Solving BAMO Problems

Size: px
Start display at page:

Download "Solving BAMO Problems"

Transcription

1 Solving BAMO Problems Tom Dvis Februry 20, 2000 Abstrct Strtegies for solving problems in the BAMO contest (the By Are Mthemticl Olympid). Only the first section is specific to BAMO; the rest of the document concerns generl-purpose mthemticl problem solving techniques. 1 BAMO BAMO (the By Are Mthemticl Olympid) is n olympid-style contest consisting of five problems to be solved in four hours. The term olympid style mens tht ech problem requires written solution, generlly in the form of mthemticl proof. The people who compose the exm try to rrnge the problems roughly in order of difficulty, so most people should be ble to solve problem 1, nd lmost nobody should be ble to solve problem 5. All problems re of equl vlue (7 points possible on ech), nd most of the scores on ny prticulr problem will be 0, 1, 6, or 7; middle scores re rre. Obviously you should try to work the problems in order; if you re hving trouble solving problem 2, it s unlikely tht you will mke much progress on problem 5. But of course you should look t ll the problems. For exmple, if you re extremely good t geometry nd the third problem is geometric, it my well be tht problem 3 is esier for you thn problem 2. Generlly, however, the rrngement of the problems firly ccurtely reflects their difficulty. If you do solve problem, rther thn beginning work immeditely on the next it is lmost certinly good ide to check over your solution nd mke certin it is clerly written, tht you didn t leve nything out, nd tht it in fct solves the problem you re trying to solve. It is shme to get problems 2 nd 3 correct nd to get zero on problem 1 since it seemed so esy tht you mde some silly mistke on it. Remember tht 4 hours is long time, nd it is often better to spend 5 extr minutes on problem 1 to mke sure tht it is perfect thn to spend tht 5 minutes mking zero progress on problem 5. 2 Writing Solutions Remember tht there will be humns grding your work. They re trying to be s fir s possible, but if your writing is difficult to red, or the solution is disorgnized or if the sentences re bdly written nd difficult to understnd, you will mke it hrd for the reder to understnd your solution, nd will thus be less likely to get high mrks. When you re finished with ech problem, tke look t it nd pretend tht you re the person trying to grde it. How would you like to grde it? Here re some ides for how to write proof or essy tht is esy to understnd: 1

2 1. First nd foremost, remember everything you lerned in your English writing clsses. Orgnize your thoughts, use complete sentences, et ceter. 2. Write n outline before you begin, where outline simply mens sentence or two explining how your proof works. For exmple, you might write something like this: The proof will be done by induction on, the number of sides of the polygon. We will show it is true for tringle ( ), the smllest polygon nd then we will induct on. For lrger thn 3, the proof will be divided into two cses, depending on whether is odd or even. Then write your proof in three prts, idelly with short heder in front of ech, like: Cse, Cse, odd, nd finlly, Cse, n even. 3. If you write something tht you lter decide you don t need or is incorrect, be sure to cross it out completely so tht the reder will understnd clerly tht it is not prt of your solution. 4. If your solution covers multiple pges, mke sure you number them in n obvious wy: Problem 3, pge 2, for exmple. 5. This ws sid bove, but it is so importnt tht it s worth repeting: when you finish writing solution, tke few minutes to rered wht you hve written to mke certin it sys wht you think it does. 3 How to Get Strted Mthemtics must be written into the mind, not red into it. No hed for mthemtics nerly lwys mens Will not use pencil. Arthur Lthm Bker Do not spend lot of time just string t blnk sheet of pper. Do something! Try to serch for pttern, drw picture, work out some simple cses, try to find simpler relted problem nd work tht, chnge the nottion, et ceter. Here re some ides of ctivities you cn usully do, even if you hve no ide t ll how to pproch the problem: 1. Serch for pttern: Imgine you re sked to find the sum of the first few odd numbers: Work out the vlues for smll vlues of k:! " All the nswers re perfect squres! With clue like this, it will probbly be much esier to find out why. 2

3 0 = = 2. Drw picture: For geometry problem this should be obvious, but you cn often drw pictures for other problems s well. For exmple, suppose you wnt to show tht #$%$ & & & $ ')( '+* ',$ # - %/. Here is picture tht might help: The sum is like tringle, so is obviously relted to the re of tht tringle. 3. Check some simple cses: In the exmple bove, check the first few vlues '2(43 ' of. When you check vlues, be sure to try the esiest ones first. In other words, don t check until you ve checked ' ( 5 '( # '( % ' (26,,, nd. Remember to try zero. If you re supposed to show something bout generl tringle, try it on few tringles tht you cn clculte with esily, such s n equilterl tringle or right tringle. 4. Solve simpler relted problem: For exmple, if the problem sks bout the rrngement of queens on chessbord, try to solve the problem with bords tht re smller thn n 9;: 9 chessbord: look t the # : # bord, the % : % bord, nd so on. 5. Chnge the nottion: If your problem involves, for exmple, binomil coefficients, replce them by the fctoril equivlents: < '= > ( '+??* ')7 6. Think bout similr problems: If this problem reminds you of one you hve solved previously, how did you solve tht one? -? 4 Generl Techniques You cn usully pply the techniques in the previous section even if you hve no ide how to strt. The techniques listed here re more specific, but it s worth keeping them ll in mind when you pproch new problem. Remember tht sometimes there re mny techniques tht will work; to get top score, ll you need to do is to find one of them. 1. Divide into Cses. If you know how to solve the problem under certin conditions, perhps you cn divide it into cses. Also, be certin to be sure tht you hve proved it in ll cses; for exmple, if the problem concerns two prllel lines, be sure tht your proof works if the lines re prllel. If it doesn t, you my hve to prove tht s specil cse. 3

4 2. Look for Symmetry. Symmetry cn be geometric or lgebric. For exmple, if you hve to multiply out the A;B)CB D E F, nd fter some struggle, you find tht the coefficient ofahg C G D is 30, then so will be the coefficient ofaig C D G nd ofa C G D G since the originl expression ws symmetric ina,c, nd D. 3. Use Induction. If you cn ssign n integer size to ech version of problem nd it looks like the problem for lrger size cn be solved in terms of similr problems of smller size, perhps induction will work. Induction does not hve to be used on lgebric problems. As n exmple, suppose you wnt to show tht ny polygon (convex or not) cn be cut into tringles using digonls tht lie within the polygon. Surely the smllest polygon ( tringle) cn be so divided. If you cn then show tht ny polygon cn be split into two smller polygons with digonl, you cn use induction to prove the desired result. The Towers of Hnoi problem is nother good exmple. 4. Work Bckwrds. Lots of gmes work this wy. For exmple, suppose you ply gme where you begin with pile of 50 sticks, nd move consists of tking 1, 2, 3, or 4 sticks from the pile. You lternte moves with your opponent, nd the first person unble to mke move loses. If you move first, do you hve strtegy tht will gurntee win? 50 is pretty big number, but work bckwrds. Who wins if the strting pile hs zero sticks? 1 stick? 2 sticks? Work bckwrds to see which positions re sfe to leve n opponent. Zero sticks is clerly sfe, nd piles with 1, 2, 3, or 4 sticks re unsfe. 5 is sfe becuse ny move your opponent mkes leves him in n unsfe position, nd so on. 5. Consider Prity. Sometimes problems hve n odd-even condition. Given polygon with 101 sides tht hs n xis of symmetry, show tht the xis psses through vertex. This is esy if you pir ech vertex with the symmetric vertex cross the xis. 6. Use the Pigeon Hole Principle. If you plce more thn J things into J boxes, t lest one box will hve more thn one thing in it. In group of 13 or more students, t lest two will hve birthdy in the sme month. 7. Use Proof by Contrdiction. If you cn t prove something, ssume it is flse nd see wht you cn conclude from tht. If you cn conclude something tht is obviously flse beginning with tht ssumption, then your ssumption must be wrong nd therefore the originl sttement is true. Prove tht there is no lrgest prime number. Assume there is lrgest, sykml, wherek+n,k G,...,KOL is the list of ll the primes. Then multiply them ll together nd dd 1:PRQ K+N K G+S S S KOL"BT.P cn t be multiple of ny of thekmu, since if you dividep bykou it leves reminder of 1. So eitherp is prime or it is the product of primes not in the list. In either cse the originl ssumption tht there were only finite number of primes leds to nonsensicl result, so there must be n infinite number of primes. 8. Look for Invrints. Sometimes these is property of your problem tht is preserved no mtter wht opertions re performed. Here s good exmple. Suppose you begin with chocolte br tht is 8 squres by 5 squres nd ply the following gme. If it is your turn to move, you select piece (t the beginning, of course, you hve only the originl piece), nd you brek it long one of the lines between the squres. For exmple, the first move might be to brek the br into V1WYX nd XWYX piece. If you cn t brek piece, you lose. 4

5 Here s the invrint to consider: fter ech move, there is one more piece, nd the gme ends when there re 40. Thus, no mtter wht the moves re, the gme is over in exctly 39 moves, so it is not relly gme t ll. 9. Fctor Into Primes. Mny problems bout divisibility cn be solved by reclling tht every integer hs unique fctoriztion into prime numbers. Show tht between ny pir of twin primes except 3 nd 5, the number between them is multiple of 6. (Twin primes re two prime numbers tht differ by 2.) Any set of three successive numbers includes one tht is multiple of three. Since, (except in the cse of 3 nd 5) neither prime cn be multiple of three, the number between them must be. Every pir of twin primes consists of two odd numbers so the number between is multiple of 2. Any number tht is multiple of both 2 nd 3 is multiple of 6. 5 Smple Problems Here is list of smple problems shmelessly copied from vrious contests. These problems re not for solution; insted, for ech one think of s mny pproches s you cn tht might work to solve it, nd think of pictures or digrms you might drw. 1. The yer Z [ \ [;]2[1^ Z _1^ Z `. Compute the next greter yer tht cn be written s the product of three positive integers in rithmetic progression, given tht the sum of those integers is Compute the vlue of: Z [ [ b c de Z b b b c de [ [ b c d Z [ [ b c Z b b b c [ [ b cgf 3. Ifh1ij]2k,j+ik] l,kily]2h, nd b is positive integer, compute the gretest possible vlue for h1ij+ik+il. 4. A chord of constnt length slides round in semicircle. The midpoint of the chord nd the projections of its ends upon the bse form the vertices of tringle. Prove tht the tringle is isosceles nd ll possible such tringles re similr. 5. In how mny wys cn 10 be expressed s sum of 5 nonnegtive integers when order is tken into ccount? In other words, bi_imibin is different from bibi_imin. 6. There re 100 soldiers in detchment, nd every evening three of them re on duty. Cn it hppen tht fter certin period of time ech soldier hs shred duty with every other soldier exctly once? 7. The prime numberso ndp nd the nturl numberq stisfy the following eqution: Find the numbers. Z o i Z p i Z oip ] Z q f 8. There re 7 glsses on tble ll stnding upside down. One move consists of turning over ny 4 of them. Is it possible to rech sitution where ll the glsses re right side up? 9. Prove tht if two qudrilterls hve the sme midpoints for ll of their sides, then their res re equl. 5

6 { x ~ 10. For wht vlues ofr does the system of equtions:shtuv t w s,y t{ v t u r z 11. Show tht: } ~ { { } ~ { { } u } ~ ~ ~ y1 hve exctly zero, one, two, three, nd four solutions, respectively? { { ƒ 12. Using strightedge nd compss, construct trpeziod given the lengths of ll of its sides. 13. On every squre of bord is written either 1 or. For ech rowˆ, let Š be the product of Œ the Ž Ž numbers in tht row. Similrly, let Š be the product of the numbers in column ˆ. Show tht Š x Š Š z is never equl to zero. 14. The sequence u r I I is defined s follows:r is positive rtionl number smller thn, nd ifr I š for some reltively prime integers ndš, then u t {œ r š ƒ Show thtr, for ll. 15. Mr. nd Mrs. Adms recently ttended prty t which there were three other couples. Vrious hndshkes took plce. No one shook hnds with his/her own spouse, no one shook hnds with the sme person twice, nd of course, no one shook his/her own hnd. After ll the hndshking ws finished, Mr. Adms sked ech person, including his wife, how mny hnds he or she hd shken. To his surprise, ech gve different nswer. How mny hnds did Mrs. Adms shke? 6 Bibliogrphy Here is short list of books on mthemticl problem solving strtegies. 1. Arthur Engel. Problem-Solving Strtegies. Springer, New York, Dmitri Fomin, Sergey Genkin, Ili Itenberg. Mthemticl Circles (Russin Experience). Americn Mthemticl Society, Providence, Loren C. Lrson. Problem-Solving Through Problems. Springer-Verlg, New York, George Póly. How to Solve It. Doubledy, second edition, Pul Zeitz. The Art nd Crft of Problem Solving. John Wiley & Sons, Inc., New York,

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( ) Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

More information

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive

More information

Factoring Polynomials

Factoring Polynomials Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

More information

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions. Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd

More information

Binary Representation of Numbers Autar Kaw

Binary Representation of Numbers Autar Kaw Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy

More information

SPECIAL PRODUCTS AND FACTORIZATION

SPECIAL PRODUCTS AND FACTORIZATION MODULE - Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come

More information

Reasoning to Solve Equations and Inequalities

Reasoning to Solve Equations and Inequalities Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

More information

Algebra Review. How well do you remember your algebra?

Algebra Review. How well do you remember your algebra? Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then

More information

Experiment 6: Friction

Experiment 6: Friction Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht

More information

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers. 2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this

More information

Square Roots Teacher Notes

Square Roots Teacher Notes Henri Picciotto Squre Roots Techer Notes This unit is intended to help students develop n understnding of squre roots from visul / geometric point of view, nd lso to develop their numer sense round this

More information

MATH 150 HOMEWORK 4 SOLUTIONS

MATH 150 HOMEWORK 4 SOLUTIONS MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive

More information

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn 33337_0P03.qp 2/27/06 24 9:3 AM Chpter P Pge 24 Prerequisites P.3 Polynomils nd Fctoring Wht you should lern Polynomils An lgeric epression is collection of vriles nd rel numers. The most common type of

More information

Integration by Substitution

Integration by Substitution Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is

More information

Curve Sketching. 96 Chapter 5 Curve Sketching

Curve Sketching. 96 Chapter 5 Curve Sketching 96 Chpter 5 Curve Sketching 5 Curve Sketching A B A B A Figure 51 Some locl mximum points (A) nd minimum points (B) If (x, f(x)) is point where f(x) reches locl mximum or minimum, nd if the derivtive of

More information

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100 hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

More information

Integration. 148 Chapter 7 Integration

Integration. 148 Chapter 7 Integration 48 Chpter 7 Integrtion 7 Integrtion t ech, by supposing tht during ech tenth of second the object is going t constnt speed Since the object initilly hs speed, we gin suppose it mintins this speed, but

More information

Section 5-4 Trigonometric Functions

Section 5-4 Trigonometric Functions 5- Trigonometric Functions Section 5- Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply

More information

Warm-up for Differential Calculus

Warm-up for Differential Calculus Summer Assignment Wrm-up for Differentil Clculus Who should complete this pcket? Students who hve completed Functions or Honors Functions nd will be tking Differentil Clculus in the fll of 015. Due Dte:

More information

Babylonian Method of Computing the Square Root: Justifications Based on Fuzzy Techniques and on Computational Complexity

Babylonian Method of Computing the Square Root: Justifications Based on Fuzzy Techniques and on Computational Complexity Bbylonin Method of Computing the Squre Root: Justifictions Bsed on Fuzzy Techniques nd on Computtionl Complexity Olg Koshelev Deprtment of Mthemtics Eduction University of Texs t El Pso 500 W. University

More information

Section 7-4 Translation of Axes

Section 7-4 Translation of Axes 62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 7-4 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the

More information

EQUATIONS OF LINES AND PLANES

EQUATIONS OF LINES AND PLANES EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint

More information

Graphs on Logarithmic and Semilogarithmic Paper

Graphs on Logarithmic and Semilogarithmic Paper 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

More information

Section A-4 Rational Expressions: Basic Operations

Section A-4 Rational Expressions: Basic Operations A- Appendi A A BASIC ALGEBRA REVIEW 7. Construction. A rectngulr open-topped bo is to be constructed out of 9- by 6-inch sheets of thin crdbord by cutting -inch squres out of ech corner nd bending the

More information

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of

More information

The Math Learning Center PO Box 12929, Salem, Oregon 97309 0929 Math Learning Center

The Math Learning Center PO Box 12929, Salem, Oregon 97309 0929  Math Learning Center Resource Overview Quntile Mesure: Skill or Concept: 1010Q Determine perimeter using concrete models, nonstndrd units, nd stndrd units. (QT M 146) Use models to develop formuls for finding res of tringles,

More information

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered: Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you

More information

Lecture 3 Gaussian Probability Distribution

Lecture 3 Gaussian Probability Distribution Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike

More information

6.2 Volumes of Revolution: The Disk Method

6.2 Volumes of Revolution: The Disk Method mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine so-clled volumes of

More information

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one. 5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued

More information

Math 135 Circles and Completing the Square Examples

Math 135 Circles and Completing the Square Examples Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for

More information

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is so-clled becuse when the sclr product of two vectors

More information

Factoring Trinomials of the Form. x 2 b x c. Example 1 Factoring Trinomials. The product of 4 and 2 is 8. The sum of 3 and 2 is 5.

Factoring Trinomials of the Form. x 2 b x c. Example 1 Factoring Trinomials. The product of 4 and 2 is 8. The sum of 3 and 2 is 5. Section P.6 Fctoring Trinomils 6 P.6 Fctoring Trinomils Wht you should lern: Fctor trinomils of the form 2 c Fctor trinomils of the form 2 c Fctor trinomils y grouping Fctor perfect squre trinomils Select

More information

Finite Automata. Informatics 2A: Lecture 3. John Longley. 25 September School of Informatics University of Edinburgh

Finite Automata. Informatics 2A: Lecture 3. John Longley. 25 September School of Informatics University of Edinburgh Lnguges nd Automt Finite Automt Informtics 2A: Lecture 3 John Longley School of Informtics University of Edinburgh jrl@inf.ed.c.uk 25 September 2015 1 / 30 Lnguges nd Automt 1 Lnguges nd Automt Wht is

More information

Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials

Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials MEI Mthemtics in Ection nd Instry Topic : Proof MEI Structured Mthemtics Mole Summry Sheets C, Methods for Anced Mthemtics (Version B reference to new book) Topic : Nturl Logrithms nd Eponentils Topic

More information

Regular Sets and Expressions

Regular Sets and Expressions Regulr Sets nd Expressions Finite utomt re importnt in science, mthemtics, nd engineering. Engineers like them ecuse they re super models for circuits (And, since the dvent of VLSI systems sometimes finite

More information

9 CONTINUOUS DISTRIBUTIONS

9 CONTINUOUS DISTRIBUTIONS 9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete

More information

Vectors 2. 1. Recap of vectors

Vectors 2. 1. Recap of vectors Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms

More information

1.2 The Integers and Rational Numbers

1.2 The Integers and Rational Numbers .2. THE INTEGERS AND RATIONAL NUMBERS.2 The Integers n Rtionl Numers The elements of the set of integers: consist of three types of numers: Z {..., 5, 4, 3, 2,, 0,, 2, 3, 4, 5,...} I. The (positive) nturl

More information

Econ 4721 Money and Banking Problem Set 2 Answer Key

Econ 4721 Money and Banking Problem Set 2 Answer Key Econ 472 Money nd Bnking Problem Set 2 Answer Key Problem (35 points) Consider n overlpping genertions model in which consumers live for two periods. The number of people born in ech genertion grows in

More information

19. The Fermat-Euler Prime Number Theorem

19. The Fermat-Euler Prime Number Theorem 19. The Fermt-Euler Prime Number Theorem Every prime number of the form 4n 1 cn be written s sum of two squres in only one wy (side from the order of the summnds). This fmous theorem ws discovered bout

More information

Answer, Key Homework 10 David McIntyre 1

Answer, Key Homework 10 David McIntyre 1 Answer, Key Homework 10 Dvid McIntyre 1 This print-out should hve 22 questions, check tht it is complete. Multiple-choice questions my continue on the next column or pge: find ll choices efore mking your

More information

4.11 Inner Product Spaces

4.11 Inner Product Spaces 314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces

More information

Lecture 5. Inner Product

Lecture 5. Inner Product Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right

More information

Physics 43 Homework Set 9 Chapter 40 Key

Physics 43 Homework Set 9 Chapter 40 Key Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x

More information

baby on the way, quit today

baby on the way, quit today for mums-to-be bby on the wy, quit tody WHAT YOU NEED TO KNOW bout smoking nd pregnncy uitting smoking is the best thing you cn do for your bby We know tht it cn be difficult to quit smoking. But we lso

More information

Mechanics Cycle 1 Chapter 5. Chapter 5

Mechanics Cycle 1 Chapter 5. Chapter 5 Chpter 5 Contct orces: ree Body Digrms nd Idel Ropes Pushes nd Pulls in 1D, nd Newton s Second Lw Neglecting riction ree Body Digrms Tension Along Idel Ropes (i.e., Mssless Ropes) Newton s Third Lw Bodies

More information

Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3.

Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3. The nlysis of vrince (ANOVA) Although the t-test is one of the most commonly used sttisticl hypothesis tests, it hs limittions. The mjor limittion is tht the t-test cn be used to compre the mens of only

More information

Unit 6: Exponents and Radicals

Unit 6: Exponents and Radicals Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -

More information

Distributions. (corresponding to the cumulative distribution function for the discrete case).

Distributions. (corresponding to the cumulative distribution function for the discrete case). Distributions Recll tht n integrble function f : R [,] such tht R f()d = is clled probbility density function (pdf). The distribution function for the pdf is given by F() = (corresponding to the cumultive

More information

Math Review 1. , where α (alpha) is a constant between 0 and 1, is one specific functional form for the general production function.

Math Review 1. , where α (alpha) is a constant between 0 and 1, is one specific functional form for the general production function. Mth Review Vribles, Constnts nd Functions A vrible is mthemticl bbrevition for concept For emple in economics, the vrible Y usully represents the level of output of firm or the GDP of n economy, while

More information

Homework #4: Answers. 1. Draw the array of world outputs that free trade allows by making use of each country s transformation schedule.

Homework #4: Answers. 1. Draw the array of world outputs that free trade allows by making use of each country s transformation schedule. Text questions, Chpter 5, problems 1-5: Homework #4: Answers 1. Drw the rry of world outputs tht free trde llows by mking use of ech country s trnsformtion schedule.. Drw it. This digrm is constructed

More information

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding 1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde

More information

Homework 3 Solutions

Homework 3 Solutions CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.

More information

Rational Functions. Rational functions are the ratio of two polynomial functions. Qx bx b x bx b. x x x. ( x) ( ) ( ) ( ) and

Rational Functions. Rational functions are the ratio of two polynomial functions. Qx bx b x bx b. x x x. ( x) ( ) ( ) ( ) and Rtionl Functions Rtionl unctions re the rtio o two polynomil unctions. They cn be written in expnded orm s ( ( P x x + x + + x+ Qx bx b x bx b n n 1 n n 1 1 0 m m 1 m + m 1 + + m + 0 Exmples o rtionl unctions

More information

LECTURE #05. Learning Objective. To describe the geometry in and around a unit cell in terms of directions and planes.

LECTURE #05. Learning Objective. To describe the geometry in and around a unit cell in terms of directions and planes. LECTURE #05 Chpter 3: Lttice Positions, Directions nd Plnes Lerning Objective To describe the geometr in nd round unit cell in terms of directions nd plnes. 1 Relevnt Reding for this Lecture... Pges 64-83.

More information

2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration

2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration Source: http://www.mth.cuhk.edu.hk/~mt26/mt26b/notes/notes3.pdf 25-6 Second Term MAT26B 1 Supplementry Notes 3 Interchnge of Differentition nd Integrtion The theme of this course is bout vrious limiting

More information

Basic Analysis of Autarky and Free Trade Models

Basic Analysis of Autarky and Free Trade Models Bsic Anlysis of Autrky nd Free Trde Models AUTARKY Autrky condition in prticulr commodity mrket refers to sitution in which country does not engge in ny trde in tht commodity with other countries. Consequently

More information

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is

More information

Cypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period:

Cypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period: Nme: SOLUTIONS Dte: Period: Directions: Solve ny 5 problems. You my ttempt dditionl problems for extr credit. 1. Two blocks re sliding to the right cross horizontl surfce, s the drwing shows. In Cse A

More information

FUNCTIONS AND EQUATIONS. xεs. The simplest way to represent a set is by listing its members. We use the notation

FUNCTIONS AND EQUATIONS. xεs. The simplest way to represent a set is by listing its members. We use the notation FUNCTIONS AND EQUATIONS. SETS AND SUBSETS.. Definition of set. A set is ny collection of objects which re clled its elements. If x is n element of the set S, we sy tht x belongs to S nd write If y does

More information

Helicopter Theme and Variations

Helicopter Theme and Variations Helicopter Theme nd Vritions Or, Some Experimentl Designs Employing Pper Helicopters Some possible explntory vribles re: Who drops the helicopter The length of the rotor bldes The height from which the

More information

and thus, they are similar. If k = 3 then the Jordan form of both matrices is

and thus, they are similar. If k = 3 then the Jordan form of both matrices is Homework ssignment 11 Section 7. pp. 249-25 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If

More information

A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324

A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324 A P P E N D I X A Vectors CONTENTS A.1 Scling vector................................................ 321 A.2 Unit or Direction vectors...................................... 321 A.3 Vector ddition.................................................

More information

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Byesin Updting with Continuous Priors Clss 3, 8.05, Spring 04 Jeremy Orloff nd Jonthn Bloom Lerning Gols. Understnd prmeterized fmily of distriutions s representing continuous rnge of hypotheses for the

More information

10.6 Applications of Quadratic Equations

10.6 Applications of Quadratic Equations 10.6 Applictions of Qudrtic Equtions In this section we wnt to look t the pplictions tht qudrtic equtions nd functions hve in the rel world. There re severl stndrd types: problems where the formul is given,

More information

Assuming all values are initially zero, what are the values of A and B after executing this Verilog code inside an always block? C=1; A <= C; B = C;

Assuming all values are initially zero, what are the values of A and B after executing this Verilog code inside an always block? C=1; A <= C; B = C; B-26 Appendix B The Bsics of Logic Design Check Yourself ALU n [Arthritic Logic Unit or (rre) Arithmetic Logic Unit] A rndom-numer genertor supplied s stndrd with ll computer systems Stn Kelly-Bootle,

More information

Object Semantics. 6.170 Lecture 2

Object Semantics. 6.170 Lecture 2 Object Semntics 6.170 Lecture 2 The objectives of this lecture re to: to help you become fmilir with the bsic runtime mechnism common to ll object-oriented lnguges (but with prticulr focus on Jv): vribles,

More information

Small Business Cloud Services

Small Business Cloud Services Smll Business Cloud Services Summry. We re thick in the midst of historic se-chnge in computing. Like the emergence of personl computers, grphicl user interfces, nd mobile devices, the cloud is lredy profoundly

More information

AREA OF A SURFACE OF REVOLUTION

AREA OF A SURFACE OF REVOLUTION AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.

More information

Introduction to Integration Part 2: The Definite Integral

Introduction to Integration Part 2: The Definite Integral Mthemtics Lerning Centre Introduction to Integrtion Prt : The Definite Integrl Mr Brnes c 999 Universit of Sdne Contents Introduction. Objectives...... Finding Ares 3 Ares Under Curves 4 3. Wht is the

More information

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1. Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose

More information

All pay auctions with certain and uncertain prizes a comment

All pay auctions with certain and uncertain prizes a comment CENTER FOR RESEARC IN ECONOMICS AND MANAGEMENT CREAM Publiction No. 1-2015 All py uctions with certin nd uncertin prizes comment Christin Riis All py uctions with certin nd uncertin prizes comment Christin

More information

The Definite Integral

The Definite Integral Chpter 4 The Definite Integrl 4. Determining distnce trveled from velocity Motivting Questions In this section, we strive to understnd the ides generted by the following importnt questions: If we know

More information

COMPARISON OF SOME METHODS TO FIT A MULTIPLICATIVE TARIFF STRUCTURE TO OBSERVED RISK DATA BY B. AJNE. Skandza, Stockholm ABSTRACT

COMPARISON OF SOME METHODS TO FIT A MULTIPLICATIVE TARIFF STRUCTURE TO OBSERVED RISK DATA BY B. AJNE. Skandza, Stockholm ABSTRACT COMPARISON OF SOME METHODS TO FIT A MULTIPLICATIVE TARIFF STRUCTURE TO OBSERVED RISK DATA BY B. AJNE Skndz, Stockholm ABSTRACT Three methods for fitting multiplictive models to observed, cross-clssified

More information

PHY 140A: Solid State Physics. Solution to Homework #2

PHY 140A: Solid State Physics. Solution to Homework #2 PHY 140A: Solid Stte Physics Solution to Homework # TA: Xun Ji 1 October 14, 006 1 Emil: jixun@physics.ucl.edu Problem #1 Prove tht the reciprocl lttice for the reciprocl lttice is the originl lttice.

More information

AA1H Calculus Notes Math1115, Honours 1 1998. John Hutchinson

AA1H Calculus Notes Math1115, Honours 1 1998. John Hutchinson AA1H Clculus Notes Mth1115, Honours 1 1998 John Hutchinson Author ddress: Deprtment of Mthemtics, School of Mthemticl Sciences, Austrlin Ntionl University E-mil ddress: John.Hutchinson@nu.edu.u Contents

More information

MODULE 3. 0, y = 0 for all y

MODULE 3. 0, y = 0 for all y Topics: Inner products MOULE 3 The inner product of two vectors: The inner product of two vectors x, y V, denoted by x, y is (in generl) complex vlued function which hs the following four properties: i)

More information

Small Businesses Decisions to Offer Health Insurance to Employees

Small Businesses Decisions to Offer Health Insurance to Employees Smll Businesses Decisions to Offer Helth Insurnce to Employees Ctherine McLughlin nd Adm Swinurn, June 2014 Employer-sponsored helth insurnce (ESI) is the dominnt source of coverge for nonelderly dults

More information

The Velocity Factor of an Insulated Two-Wire Transmission Line

The Velocity Factor of an Insulated Two-Wire Transmission Line The Velocity Fctor of n Insulted Two-Wire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the

More information

Double Integrals over General Regions

Double Integrals over General Regions Double Integrls over Generl egions. Let be the region in the plne bounded b the lines, x, nd x. Evlute the double integrl x dx d. Solution. We cn either slice the region verticll or horizontll. ( x x Slicing

More information

Chapter 2 The Number System (Integers and Rational Numbers)

Chapter 2 The Number System (Integers and Rational Numbers) Chpter 2 The Number System (Integers nd Rtionl Numbers) In this second chpter, students extend nd formlize their understnding of the number system, including negtive rtionl numbers. Students first develop

More information

Or more simply put, when adding or subtracting quantities, their uncertainties add.

Or more simply put, when adding or subtracting quantities, their uncertainties add. Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re

More information

Pentominoes. Pentominoes. Bruce Baguley Cascade Math Systems, LLC. The pentominoes are a simple-looking set of objects through which some powerful

Pentominoes. Pentominoes. Bruce Baguley Cascade Math Systems, LLC. The pentominoes are a simple-looking set of objects through which some powerful Pentominoes Bruce Bguley Cscde Mth Systems, LLC Astrct. Pentominoes nd their reltives the polyominoes, polycues, nd polyhypercues will e used to explore nd pply vrious importnt mthemticl concepts. In this

More information

CHAPTER 11 Numerical Differentiation and Integration

CHAPTER 11 Numerical Differentiation and Integration CHAPTER 11 Numericl Differentition nd Integrtion Differentition nd integrtion re bsic mthemticl opertions with wide rnge of pplictions in mny res of science. It is therefore importnt to hve good methods

More information

Geometry 7-1 Geometric Mean and the Pythagorean Theorem

Geometry 7-1 Geometric Mean and the Pythagorean Theorem Geometry 7-1 Geometric Men nd the Pythgoren Theorem. Geometric Men 1. Def: The geometric men etween two positive numers nd is the positive numer x where: = x. x Ex 1: Find the geometric men etween the

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2010

AAPT UNITED STATES PHYSICS TEAM AIP 2010 2010 F = m Exm 1 AAPT UNITED STATES PHYSICS TEAM AIP 2010 Enti non multiplicnd sunt preter necessittem 2010 F = m Contest 25 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD

More information

Thinking out of the Box... Problem It s a richer problem than we ever imagined

Thinking out of the Box... Problem It s a richer problem than we ever imagined From the Mthemtics Techer, Vol. 95, No. 8, pges 568-574 Wlter Dodge (not pictured) nd Steve Viktor Thinking out of the Bo... Problem It s richer problem thn we ever imgined The bo problem hs been stndrd

More information

Protocol Analysis. 17-654/17-764 Analysis of Software Artifacts Kevin Bierhoff

Protocol Analysis. 17-654/17-764 Analysis of Software Artifacts Kevin Bierhoff Protocol Anlysis 17-654/17-764 Anlysis of Softwre Artifcts Kevin Bierhoff Tke-Awys Protocols define temporl ordering of events Cn often be cptured with stte mchines Protocol nlysis needs to py ttention

More information

Words Symbols Diagram. abcde. a + b + c + d + e

Words Symbols Diagram. abcde. a + b + c + d + e Logi Gtes nd Properties We will e using logil opertions to uild mhines tht n do rithmeti lultions. It s useful to think of these opertions s si omponents tht n e hooked together into omplex networks. To

More information

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2 7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6

More information

PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1

PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1 PROBLEMS - APPLICATIONS OF DERIVATIVES Pge ( ) Wter seeps out of conicl filter t the constnt rte of 5 cc / sec. When the height of wter level in the cone is 5 cm, find the rte t which the height decreses.

More information

Rotating DC Motors Part II

Rotating DC Motors Part II Rotting Motors rt II II.1 Motor Equivlent Circuit The next step in our consiertion of motors is to evelop n equivlent circuit which cn be use to better unerstn motor opertion. The rmtures in rel motors

More information

Picture Match Words Fusion Density Isotope Neutron Atomic Number Structure Components Function Atomic Mass Orbit

Picture Match Words Fusion Density Isotope Neutron Atomic Number Structure Components Function Atomic Mass Orbit Picture Mtch Words Fusion Density Isotope Neutron Atomic Number Structure Components Function Atomic Mss Orbit Mterils copyrighted by the University of Louisville. Eductors re free to use these mterils

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd processes. Introducing technology

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Basic Algebra

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Basic Algebra SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mthemtics Bsic Alger. Opertions nd Epressions. Common Mistkes. Division of Algeric Epressions. Eponentil Functions nd Logrithms. Opertions nd their Inverses. Mnipulting

More information

10 AREA AND VOLUME 1. Before you start. Objectives

10 AREA AND VOLUME 1. Before you start. Objectives 10 AREA AND VOLUME 1 The Tower of Pis is circulr bell tower. Construction begn in the 1170s, nd the tower strted lening lmost immeditely becuse of poor foundtion nd loose soil. It is 56.7 metres tll, with

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd business. Introducing technology

More information

DlNBVRGH + Sickness Absence Monitoring Report. Executive of the Council. Purpose of report

DlNBVRGH + Sickness Absence Monitoring Report. Executive of the Council. Purpose of report DlNBVRGH + + THE CITY OF EDINBURGH COUNCIL Sickness Absence Monitoring Report Executive of the Council 8fh My 4 I.I...3 Purpose of report This report quntifies the mount of working time lost s result of

More information