DESIGN OF GATE NETWORKS

Size: px
Start display at page:

Download "DESIGN OF GATE NETWORKS"

Transcription

1 DESIGN OF GATE NETWORKS DESIGN OF TWO-LEVEL NETWORKS: and-or and or-and NETWORKS MINIMAL TWO-LEVEL NETWORKS KARNAUGH MAPS MINIMIZATION PROCEDURE AND TOOLS LIMITATIONS OF TWO-LEVEL NETWORKS DESIGN OF TWO-LEVEL nand-nand and nor-nor NETWORKS PROGRAMMABLE LOGIC: plas and pals.

2 DESIGN OF TWO-LEVEL NETWORKS 2 IMPLEMENTATION: Level (optional) not GATES Level 2 and GATES Level 3 or GATES LITERALS (uncomplemented and complemented variables) not GATES (IF NEEDED) PRODUCTS: and gates SUM: or gate MULTIOUTPUT NETWORKS: ONE or GATE USED FOR EACH OUTPUT PRODUCT OF SUMS NETWORKS - SIMILAR

3 MODULO-64 INCREMENTER 3 Input: 0 x 63 Output: 0 z 63 Function: z = (x + ) mod z z RADIX-2 REPRESENTATION if (x i = and there exists j < i such that x j = 0) z i = or (x i = 0 and x j = for all j < i) 0 otherwise z 5 = x 5 (x 4 x 3 x 2 x x 0) x 5x 4 = x 5 x 4 x 5 x 3 x 5 x 2 x 5 x x 5 x 0 x 5x 4 z 4 = x 4 x 3 x 4 x 2 x 4 x x 4 x 0 x 4 z 3 = x 2 x x 0 x 3 z 2 = x x 0 x 2 z = x 0 x z 0 = x 0

4 x 5 x' 5 x 4 4 x' 3 x 4 x' 4 x' 2 x' 3 x' z 4 x' 2 x' x' 0 x' 0 x' 4 x2 x x0 x 5 x' 4 x' 2 x' x' 3 z 3 x' 2 x' z 5 x2 x x0 x' 0 x' 3 x2 x x0 x' 0 x 4 x' 5 x' 0 x' x' 0 x' 2 z 2 z x' z 0 Figure 5.: not-and-or MODULO-64 INCREMENTER NETWORK.

5 UNCOMPLEMENTED AND COMPLEMENTED INPUTS AVAILABLE 5 TWO TYPES OF TWO-LEVEL NETWORKS: and-or NETWORK SUM OF PRODUCTS (nand-nand NETWORK) or-and NETWORK PRODUCT OF SUMS (nor-nor NETWORK) x x 2 x 2 z x 0 z x x 0 (a) (b) Figure 5.2: and-or and or-and NETWORKS. E(,, ) = x 2x x 0 E(,, ) = (x 2 )( x 0)( x )

6 MINIMAL TWO-LEVEL NETWORKS 6. INPUTS: UNCOMPLEMENTED AND COMPLEMENTED 2. FANIN UNLIMITED 3. SINGLE-OUTPUT NETWORKS 4. MINIMAL NETWORK: MINIMUM NUMBER OF GATES WITH MINIMUM NUMBER OF INPUTS (minimal expression: min. number of terms with min. number of literals)

7 NETWORKS WITH DIFFERENT COST 7 x x 0 x2 x 2 z x 0 z Network A Network B Figure 5.3: NETWORKS WITH DIFFERENT COST TO IMPLEMENT f(,, ) =one-set(3,6,7).

8 MINIMAL EXPRESSIONS 8 EQUIVALENT BUT DIFFERENT COST E (,, ) = x 2 x 0 x E 2 (,, ) = x 2 x 0 x 2x x BOTH MINIMAL SP AND PS MUST BE OBTAINED AND COMPARED BASIS: ab ab = a (for sum of products) (a b)(a b ) = a (for product of sums)

9 9 GRAPHICAL REPRESENTATION OF SWITCHING FUNCTIONS: karnaugh MAPS 2-DIMENSIONAL ARRAY OF CELLS n VARIABLES 2 n CELLS cell i ASSIGNMENT i ADJACENCY CONDITION ANY SET OF 2 r ADJACENT ROWS (COLUMNS): ASSIGNMENTS DIFFER IN r VARIABLES REPRESENTING SWITCHING FUNCTIONS REPRESENTING SWITCHING EXPRESSIONS GRAPHICAL AID IN SIMPLIFYING EXPRESSIONS

10 x 0 x (a) (b) (c) (d) Figure 5.4: K-Maps

11 x 4 = 0 x 4 = Figure 5.5: K-map FOR FIVE VARIABLES

12 REPRESENTATION OF SWITCHING FUNCTIONS 2 f(,, ) = one-set(0,2,6) f(,,, ) = zero-set(,3,4,6,0,,3) f(,, ) = [one-set(0,4,5), dc-set(2,3)] 0 0 0

13 RECTANGLES OF -CELLS AND SUM OF PRODUCTS 3. MINTERM m j CORRESPONDS TO -CELL WITH LABEL j. 2. PRODUCT TERM OF n LITERALS RECTANGLE OF TWO AD- JACENT -CELLS x = x ( x 2) = x x 2x = m 3 m x 3 x Figure 5.6

14 RECTANGLES OF -CELLS AND SUM OF PRODUCTS (cont.) 4 3. PRODUCT TERM OF n 2 LITERALS RECTANGLE OF FOUR ADJACENT -CELLS = ( x )( x 2) = x 2x x 2 x = m 9 m m 3 m x 3 Figure PRODUCT TERM OF n s LITERALS RECTANGLE OF 2 s ADJACENT -CELLS

15 5 2 b xn... x x k... k 2 a Product of n (a + b) variables Figure 5.7: Representation of product of n (a + b) variables. x 0 x 3 x 2x 0 Figure 5.8: Product terms and rectangles of -cells. x 3 x 0 x 2 x 3

16 SUM OF PRODUCTS 6 represented in a K-map by the union of rectangles E(,,, ) = x 3 x 2 x E(a, b, c) = ab ac b c a c b

17 RECTANGLES OF 0-CELLS AND PRODUCT OF SUMS 7 0-cell 3 CORRESPONDS TO THE MAXTERM M 3 = x 3 x 2 x 0 RECTANGLE OF 2 a 2 b 0-cells SUM TERM OF n (a + b) LITERALS

18 MINIMIZATION OF SUMS OF PRODUCTS 8 IMPLICANT: PRODUCT TERM FOR WHICH f= A D x 2 B C Figure 5.9: Implicant representation. IMPLICANTS: x 3x 2x, ALL PRODUCT TERMS WITH PRIME implicant: IMPLICANT NOT COVERED BY ANOTHER IMPLICANT PRIME IMPLICANTS: x 2x,

19 FIND ALL PIs 9 a) f(,, ) = one-set(2,4,6) PIs: x 0 and x 0 b) f(,, ) = one-set(0,,5,7) PIs: x 2x,, and x x

20 20 c) f(,,, ) = one-set(0,3,5,7,,2,3,5) PIs:,, x, and x 3x 2x x 0

21 MINIMAL SUM OF PRODUCTS CONSISTS OF PRIME IMPLICANTS 2 q 0 0 p p 0 p 2 Figure 5.0: MINIMAL SUM OF PRODUCTS AND PRIME IMPLICANTS.

22 Example E(,, ) = x x 0 x 0 x 0 x x x x x 0 2 x 0 x x 0 not PIs: x x 0 and x 0 PI: x 0, x 0 REDUCED SP: E(,, ) = x 0 x 0

23 ESSENTIAL PRIME IMPLICANTS (EPI) 23 p e (a) = and p(a) = 0 FOR ANY OTHER PI p EPIs: x x 0 and NON-ESSENTIAL:, x 0. ALL EPIs ARE INCLUDED IN A MINIMAL SP

24 PROCEDURE FOR FINDING MIN SP 24. DETERMINE ALL PIs 2. OBTAIN THE EPIs 3. IF NOT ALL -CELLS COVERED, CHOOSE A COVER FROM THE RE- MAINING PIs

25 EXAMPLE FIND A MINIMAL SP: a) E(,,, ) = x 3x 2 x 3 PIs: x 3x 2, x 3, and ALL EPIs UNIQUE MIN SP: x 3x 2 x 3

26 26 b) E(,, ) = m(0, 3, 4, 6, 7) PIs: x x 0,, x 0, and EPIs: x x 0 and EXTRA COVER: x 0 or TWO MIN SPs: x x 0 x 0 and x x 0

27 27 c) E(,, ) = m(0,, 2, 5, 6, 7) PIs: x 2x, x 2x 0,,, x, and x 0 No EPIs TWO MIN SPs x 2x x 0 and x 2x 0 x

28 MINIMAL SPs FOR INCOMPLETELY SPECIFIED FUNCTIONS A minimal SP E(,,, ) = x 0 x 3 x 3x 2x

29 MINIMIZATION OF PRODUCTS OF SUMS 29 IMPLICATE: SUM TERM FOR WHICH f = 0. PRIME IMPLICATE: IMPLICATE NOT COVERED BY ANOTHER IM- PLICATE ESSENTIAL PRIME IMPLICATE: AT LEAST ONE CELL NOT IN- CLUDED IN OTHER IMPLICATE f(,,, ) = zero-set(7,3,5) THE PRIME IMPLICATES: (x 3 x 2 x 0) and (x 2 x x 0) BOTH ESSENTIAL

30 PROCEDURE FOR FINDING MIN PS 30. DETERMINE ALL PRIME IMPLICATES 2. DETERMINE THE ESSENTIAL PRIME IMPLICATES 3. FROM SET OF NONESSENTIAL PRIME IMPLICATES, SELECT COVER OF REMAINING 0-CELLS THE PRIME IMPLICATES: (x 0 x 2) and ( x ) BOTH ESSENTIAL, THE MINIMAL PS IS (x 0 x 2)( x )

31 MINIMAL TWO-LEVEL GATE NETWORK DESIGN: EXAMPLE Input: x {0,, 2,..., 9}, coded in BCD as x = (,,, ), x i {0, } Output: z {0, } Function: z = if x {0, 2, 3, 5, 8} 0 otherwise THE VALUES {0,,2,3,4,5} ARE DON T CARES x 3 0 MIN SP: z = x 2 x 2x 0 x MIN PS: z = (x 2 x )(x 2 )( x 0)

32 32 x x 2 x 2 z x 2 x 0 Figure 5.: MINIMAL and-or NETWORK

33 EXAMPLE THE K-MAP: Input: x {0,, 2,..., 5} represented in binary code by x = (,,, ) Output: z {0, } Function: z = if x {0,, 3, 5, 7,, 2, 3, 4} 0 otherwise min SP: z = x 3 x 3x 2x x x 0 x 2 min PS: z = (x 3 )( x 2 )( x )(x 3 x 2 x x 0) COST(PS) < COST(SP)

34 34 x 3 x 2 x z x 3 x 2 x x 0 Figure 5.2: MINIMAL or-and NETWORK

35 DESIGN OF MULTIPLE-OUTPUT TWO-LEVEL GATE NETWORKS 35 SEPARATE NETWORK FOR EACH OUTPUT: NO SHARING EXAMPLE 5.6 Inputs: (,, ), x i {0, } Output: z {0,, 2, 3} Function: z = 2 i=0 x i. THE SWITCHING FUNCTIONS IN TABULAR FORM ARE z z

36 EXAMPLE 5.6 (cont.) THE CORRESPONDING K-MAPS ARE z z MINIMAL SPs: z = z 0 = x 2x x 2 x 0 x x 0 4. MINIMAL PSs: z = ( )( )( ) z 0 = ( )( x x 0) (x 2 x 0)(x 2 x ) 5. SP AND PS EXPRESSIONS HAVE THE SAME COST

37 37 x x 2 x 2 z x x 0 z 0 x 0 Figure 5.3: MINIMAL TWO-OUTPUT and-or NETWORK

38 TWO-LEVEL NAND-NAND AND NOR-NOR NETWORKS 38 p, p 2,... ARE PRODUCT TERMS E = p p 2 p 3... p n E = (p p 2 p 3... p n) or E = NAND(NAND, NAND 2, NAND 3,..., NAND n )

39 39 x 7 x 7 x 6 x 6 x 5 x 4 z x 5 x 4 z (a) (b) Figure 5.5: TRANSFORMATION OF and-or NETWORK INTO nand NETWORK

40 EXAMPLE: NOR NETWORK 40 z = x 5(x 4 x 3)( ) x 5 x 5 x 4 z x 4 z x 3 x 3 (a) (b) Figure 5.6: EQUIVALENT or-and AND nor NETWORKS

41 LIMITATIONS OF TWO-LEVEL NETWORKS 4. THE REQUIREMENT OF UNCOMPLEMENTED AND COMPLEMENTED INPUTS IF NOT SATISFIED, AN ADDITIONAL LEVEL OF not GATES NEEDED 2. A TWO-LEVEL IMPLEMENTATION OF A FUNCTION MIGHT REQUIRE A LARGE NUMBER OF GATES AND IRREGULAR CONNECTIONS 3. EXISTING TECHNOLOGIES HAVE LIMITATIONS IN THE FAN-IN OF THE GATES 4. THE PROCEDURE ESSENTIALLY LIMITED TO THE SINGLE-OUTPUT CASE 5. THE COST CRITERION OF MINIMIZING THE NUMBER OF GATES IS NOT ADEQUATE FOR MANY msi/lsi/vlsi DESIGNS

42 PROGRAMMABLE modules: PLAs and PALs 42 STANDARD (FIXED) STRUCTURE CUSTOMIZED (PROGRAMMED) FOR A PARTICULAR FUNCTION DURING THE LAST STAGE OF FABRICATION WHEN INCORPORATED INTO A SYSTEM FLEXIBLE USE MORE EXPENSIVE AND SLOWER THAN FIXED-FUNCTION MODULES OTHER TYPES DISCUSSED IN Chapter 2

43 x n- AND Array Inputs Programmable array of AND gates Product terms -- programmable connection -- connection made (a) 2 3 r (b) k E z k- En Programmable array of OR gates Outputs OR Array 2 z z 0 E (enable) three-state buffers 43 Figure 5.7: PROGRAMMABLE LOGIC ARRAY (pla): a) BLOCK DIAGRAM; b) LOGIC DIAGRAM.

44 mos pla (or-and VERSION) 44 AND Array (NOR Array) Vdd Vdd a a b b c c Gnd Gnd Gnd Gnd Gnd pull-up devices (a + c) Gnd (b + c ) (a + b) Gnd pull-up devices OR Array (NOR Array) E c w = ((a + c) + (b + c ) ) = (a + b)(b + c ) z = ((a + b) + c ) = (a + b) c w z Figure 5.8: EXAMPLE OF pla IMPLEMENTATION AT THE CIRCUIT LEVEL: FRAGMENT OF A mos pla.

45 IMPLEMENTATION OF SWITCHING FUNCTIONS USING plas 45 A BCD-to-Gray CONVERTER Inputs: d = (d 3, d 2, d, d 0 ), d j {0, } Outputs: g = (g 3, g 2, g, g 0 ), g j {0, } Function: i d 3 d 2 d d 0 g 3 g 2 g g EXPRESSIONS: g 3 = d 3 g 2 = d 3 d 2 g = d 2d d 2 d g 0 = d d 0 d d 0

46 46 d 3 d 2 d d 0 OR Array AND Array -- programmable connection -- connection made g 3 g 2 g g 0 Note: a PLA chip would have more rows and columns then shown here Figure 5.9: PLA IMPLEMENTATION OF BCD-Gray CODE CONVERTER.

47 PAL : A PROGRAMMABLE MODULE WITH FIXED or ARRAY 47 FASTER, MORE INPUTS AND PRODUCT TERMS COMPARED TO PLAs x n- 2 E (enable) z z k z k- r three-state buffers AND Array -- programmable connection -- connection made Figure 5.20: LOGIC DIAGRAM OF A PAL

48 I I2 I3 I4 I5 I6 I7 I8 I O IO2 IO3 IO4 IO5 IO6 IO7 O8 I0 48 Figure 5.2: 6-INPUT, 8-OUTPUT pal(p6h8)

Karnaugh Maps & Combinational Logic Design. ECE 152A Winter 2012

Karnaugh Maps & Combinational Logic Design. ECE 152A Winter 2012 Karnaugh Maps & Combinational Logic Design ECE 52A Winter 22 Reading Assignment Brown and Vranesic 4 Optimized Implementation of Logic Functions 4. Karnaugh Map 4.2 Strategy for Minimization 4.2. Terminology

More information

Computer Organization I. Lecture 8: Boolean Algebra and Circuit Optimization

Computer Organization I. Lecture 8: Boolean Algebra and Circuit Optimization Computer Organization I Lecture 8: Boolean Algebra and Circuit Optimization Overview The simplification from SOM to SOP and their circuit implementation Basics of Logic Circuit Optimization: Cost Criteria

More information

BOOLEAN ALGEBRA & LOGIC GATES

BOOLEAN ALGEBRA & LOGIC GATES BOOLEAN ALGEBRA & LOGIC GATES Logic gates are electronic circuits that can be used to implement the most elementary logic expressions, also known as Boolean expressions. The logic gate is the most basic

More information

CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012

CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline Multi-Level Gate Circuits NAND and NOR Gates Design of Two-Level Circuits Using NAND and NOR Gates

More information

Gate-Level Minimization

Gate-Level Minimization Chapter 3 Gate-Level Minimization 3- Outline! Karnaugh Map Method! NAND and NOR Implementations! Other Two-Level Implementations! Exclusive-OR Function! Hardware Description Language 3-2 Why Logic Minimization?!

More information

CSE140: Midterm 1 Solution and Rubric

CSE140: Midterm 1 Solution and Rubric CSE140: Midterm 1 Solution and Rubric April 23, 2014 1 Short Answers 1.1 True or (6pts) 1. A maxterm must include all input variables (1pt) True 2. A canonical product of sums is a product of minterms

More information

Karnaugh Maps. Circuit-wise, this leads to a minimal two-level implementation

Karnaugh Maps. Circuit-wise, this leads to a minimal two-level implementation Karnaugh Maps Applications of Boolean logic to circuit design The basic Boolean operations are AND, OR and NOT These operations can be combined to form complex expressions, which can also be directly translated

More information

Chapter 4 Combinational Logic

Chapter 4 Combinational Logic Chapter 4 Combinational Logic Chih-Tsun Huang ( 黃稚存 ) Department of Computer Science National Tsing Hua University Outline Introduction Combinational Circuits Analysis Procedure Design Procedure Binary

More information

Combinational Logic Circuits

Combinational Logic Circuits Chapter 2 Combinational Logic Circuits J.J. Shann Chapter Overview 2-1 Binary Logic and Gates 2-2 Boolean Algebra 2-3 Standard Forms 2-4 Two-Level Circuit Optimization 2-5 Map Manipulation 補 充 資 料 :Quine-McCluskey

More information

Karnaugh Map. Alternative way to Boolean Function Simplification. Karnaugh Map. Description of Kmap & Terminology

Karnaugh Map. Alternative way to Boolean Function Simplification. Karnaugh Map. Description of Kmap & Terminology Alternative way to Boolean Function Simplification Karnaugh Map CIT 595 Spring 2010 Simplification of Boolean functions leads to simpler (and usually faster) digital circuits Simplifying Boolean functions

More information

The equation for the 3-input XOR gate is derived as follows

The equation for the 3-input XOR gate is derived as follows The equation for the 3-input XOR gate is derived as follows The last four product terms in the above derivation are the four 1-minterms in the 3-input XOR truth table. For 3 or more inputs, the XOR gate

More information

Digital Circuits. Frequently Asked Questions

Digital Circuits. Frequently Asked Questions Digital Circuits Frequently Asked Questions Module 1: Digital & Analog Signals 1. What is a signal? Signals carry information and are defined as any physical quantity that varies with time, space, or any

More information

Programmable Logic Devices (PLDs)

Programmable Logic Devices (PLDs) Programmable Logic Devices (PLDs) Lesson Objectives: In this lesson you will be introduced to some types of Programmable Logic Devices (PLDs): PROM, PAL, PLA, CPLDs, FPGAs, etc. How to implement digital

More information

CSEE 3827: Fundamentals of Computer Systems. Standard Forms and Simplification with Karnaugh Maps

CSEE 3827: Fundamentals of Computer Systems. Standard Forms and Simplification with Karnaugh Maps CSEE 3827: Fundamentals of Computer Systems Standard Forms and Simplification with Karnaugh Maps Agenda (M&K 2.3-2.5) Standard Forms Product-of-Sums (PoS) Sum-of-Products (SoP) converting between Min-terms

More information

Chapter 4 Boolean Algebra and Logic Simplification

Chapter 4 Boolean Algebra and Logic Simplification ETEC 23 Programmable Logic Devices Chapter 4 Boolean Algebra and Logic Simplification Shawnee State University Department of Industrial and Engineering Technologies Copyright 27 by Janna B. Gallaher Boolean

More information

CSE140: Components and Design Techniques for Digital Systems

CSE140: Components and Design Techniques for Digital Systems CSE4: Components and Design Techniques for Digital Systems Tajana Simunic Rosing What we covered thus far: Number representations Logic gates Boolean algebra Introduction to CMOS HW#2 due, HW#3 assigned

More information

ELEC2200 Digital Circuits and Systems Fall 2016 Instructor: Levent Yobas

ELEC2200 Digital Circuits and Systems Fall 2016 Instructor: Levent Yobas Lecture 3b 1 ELEC2200 Digital Circuits and Systems Fall 2016 Instructor: Levent Yobas Lecture 3b Gate Level Implementation Lecture 3b 2 Lecture Overview Implementations Using AND-OR, OR- AND Using NAND-NAND,

More information

Simplifying Logic Circuits with Karnaugh Maps

Simplifying Logic Circuits with Karnaugh Maps Simplifying Logic Circuits with Karnaugh Maps The circuit at the top right is the logic equivalent of the Boolean expression: f = abc + abc + abc Now, as we have seen, this expression can be simplified

More information

Working with combinational logic

Working with combinational logic Working with combinational logic Simplification two-level simplification exploiting don t cares algorithm for simplification Logic realization two-level logic and canonical forms realized with NNs and

More information

Two-level logic using NAND gates

Two-level logic using NAND gates CSE140: Components and Design Techniques for Digital Systems Two and Multilevel logic implementation Tajana Simunic Rosing 1 Two-level logic using NND gates Replace minterm ND gates with NND gates Place

More information

4 BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

4 BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION 4 BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION BOOLEAN OPERATIONS AND EXPRESSIONS Variable, complement, and literal are terms used in Boolean algebra. A variable is a symbol used to represent a logical quantity.

More information

Analog & Digital Electronics Course No: PH-218

Analog & Digital Electronics Course No: PH-218 Analog & Digital Electronics Course No: PH-218 Lec-29: Combinational Logic Modules Course Instructor: Dr. A. P. VAJPEYI Department of Physics, Indian Institute of Technology Guwahati, India 1 Combinational

More information

28. Minimize the following using Tabular method. f(a, b, c, d, e)= m(0,1,9,15,24,29,30) + d(8,11,31) 29. Minimize the following using K-map method.

28. Minimize the following using Tabular method. f(a, b, c, d, e)= m(0,1,9,15,24,29,30) + d(8,11,31) 29. Minimize the following using K-map method. Unit-1 1. Show Karnaugh map for equation Y = F(A,B,C) = S m(1, 2, 3, 6, 7) 2. Show Karnaugh map for equation Y = F(A,B,C,D) = S m(1, 2, 3, 6, 8, 9, 10, 12, 13, 14) 3. Give SOP form of Y = F(A,B,C,D) =

More information

Working with combinational logic. Design example: 2x2-bit multiplier

Working with combinational logic. Design example: 2x2-bit multiplier Working with combinational logic Simplification two-level simplification exploiting don t cares algorithm for simplification Logic realization two-level logic and canonical forms realized with NNs and

More information

DESCRIPTION AND ANALYSIS OF GATE NETWORKS

DESCRIPTION AND ANALYSIS OF GATE NETWORKS DESCRIPTION AND ANALYSIS OF GATE NETWORKS 1 GATE NETWORKS SETS OF GATES: (AND OR NOT), NAND NOR XOR ANALYSIS AND DESCRIPTION OF GATE NETWORKS 2 Combinational system Combinational module Combinational module

More information

Implementation of SOP and POS Form Logic Functions

Implementation of SOP and POS Form Logic Functions Implementation of SOP and POS Form Logic Functions By: Dr. A. D. Johnson Lab Assignment #3 EECS: 1100 Digital Logic Design The University of Toledo 1. Objectives - becoming familiar with two standard forms

More information

4.203 Write the truth table for each of the following logic functions:

4.203 Write the truth table for each of the following logic functions: 3e4.5 4.201 According to DeMorgan s theorem, the complement of X + Y Z is X Y +Z. Yet both functions are 1 for XYZ = 110. How can both a function and its complement be 1 for the same input combination?

More information

Basics of Digital Logic Design

Basics of Digital Logic Design CSE 675.2: Introduction to Computer Architecture Basics of Digital Logic Design Presentation D Study: B., B2, B.3 Slides by Gojko Babi From transistors to chips Chips from the bottom up: Basic building

More information

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING QUESTION BANK SUBJECT CODE/NAME YEAR/ SEMESTER : EC6302/ DIGITAL ELECTRONICS : II

More information

Reading and construction of logic gates

Reading and construction of logic gates Reading and construction of logic gates A Boolean function is an expression formed with binary variables, a binary variable can take a value of 1 or 0. Boolean function may be represented as an algebraic

More information

Quine-McClusky Minimization Procedure

Quine-McClusky Minimization Procedure Quine-McClusky Minimization Procedure This is basically a tabular method of minimization and as much it is suitable for computer applications. The procedure for optimization as follows: Step : Describe

More information

Chapter 4. Combinational Logic. Outline. ! Combinational Circuits. ! Analysis and Design Procedures. ! Binary Adders. ! Other Arithmetic Circuits

Chapter 4. Combinational Logic. Outline. ! Combinational Circuits. ! Analysis and Design Procedures. ! Binary Adders. ! Other Arithmetic Circuits Chapter 4 Combinational Logic 4- Outline! Combinational Circuits! Analysis and Design Procedures! Binary Adders! Other Arithmetic Circuits! Decoders and Encoders! Multiplexers 4-2 Combinational v.s Sequential

More information

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Lab Manual Digital Electronics Laboratory (EC-39) BACHELOR OF TECHNOLOGY Subject Code: EC 39 Subject Name: Digital Electronics Laboratory Teaching

More information

LAB 2: BOOLEAN THEOREMS

LAB 2: BOOLEAN THEOREMS LAB 2: BOOLEAN THEOREMS OBJECTIVES 1. To implement DeMorgan's theorems in circuit simplification. 2. To design a combinational logic circuit with simplest logic gates representation using Karnaugh Mapping

More information

Basic Logic Gates Richard E. Haskell

Basic Logic Gates Richard E. Haskell BASIC LOGIC GATES 1 E Basic Logic Gates Richard E. Haskell All digital systems are made from a few basic digital circuits that we call logic gates. These circuits perform the basic logic functions that

More information

Karnaugh Maps (K-map) Alternate representation of a truth table

Karnaugh Maps (K-map) Alternate representation of a truth table Karnaugh Maps (K-map) lternate representation of a truth table Red decimal = minterm value Note that is the MS for this minterm numbering djacent squares have distance = 1 Valuable tool for logic minimization

More information

Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng

Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng Digital Logic Design Basics Combinational Circuits Sequential Circuits Pu-Jen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction

More information

Purdue IMPACT 2016 Edition by D. G. Meyer. Introduction to Digital System Design. Module 2 Combinational Logic Circuits

Purdue IMPACT 2016 Edition by D. G. Meyer. Introduction to Digital System Design. Module 2 Combinational Logic Circuits Purdue IMPACT 26 Edition by D. G. Meyer Introduction to Digital System Design Module 2 Combinational Logic Circuits Glossary of Common Terms DISCRETE LOGIC a circuit constructed using small-scale integrated

More information

Gates, Circuits, and Boolean Algebra

Gates, Circuits, and Boolean Algebra Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks

More information

1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1.

1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. File: chap04, Chapter 04 1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. 2. True or False? A gate is a device that accepts a single input signal and produces one

More information

Logic gate implementation and circuit minimization

Logic gate implementation and circuit minimization Logic gate implementation and circuit minimization Lila Kari The University of Western Ontario Logic gate implementation and circuit minimization CS2209, Applied Logic for Computer Science 1 / 48 Why binary?

More information

Lecture Summary Module 2 Combinational Logic Circuits

Lecture Summary Module 2 Combinational Logic Circuits Lecture Summary Module 2 Combinational Logic Circuits Learning Outcome: an ability to analyze and design combinational logic circuits Learning Objectives: 2-1. identify minterms (product terms) and maxterms

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 3 Additional Gates and Circuits Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. Overview Part 1 Gate Circuits

More information

Chapter 7 Memory and Programmable Logic

Chapter 7 Memory and Programmable Logic NCNU_2013_DD_7_1 Chapter 7 Memory and Programmable Logic 71I 7.1 Introduction ti 7.2 Random Access Memory 7.3 Memory Decoding 7.5 Read Only Memory 7.6 Programmable Logic Array 77P 7.7 Programmable Array

More information

CSE 220: Systems Fundamentals I Unit 7: Logic Gates; Digital Logic Design: Boolean Equations and Algebra

CSE 220: Systems Fundamentals I Unit 7: Logic Gates; Digital Logic Design: Boolean Equations and Algebra CSE 220: Systems Fundamentals I Unit 7: Logic Gates; Digital Logic Design: Boolean Equations and Algebra Logic Gates Logic gatesare simple digital circuits that take one or more binary inputs and produce

More information

ENGIN 112 Intro to Electrical and Computer Engineering

ENGIN 112 Intro to Electrical and Computer Engineering ENGIN 112 Intro to Electrical and omputer Engineering Lecture 11 NND and XOR Implementations Overview Developing NND circuits from K-maps Two-level implementations onvert from ND/OR to NND (again!) Multi-level

More information

Lecture 5: Gate Logic Logic Optimization

Lecture 5: Gate Logic Logic Optimization Lecture 5: Gate Logic Logic Optimization MAH, AEN EE271 Lecture 5 1 Overview Reading McCluskey, Logic Design Principles- or any text in boolean algebra Introduction We could design at the level of irsim

More information

NOT AND OR XOR NAND NOR

NOT AND OR XOR NAND NOR NOT AND OR XOR NAND NOR Expression 1: It is raining today Expression 2: Today is my birthday X Meaning True False It is raining today It is not raining Binary representation of the above: X Meaning 1 It

More information

Logic Design. Implementation Technology

Logic Design. Implementation Technology Logic Design Implementation Technology Outline Implementation of logic gates using transistors Programmable logic devices Complex Programmable Logic Devices (CPLD) Field Programmable Gate Arrays (FPGA)

More information

l What have discussed up until now & why: l C Programming language l More low-level then Java. l Better idea about what s really going on.

l What have discussed up until now & why: l C Programming language l More low-level then Java. l Better idea about what s really going on. CS211 Computer Architecture l Topics Digital Logic l Transistors (Design & Types) l Logic Gates l Combinational Circuits l K-Maps Class Checkpoint l What have discussed up until now & why: l C Programming

More information

Rita Lovassy. Digital Technics

Rita Lovassy. Digital Technics Rita Lovassy Digital Technics Kandó Kálmán Faculty of Electrical Engineering Óbuda University Budapest, 2013 Preface Digital circuits address the growing need for computer networking communications in

More information

Basic CMOS concepts. Computer Design and Technology Assignment 2

Basic CMOS concepts. Computer Design and Technology Assignment 2 Basic CMOS concepts We will now see the use of transistor for designing logic gates. Further down in the course we will use the same transistors to design other blocks (such as flip-flops or memories)

More information

ENEE244 (sec ) Spring Time alloted: 50 minutes. Student ID: Maximum score: 50 points

ENEE244 (sec ) Spring Time alloted: 50 minutes. Student ID: Maximum score: 50 points ENEE244 (sec -4) Spring 26 Midterm Examination II Pages: 7 printed sides Name: Answer key Time alloted: 5 minutes. Student ID: Maximum score: 5 points University rules dictate strict penalties for any

More information

Topics Digital Circuit Design. Chapter 5 Combinational Circuit Design

Topics Digital Circuit Design. Chapter 5 Combinational Circuit Design Topics 2102581 Digital Circuit Design Chapter 5 Combinational Circuit Design Combinational circuit design with gates, MUX, and decoder Combinational circuit design with PLD devices Combinational circuit

More information

Chapter 7 Memory and Programmable Logic

Chapter 7 Memory and Programmable Logic 1 Chapter 7 Memory and Programmable Logic 2 7-1. Introduction There are two types of memories that are used in digital systems: Random-access memory(ram): perform both the write and read operations. Read-only

More information

ELEC 1041 Digital Electronics. Tutorial: Combinational Logic Design Examples Saeid Nooshabadi. Problem #1.

ELEC 1041 Digital Electronics. Tutorial: Combinational Logic Design Examples Saeid Nooshabadi. Problem #1. Problem #1 ELEC 1041 Digital Electronics Tutorial: Combinational Logic Design Examples Saeid Nooshabadi http://subjects.ee.unsw.edu.au/~elec1041 Develop a minimized Boolean implementation of a ones count

More information

Overview. Ripple Counter Synchronous Binary Counters

Overview. Ripple Counter Synchronous Binary Counters Counters Overview Ripple Counter Synchronous Binary Counters Design with D Flip-Flops Design with J-K Flip-Flops Serial Vs. Parallel Counters Up-down Binary Counter Binary Counter with Parallel Load BCD

More information

(1) /30 (2) /30 (3) /40 TOTAL /100

(1) /30 (2) /30 (3) /40 TOTAL /100 Your Name: SI Number: UNIVERSITY OF CALIFORNIA AT BERKELEY BERKELEY AVIS IRVINE LOS ANGELES RIVERSIE SAN IEGO SAN FRANCISCO epartment of Electrical Engineering and Computer Sciences SANTA BARBARA SANTA

More information

Karnaugh Maps (K Maps) K Maps with 3 and 4 Variables

Karnaugh Maps (K Maps) K Maps with 3 and 4 Variables Karnaugh Maps (K Maps) Karnugh map is a graphical representation of a truth table The map contains one cell for each possible minterm adjacent cells differ in onl one literal, i.e., or Two variables, F

More information

M U LT I P L E X E R S. The selection of a particular input line is controlled by a set of selection lines.

M U LT I P L E X E R S. The selection of a particular input line is controlled by a set of selection lines. M U LT I P L E X E R S A multiplexer is a combinational circuit that selects binary information from one of many input lines and directs it to a single output line. The selection of a particular input

More information

1. Digital Logic Circuits

1. Digital Logic Circuits 1 Digital Logic ircuits 1. Digital Logic ircuits Many scientific, industrial and commercial advances have been made possible by the advent of computers. Digital Logic ircuits form the basis of any digital

More information

WEEK 2.2 CANONICAL FORMS

WEEK 2.2 CANONICAL FORMS WEEK 2.2 CANONICAL FORMS 1 Canonical Sum-of-Products (SOP) Given a truth table, we can ALWAYS write a logic expression for the function by taking the OR of the minterms for which the function is a 1. This

More information

CS61c: Representations of Combinational Logic Circuits

CS61c: Representations of Combinational Logic Circuits CS61c: Representations of Combinational Logic Circuits J. Wawrzynek October 12, 2007 1 Introduction In the previous lecture we looked at the internal details of registers. We found that every register,

More information

Points Addressed in this Lecture. Standard form of Boolean Expressions. Lecture 5: Logic Simplication & Karnaugh Map

Points Addressed in this Lecture. Standard form of Boolean Expressions. Lecture 5: Logic Simplication & Karnaugh Map Points Addressed in this Lecture Lecture 5: Logic Simplication & Karnaugh Map Professor Peter Cheung Department of EEE, Imperial College London (Floyd 4.5-4.) (Tocci 4.-4.5) Standard form of Boolean Expressions

More information

Comp 150 Booleans and Digital Logic

Comp 150 Booleans and Digital Logic Comp 150 Booleans and Digital Logic Recall the bool date type in Python has the two literals True and False and the three operations: not, and, or. The operations are defined by truth tables (see page

More information

CS/EE 260 Homework 5 Solutions Spring 2000

CS/EE 260 Homework 5 Solutions Spring 2000 CS/EE 6 Homework 5 Solutions Spring (MK -) Construct a -to- line multiplexer with three 4-to- line multiplexers The multiplexers should be interconnected and inputs labeled so that the selection codes

More information

Sum of Products (SOP) Expressions

Sum of Products (SOP) Expressions Sum of Products (SOP) Expressions The Sum of Products (SOP) form of Boolean expressions and equations contains a list of terms (called minterms) in which all variables are ANDed (products). These minterms

More information

Basics of Digital Systems. Boolean algebra Truth tables Karnaugh maps

Basics of Digital Systems. Boolean algebra Truth tables Karnaugh maps Basics of Digital Systems Boolean algebra Truth tables Karnaugh maps Boolean Algebra In digital systems we deal with the binary number system. This means that the value of an element can be either 0 or

More information

Chapter 3: Combinational Logic Design

Chapter 3: Combinational Logic Design Chapter 3: Combinational Logic Design 1 Introduction We have learned all the prerequisite material: Truth tables and Boolean expressions describe functions Expressions can be converted into hardware circuits

More information

Tutorial 5 Special Combinational Logic Circuit

Tutorial 5 Special Combinational Logic Circuit Tutorial 5 Special Combinational Logic Circuit Question 1 a) What is the function of an adder circuit? b) A half-adder adds two binary bits, true or false? c) A half-adder has a sum output only, true or

More information

Chapter 4 BOOLEAN ALGEBRA AND THEOREMS, MIN TERMS AND MAX TERMS

Chapter 4 BOOLEAN ALGEBRA AND THEOREMS, MIN TERMS AND MAX TERMS Chapter 4 BOOLEAN ALGEBRA AND THEOREMS, MIN TERMS AND MAX TERMS Lesson 5 BOOLEAN EXPRESSION, TRUTH TABLE and product of the sums (POSs) [MAXTERMS] 2 Outline POS two variables cases POS for three variable

More information

EXPERIMENT NO.1:INTRODUCTION TO BASIC GATES AND LOGIC SIMPLIFICATION TECHNIQUES

EXPERIMENT NO.1:INTRODUCTION TO BASIC GATES AND LOGIC SIMPLIFICATION TECHNIQUES DEPARTMENT OF ELECTRICAL AND ELECTROINC ENGINEERING BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY EEE 304 : Digital Electronics Laboratory EXPERIMENT NO.1:INTRODUCTION TO BASIC GATES AND LOGIC SIMPLIFICATION

More information

Most decoders accept an input code and produce a HIGH ( or a LOW) at one and only one output line. In otherworlds, a decoder identifies, recognizes,

Most decoders accept an input code and produce a HIGH ( or a LOW) at one and only one output line. In otherworlds, a decoder identifies, recognizes, Encoders Encoder An encoder is a combinational logic circuit that essentially performs a reverse of decoder functions. An encoder accepts an active level on one of its inputs, representing digit, such

More information

2 1 Implementation using NAND gates: We can write the XOR logical expression A B + A B using double negation as

2 1 Implementation using NAND gates: We can write the XOR logical expression A B + A B using double negation as Chapter 2 Digital Logic asics 2 Implementation using NND gates: We can write the XOR logical expression + using double negation as + = + = From this logical expression, we can derive the following NND

More information

Memory and Programmable Logic

Memory and Programmable Logic Chapter 7 Memory and Programmable Logic 7 Outline! Introduction! RandomAccess Memory! Memory Decoding! Error Detection and Correction! ReadOnly Memory! Programmable Devices! Sequential Programmable Devices

More information

Electronic Design Automation Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Electronic Design Automation Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Electronic Design Automation Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture - 10 Synthesis: Part 3 I have talked about two-level

More information

Sistemas Digitais I LESI - 2º ano

Sistemas Digitais I LESI - 2º ano Sistemas Digitais I LESI - 2º ano Lesson 6 - Combinational Design Practices Prof. João Miguel Fernandes (miguel@di.uminho.pt) Dept. Informática UNIVERSIDADE DO MINHO ESCOLA DE ENGENHARIA - PLDs (1) - The

More information

Chapter 4 Combinational Logic

Chapter 4 Combinational Logic EEA051 - Digital Logic 數位邏輯 Chapter 4 Combinational Logic 吳俊興國立高雄大學資訊工程學系 November 2005 Chapter 4 Combinational Logic 4-1 Combinational Circuits 4-2 Analysis Procedure 4-3 Design Procedure 4-4 Binary Adder-Subtractor

More information

Digital Electronics Part I Combinational and Sequential Logic. Dr. I. J. Wassell

Digital Electronics Part I Combinational and Sequential Logic. Dr. I. J. Wassell Digital Electronics Part I Combinational and Sequential Logic Dr. I. J. Wassell Introduction Aims To familiarise students with Combinational logic circuits Sequential logic circuits How digital logic gates

More information

Digital Logic Design CSE-241

Digital Logic Design CSE-241 Digital Logic Design CSE-241 Unit 20 3-Bit Synchronous Binary Counter: 2 1 4-Bit Synchronous Binary Counter: 3 DOWN COUNTERS: A synchronous counter that counts in the reverse or downward sequence can be

More information

Combinational Logic Building Blocks and Bus Structure

Combinational Logic Building Blocks and Bus Structure Combinational Logic Building Blocks and Bus Structure ECE 5A Winter 0 Reading Assignment Brown and Vranesic Implementation Technology.8 Practical Aspects.8.7 Passing s and 0s Through Transistor Switches.8.8

More information

United States Naval Academy Electrical and Computer Engineering Department. EC262 Exam 1

United States Naval Academy Electrical and Computer Engineering Department. EC262 Exam 1 United States Naval Academy Electrical and Computer Engineering Department EC262 Exam 29 September 2. Do a page check now. You should have pages (cover & questions). 2. Read all problems in their entirety.

More information

MODULE 11- DESIGN OF SYNCHRONOUS SEQUENTIAL COUNTERS AND STATE MACHINES

MODULE 11- DESIGN OF SYNCHRONOUS SEQUENTIAL COUNTERS AND STATE MACHINES Introduction to Digital Electronics Module 11: Design of Sequential Counters and State Machines 1 MODULE 11- DESIGN OF SYNCHRONOUS SEQUENTIAL COUNTERS AND STATE MACHINES OVERVIEW: A synchronous sequential

More information

Chapter 4. Gates and Circuits. Chapter Goals. Chapter Goals. Computers and Electricity. Computers and Electricity. Gates

Chapter 4. Gates and Circuits. Chapter Goals. Chapter Goals. Computers and Electricity. Computers and Electricity. Gates Chapter Goals Chapter 4 Gates and Circuits Identify the basic gates and describe the behavior of each Describe how gates are implemented using transistors Combine basic gates into circuits Describe the

More information

CHAPTER 3 Boolean Algebra and Digital Logic

CHAPTER 3 Boolean Algebra and Digital Logic CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4

More information

Fundamentals of Computer Systems

Fundamentals of Computer Systems Fundamentals of Computer Systems Combinational Logic Martha A. Kim Columbia University Fall 23 / Combinational Circuits Combinational circuits are stateless. Their output is a function only of the current

More information

Gates and Logic: From switches to Transistors, Logic Gates and Logic Circuits

Gates and Logic: From switches to Transistors, Logic Gates and Logic Circuits Gates and Logic: From switches to Transistors, Logic Gates and Logic Circuits Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University See: P&H ppendix C.2 and C.3 (lso, see C.0 and

More information

ENEE 244 (01**). Spring 2006. Homework 4. Due back in class on Friday, April 7.

ENEE 244 (01**). Spring 2006. Homework 4. Due back in class on Friday, April 7. ENEE 244 (**). Spring 26 Homework 4 Due back in class on Friday, April 7.. Implement the following Boolean expression with exclusive-or and AND gates only: F = AB'CD' + A'BCD' + AB'C'D + A'BC'D. F = AB

More information

Steps of sequential circuit design (cont'd)

Steps of sequential circuit design (cont'd) Design of Clocked Synchronous Sequential Circuits Design of a sequential circuit starts with the verbal description of the problem (scenario). Design process is similar to computer programming. First,

More information

Semiconductor Memories

Semiconductor Memories Chapter 8 Semiconductor Memories (based on Kang, Leblebici. CMOS Digital Integrated Circuits 8.1 General concepts Data storage capacity available on a single integrated circuit grows exponentially being

More information

RAM & ROM Based Digital Design. ECE 152A Winter 2012

RAM & ROM Based Digital Design. ECE 152A Winter 2012 RAM & ROM Based Digital Design ECE 152A Winter 212 Reading Assignment Brown and Vranesic 1 Digital System Design 1.1 Building Block Circuits 1.1.3 Static Random Access Memory (SRAM) 1.1.4 SRAM Blocks in

More information

Combinational Logic Design

Combinational Logic Design Chapter 4 Combinational Logic Design The foundations for the design of digital logic circuits were established in the preceding chapters. The elements of Boolean algebra (two-element switching algebra

More information

Review of ECE 230 Material Prof. A. Mason, Michigan State University

Review of ECE 230 Material Prof. A. Mason, Michigan State University Review of ECE 230 Material Prof. A. Mason, Michigan State University Preface This document was developed for students taking ECE 331 to review material covered in ECE 230. It will be assumed that ECE 331

More information

Computer Systems Lab 1. Basic Logic Gates

Computer Systems Lab 1. Basic Logic Gates Computer Systems Lab Basic Logic Gates Object To investigate the properties of the various types of logic gates, and construct some useful combinations of these gates. Parts () 700 Quad -input NAND gate

More information

Final Exam review: chapter 4 and 5. Supplement 3 and 4

Final Exam review: chapter 4 and 5. Supplement 3 and 4 Final Exam review: chapter 4 and 5. Supplement 3 and 4 1. A new type of synchronous flip-flop has the following characteristic table. Find the corresponding excitation table with don t cares used as much

More information

Exclusive OR/Exclusive NOR (XOR/XNOR)

Exclusive OR/Exclusive NOR (XOR/XNOR) Exclusive OR/Exclusive NOR (XOR/XNOR) XOR and XNOR are useful logic functions. Both have two or more inputs. The truth table for two inputs is shown at right. a XOR b = 1 if and only if (iff) a b. a XNOR

More information

Digital Logic Design

Digital Logic Design Digital Logic Design ENGG1015 1 st Semester, 2010 Dr. Kenneth Wong Dr. Hayden So Department of Electrical and Electronic Engineering Determining output level from a diagram Implementing Circuits From Boolean

More information

Chapter 18. Sequential Circuits: Flip-flops and Counters

Chapter 18. Sequential Circuits: Flip-flops and Counters Chapter 18 Sequential Circuits: Flip-flops and Counters 1. Design a counter that has the following repeated binary sequence:, 1, 2, 3, 4, 5, 6, 7. Use RS flip-flops. Fig. 1.1 State diagram of a 3-bit binary

More information

Digital Circuits. Electrical & Computer Engineering Department (ECED) Course Notes ECED2200. ECED2200 Digital Circuits Notes 2012 Dalhousie University

Digital Circuits. Electrical & Computer Engineering Department (ECED) Course Notes ECED2200. ECED2200 Digital Circuits Notes 2012 Dalhousie University 1 Digital Circuits Electrical & Computer Engineering Department (ECED) Course Notes ECED2200 2 Table of Contents Digital Circuits... 7 Logic Gates... 8 AND Gate... 8 OR Gate... 9 NOT Gate... 10 NOR Gate...

More information

Switching Circuits & Logic Design

Switching Circuits & Logic Design Switching ircuits & Logic esign Jie-Hong Roland Jiang 江介宏 epartment of Electrical Engineering National Taiwan University Fall 23 8 ombinational ircuit esign and Simulation Using Gates Melting locks, 93

More information