Circuits: many transistors on one chip Very Large Scale Integration

More information

Sheet Resistance = R (L/W) = R N ------------------ L

Sheet Resistance = R (L/W) = R N ------------------ L Sheet Resistance Rewrite the resistance equation to separate (L / W), the length-to-width ratio... which is the number of squares N from R, the sheet resistance = (σ n t) - R L = -----------------------

More information

SMA5111 - Compound Semiconductors Lecture 2 - Metal-Semiconductor Junctions - Outline Introduction

SMA5111 - Compound Semiconductors Lecture 2 - Metal-Semiconductor Junctions - Outline Introduction SMA5111 - Compound Semiconductors Lecture 2 - Metal-Semiconductor Junctions - Outline Introduction Structure - What are we talking about? Behaviors: Ohmic, rectifying, neither Band picture in thermal equilibrium

More information

Application Notes FREQUENCY LINEAR TUNING VARACTORS FREQUENCY LINEAR TUNING VARACTORS THE DEFINITION OF S (RELATIVE SENSITIVITY)

Application Notes FREQUENCY LINEAR TUNING VARACTORS FREQUENCY LINEAR TUNING VARACTORS THE DEFINITION OF S (RELATIVE SENSITIVITY) FREQUENY LINEAR TUNING VARATORS FREQUENY LINEAR TUNING VARATORS For several decades variable capacitance diodes (varactors) have been used as tuning capacitors in high frequency circuits. Most of these

More information

Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1

Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1 Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1 LECTURE 030 - DEEP SUBMICRON (DSM) CMOS TECHNOLOGY LECTURE ORGANIZATION Outline Characteristics of a deep submicron CMOS technology Typical deep submicron

More information

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3. Diodes and Diode Circuits 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3.1 Diode Characteristics Small-Signal Diodes Diode: a semiconductor device, which conduct the current

More information

PMOS Testing at Rochester Institute of Technology Dr. Lynn Fuller

PMOS Testing at Rochester Institute of Technology Dr. Lynn Fuller ROCHESER INSIUE OF ECHNOLOGY MICROELECRONIC ENGINEERING PMOS esting at Dr. Lynn Fuller webpage: http://www.rit.edu/~lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 el (585) 475-2035 Fax (585) 475-5041

More information

Lecture 9 - MOSFET (I) MOSFET I-V Characteristics. March 6, 2003

Lecture 9 - MOSFET (I) MOSFET I-V Characteristics. March 6, 2003 6.12 - Microelectronic Devices and Circuits - Spring 23 Lecture 9-1 Lecture 9 - MOSFET (I) MOSFET I-V Characteristics March 6, 23 Contents: 1. MOSFET: cross-section, layout, symbols 2. Qualitative operation

More information

CMOS Logic Integrated Circuits

CMOS Logic Integrated Circuits CMOS Logic Integrated Circuits Introduction CMOS Inverter Parameters of CMOS circuits Circuits for protection Output stage for CMOS circuits Buffering circuits Introduction Symetrical and complementary

More information

Layout and Cross-section of an inverter. Lecture 5. Layout Design. Electric Handles Objects. Layout & Fabrication. A V i

Layout and Cross-section of an inverter. Lecture 5. Layout Design. Electric Handles Objects. Layout & Fabrication. A V i Layout and Cross-section of an inverter Lecture 5 A Layout Design Peter Cheung Department of Electrical & Electronic Engineering Imperial College London V DD Q p A V i V o URL: www.ee.ic.ac.uk/pcheung/

More information

Lecture 060 Push-Pull Output Stages (1/11/04) Page 060-1. ECE 6412 - Analog Integrated Circuits and Systems II P.E. Allen - 2002

Lecture 060 Push-Pull Output Stages (1/11/04) Page 060-1. ECE 6412 - Analog Integrated Circuits and Systems II P.E. Allen - 2002 Lecture 060 PushPull Output Stages (1/11/04) Page 0601 LECTURE 060 PUSHPULL OUTPUT STAGES (READING: GHLM 362384, AH 226229) Objective The objective of this presentation is: Show how to design stages that

More information

The FET Constant-Current Source/Limiter. I D = ( V DS )(g oss ) (3) R L. g oss. where g oss = g oss (5) when V GS = 0 (6)

The FET Constant-Current Source/Limiter. I D = ( V DS )(g oss ) (3) R L. g oss. where g oss = g oss (5) when V GS = 0 (6) The FET Constant-Current ource/limiter Introduction The combination of low associated operating voltage and high output impedance makes the FET attractive as a constant-current source. An adjustable-current

More information

Introduction to VLSI Fabrication Technologies. Emanuele Baravelli

Introduction to VLSI Fabrication Technologies. Emanuele Baravelli Introduction to VLSI Fabrication Technologies Emanuele Baravelli 27/09/2005 Organization Materials Used in VLSI Fabrication VLSI Fabrication Technologies Overview of Fabrication Methods Device simulation

More information

1.Introduction. Introduction. Most of slides come from Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda.

1.Introduction. Introduction. Most of slides come from Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda. .Introduction If the automobile had followed the same development cycle as the computer, a Rolls- Royce would today cost $00, get one million miles to the gallon and explode once a year Most of slides

More information

CMOS 1.8 V to 5.5 V, 2.5 Ω SPDT Switch/2:1 Mux in Tiny SC70 Package ADG779

CMOS 1.8 V to 5.5 V, 2.5 Ω SPDT Switch/2:1 Mux in Tiny SC70 Package ADG779 CMO 1.8 V to 5.5 V, 2.5 Ω PT witch/2:1 Mux in Tiny C70 Package AG779 FEATURE 1.8 V to 5.5 V single supply 2.5 Ω on resistance 0.75 Ω on-resistance flatness 3 db bandwidth >200 MHz Rail-to-rail operation

More information

Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime

Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime Outline The Bipolar Junction Transistor (BJT): structure and basic operation I-V characteristics in forward active regime Reading Assignment:

More information

Fig6-22 CB configuration. Z i [6-54] Z o [6-55] A v [6-56] Assuming R E >> r e. A i [6-57]

Fig6-22 CB configuration. Z i [6-54] Z o [6-55] A v [6-56] Assuming R E >> r e. A i [6-57] Common-Base Configuration (CB) The CB configuration having a low input and high output impedance and a current gain less than 1, the voltage gain can be quite large, r o in MΩ so that ignored in parallel

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043 INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING Course Title VLSI DESIGN Course Code 57035 Regulation R09 COURSE DESCRIPTION Course Structure

More information

Figure 1. Diode circuit model

Figure 1. Diode circuit model Semiconductor Devices Non-linear Devices Diodes Introduction. The diode is two terminal non linear device whose I-V characteristic besides exhibiting non-linear behavior is also polarity dependent. The

More information

LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS

LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS Objective In this experiment you will study the i-v characteristics of an MOS transistor. You will use the MOSFET as a variable resistor and as a switch. BACKGROUND

More information

These help quantify the quality of a design from different perspectives: Cost Functionality Robustness Performance Energy consumption

These help quantify the quality of a design from different perspectives: Cost Functionality Robustness Performance Energy consumption Basic Properties of a Digital Design These help quantify the quality of a design from different perspectives: Cost Functionality Robustness Performance Energy consumption Which of these criteria is important

More information

CHAPTER 1 INTRODUCTION AND BACKGROUND

CHAPTER 1 INTRODUCTION AND BACKGROUND Chapter 1 Introduction (8/3/05) Page 1.01 CHAPTER 1 INTROUCTION AN BACKROUN Chapter Outline 1.1 Analog Integrated Circuit esign 1.2 Technology Impact on Analog IC esign 1.3 Analog ignal Processing 1.4

More information

Semiconductor Memories

Semiconductor Memories Semiconductor Memories Semiconductor memories array capable of storing large quantities of digital information are essential to all digital systems Maximum realizable data storage capacity of a single

More information

Title : Analog Circuit for Sound Localization Applications

Title : Analog Circuit for Sound Localization Applications Title : Analog Circuit for Sound Localization Applications Author s Name : Saurabh Kumar Tiwary Brett Diamond Andrea Okerholm Contact Author : Saurabh Kumar Tiwary A-51 Amberson Plaza 5030 Center Avenue

More information

Solar Cell Parameters and Equivalent Circuit

Solar Cell Parameters and Equivalent Circuit 9 Solar Cell Parameters and Equivalent Circuit 9.1 External solar cell parameters The main parameters that are used to characterise the performance of solar cells are the peak power P max, the short-circuit

More information

Power MOSFET Basics Abdus Sattar, IXYS Corporation

Power MOSFET Basics Abdus Sattar, IXYS Corporation Power MOSFET Basics Abdus Sattar, IXYS Corporation Power MOSFETs have become the standard choice for the main switching devices in a broad range of power conversion applications. They are majority carrier

More information

Mansun Chan, Xuemei Xi, Jin He, and Chenming Hu

Mansun Chan, Xuemei Xi, Jin He, and Chenming Hu Mansun Chan, Xuemei Xi, Jin He, and Chenming Hu Acknowledgement The BSIM project is partially supported by SRC, CMC, Conexant, TI, Mentor Graphics, and Xilinx BSIM Team: Prof. Chenming Hu, Dr, Jane Xi,

More information

ELEC 3908, Physical Electronics, Lecture 15. BJT Structure and Fabrication

ELEC 3908, Physical Electronics, Lecture 15. BJT Structure and Fabrication ELEC 3908, Physical Electronics, Lecture 15 Lecture Outline Now move on to bipolar junction transistor (BJT) Strategy for next few lectures similar to diode: structure and processing, basic operation,

More information

W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören

W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören W04 Transistors and Applications W04 Transistors and Applications ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors

More information

Transistor Models. ampel

Transistor Models. ampel Transistor Models Review of Transistor Fundamentals Simple Current Amplifier Model Transistor Switch Example Common Emitter Amplifier Example Transistor as a Transductance Device - Ebers-Moll Model Other

More information

MOS Capacitor CHAPTER OBJECTIVES

MOS Capacitor CHAPTER OBJECTIVES Hu_ch05v3.fm Page 157 Friday, February 13, 2009 2:38 PM 5 MOS Capacitor CHAPTER OBJECTIVES This chapter builds a deep understanding of the modern MOS (metal oxide semiconductor) structures. The key topics

More information

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential

More information

ENEE 307 Electronic Circuit Design Laboratory Spring 2012. A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742

ENEE 307 Electronic Circuit Design Laboratory Spring 2012. A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742 1.1. Differential Amplifiers ENEE 307 Electronic Circuit Design Laboratory Spring 2012 A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742 Differential Amplifiers

More information

Application Note AN-1070

Application Note AN-1070 Application Note AN-1070 Class D Audio Amplifier Performance Relationship to MOSFET Parameters By Jorge Cerezo, International Rectifier Table of Contents Page Abstract... 2 Introduction... 2 Key MOSFET

More information

McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures

McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures Sheng Li, Junh Ho Ahn, Richard Strong, Jay B. Brockman, Dean M Tullsen, Norman Jouppi MICRO 2009

More information

CHAPTER 2 POWER AMPLIFIER

CHAPTER 2 POWER AMPLIFIER CHATER 2 OWER AMLFER 2.0 ntroduction The main characteristics of an amplifier are Linearity, efficiency, output power, and signal gain. n general, there is a trade off between these characteristics. For

More information

Bipolar Junction Transistors

Bipolar Junction Transistors Bipolar Junction Transistors Physical Structure & Symbols NPN Emitter (E) n-type Emitter region p-type Base region n-type Collector region Collector (C) B C Emitter-base junction (EBJ) Base (B) (a) Collector-base

More information

ECE124 Digital Circuits and Systems Page 1

ECE124 Digital Circuits and Systems Page 1 ECE124 Digital Circuits and Systems Page 1 Chip level timing Have discussed some issues related to timing analysis. Talked briefly about longest combinational path for a combinational circuit. Talked briefly

More information

Digital to Analog Converter. Raghu Tumati

Digital to Analog Converter. Raghu Tumati Digital to Analog Converter Raghu Tumati May 11, 2006 Contents 1) Introduction............................... 3 2) DAC types................................... 4 3) DAC Presented.............................

More information

MOS (metal-oxidesemiconductor) 李 2003/12/19

MOS (metal-oxidesemiconductor) 李 2003/12/19 MOS (metal-oxidesemiconductor) 李 2003/12/19 Outline Structure Ideal MOS The surface depletion region Ideal MOS curves The SiO 2 -Si MOS diode (real case) Structure A basic MOS consisting of three layers.

More information

5.11 THE JUNCTION FIELD-EFFECT TRANSISTOR (JFET)

5.11 THE JUNCTION FIELD-EFFECT TRANSISTOR (JFET) This material is from a previous edition of Microelectronic Circuits. These sections provide valuable information, but please note that the references do not correspond to the 6th or 7th edition of the

More information

Module 4 : Propagation Delays in MOS Lecture 22 : Logical Effort Calculation of few Basic Logic Circuits

Module 4 : Propagation Delays in MOS Lecture 22 : Logical Effort Calculation of few Basic Logic Circuits Module 4 : Propagation Delays in MOS Lecture 22 : Logical Effort Calculation of few Basic Logic Circuits Objectives In this lecture you will learn the following Introduction Logical Effort of an Inverter

More information

Zero voltage drop synthetic rectifier

Zero voltage drop synthetic rectifier Zero voltage drop synthetic rectifier Vratislav Michal Brno University of Technology, Dpt of Theoretical and Experimental Electrical Engineering Kolejní 4/2904, 612 00 Brno Czech Republic vratislav.michal@gmail.com,

More information

AN900 APPLICATION NOTE

AN900 APPLICATION NOTE AN900 APPLICATION NOTE INTRODUCTION TO SEMICONDUCTOR TECHNOLOGY INTRODUCTION by Microcontroller Division Applications An integrated circuit is a small but sophisticated device implementing several electronic

More information

Introduction to Semiconductor Manufacturing Technology. Chapter 1, Introduction. Hong Xiao, Ph. D. hxiao89@hotmail.com

Introduction to Semiconductor Manufacturing Technology. Chapter 1, Introduction. Hong Xiao, Ph. D. hxiao89@hotmail.com Introduction to Semiconductor Manufacturing Technology Chapter 1, Introduction Hong Xiao, Ph. D. hxiao89@hotmail.com Hong Xiao, Ph. D. www2.austin.cc.tx.us/hongxiao/book.htm 1 Objective After taking this

More information

Evaluation of the Surface State Using Charge Pumping Methods

Evaluation of the Surface State Using Charge Pumping Methods Evaluation of the Surface State Using Charge Pumping Methods Application Note 4156-9 Agilent 4155C/4156C Semiconductor Parameter Analyzer Introduction As device features get smaller, hot carrier induced

More information

Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode)

Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode) Diode Circuits Operating in the Reverse Breakdown region. (Zener Diode) In may applications, operation in the reverse breakdown region is highly desirable. The reverse breakdown voltage is relatively insensitive

More information

III. Reaction Kinetics

III. Reaction Kinetics III. Reaction Kinetics Lecture 13: Butler-Volmer equation Notes by ChangHoon Lim (and MZB) 1. Interfacial Equilibrium At lecture 11, the reaction rate R for the general Faradaic half-cell reaction was

More information

Depletion-Mode Power MOSFETs and Applications Abdus Sattar, IXYS Corporation

Depletion-Mode Power MOSFETs and Applications Abdus Sattar, IXYS Corporation epletion-mode Power MOSFETs and Applications Abdus Sattar, XYS Corporation Applications like constant current sources, solid-state relays, telecom switches and high voltage C lines in power systems require

More information

2.996/6.971 Biomedical Devices Design Laboratory Lecture 4: Power Supplies

2.996/6.971 Biomedical Devices Design Laboratory Lecture 4: Power Supplies 2.996/6.971 Biomedical Devices Design Laboratory Lecture 4: Power Supplies Instructor: Dr. Hong Ma Sept. 19, 2007 Key Problem Ideal voltage sources do not exist! Voltage regulators use feedback to reduce

More information

CMOS Low Voltage 2.5 Ω Dual SPDT Switch ADG736L

CMOS Low Voltage 2.5 Ω Dual SPDT Switch ADG736L CMO Low Voltage 2.5 Ω ual PT witch AG736L FEATURE 1.8 V to 5.5 V single supply 2.5 Ω (typical) on resistance Low on-resistance flatness Guaranteed leakage performance over 40 C to +85 C 3 db bandwidth

More information

COMMON-SOURCE JFET AMPLIFIER

COMMON-SOURCE JFET AMPLIFIER EXPERIMENT 04 Objectives: Theory: 1. To evaluate the common-source amplifier using the small signal equivalent model. 2. To learn what effects the voltage gain. A self-biased n-channel JFET with an AC

More information

Semiconductors, diodes, transistors

Semiconductors, diodes, transistors Semiconductors, diodes, transistors (Horst Wahl, QuarkNet presentation, June 2001) Electrical conductivity! Energy bands in solids! Band structure and conductivity Semiconductors! Intrinsic semiconductors!

More information

Diodes and Transistors

Diodes and Transistors Diodes What do we use diodes for? Diodes and Transistors protect circuits by limiting the voltage (clipping and clamping) turn AC into DC (voltage rectifier) voltage multipliers (e.g. double input voltage)

More information

Notes about Small Signal Model. for EE 40 Intro to Microelectronic Circuits

Notes about Small Signal Model. for EE 40 Intro to Microelectronic Circuits Notes about Small Signal Model for EE 40 Intro to Microelectronic Circuits 1. Model the MOSFET Transistor For a MOSFET transistor, there are NMOS and PMOS. The examples shown here would be for NMOS. Figure

More information

MOS Transistor 6.1 INTRODUCTION TO THE MOSFET

MOS Transistor 6.1 INTRODUCTION TO THE MOSFET Hu_ch06v3.fm Page 195 Friday, February 13, 2009 4:51 PM 6 MOS Transistor CHAPTER OBJECTIVES This chapter provides a comprehensive introduction to the modern MOSFETs in their on state. (The off state theory

More information

Transistors. NPN Bipolar Junction Transistor

Transistors. NPN Bipolar Junction Transistor Transistors They are unidirectional current carrying devices with capability to control the current flowing through them The switch current can be controlled by either current or voltage ipolar Junction

More information

CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS

CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS Chapter Outline 10.1 The Two-Stage CMOS Op Amp 10.2 The Folded-Cascode CMOS Op Amp 10.3 The 741 Op-Amp Circuit 10.4 DC Analysis of the 741 10.5 Small-Signal Analysis

More information

Fabrication and Characterization of N- and P-Type a-si:h Thin Film Transistors

Fabrication and Characterization of N- and P-Type a-si:h Thin Film Transistors Fabrication and Characterization of N- and P-Type a-si:h Thin Film Transistors Engineering Practical Jeffrey Frederick Gold Fitzwilliam College University of Cambridge Lent 1997 FABRCATON AND CHARACTERZATON

More information

AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2)

AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2) Features General Description Wide supply Voltage range: 2.0V to 36V Single or dual supplies: ±1.0V to ±18V Very low supply current drain (0.4mA) independent of supply voltage Low input biasing current:

More information

Biasing in MOSFET Amplifiers

Biasing in MOSFET Amplifiers Biasing in MOSFET Amplifiers Biasing: Creating the circuit to establish the desired DC oltages and currents for the operation of the amplifier Four common ways:. Biasing by fixing GS. Biasing by fixing

More information

Application Note AN-940

Application Note AN-940 Application Note AN-940 How P-Channel MOSFETs Can Simplify Your Circuit Table of Contents Page 1. Basic Characteristics of P-Channel HEXFET Power MOSFETs...1 2. Grounded Loads...1 3. Totem Pole Switching

More information

1700V Bi-Mode Insulated Gate Transistor (BIGT) on Thin Wafer Technology

1700V Bi-Mode Insulated Gate Transistor (BIGT) on Thin Wafer Technology 1700V Bi-Mode Insulated Gate Transistor (BIGT) on Thin Wafer Technology Munaf Rahimo, Jan Vobecky, Chiara Corvasce ISPS, September 2010, Prague, Czech Republic Copyright [2010] IEEE. Reprinted from the

More information

ECE 410: VLSI Design Course Introduction

ECE 410: VLSI Design Course Introduction ECE 410: VLSI Design Course Introduction Professor Andrew Mason Michigan State University Spring 2008 ECE 410, Prof. A. Mason Lecture Notes Page i.1 Age of electronics microcontrollers, DSPs, and other

More information

MOSFET DEVICE MODELING FOR ANALOG CIRCUITS DESIGN

MOSFET DEVICE MODELING FOR ANALOG CIRCUITS DESIGN MOSFET DEVICE MODELING FOR ANALOG CIRCUITS DESIGN Student name: Truong, Long Giang Student #: 970304580 Course: ECE1352F 1. INTRODUCTION The technological trend towards deep sub-micrometer dimensions,

More information

Winbond W971GG6JB-25 1 Gbit DDR2 SDRAM 65 nm CMOS DRAM Process

Winbond W971GG6JB-25 1 Gbit DDR2 SDRAM 65 nm CMOS DRAM Process Winbond W971GG6JB-25 1 Gbit DDR2 SDRAM 65 nm CMOS DRAM Process Process Review For comments, questions, or more information about this report, or for any additional technical needs concerning semiconductor

More information

Fundamentals of Microelectronics

Fundamentals of Microelectronics Fundamentals of Microelectronics H1 Why Microelectronics? H2 Basic Physics of Semiconductors H3 Diode ircuits H4 Physics of Bipolar ransistors H5 Bipolar Amplifiers H6 Physics of MOS ransistors H7 MOS

More information