# Optical Storage Technology. Optical Disc Storage

Size: px
Start display at page:

Transcription

1 Optical Storage Technology Optical Disc Storage

2 Introduction Since the early 1940s, magnetic recording has been the mainstay of electronic information storage worldwide. Magnetic tape has been used extensively in consumer products such as audiotapes and VCR. Magnetic hard disk drives have been used as massstorage devices in the computer industry since The flop disk has also been successful. Optical media v.s Magnetic media 100 times storage capacity Fraction of the cost of magnetic media The life expectancy of optical discs is much longer Much less susceptible to damage from heat and humidity Essentially impervious to magnetic fields and head crashes

3 Optical Phenomena Light is an electromagnetic vibration that can be characterized by wavelength, frequency, propagation velocity, propagation direction, vibration direction, and intensity. Visible light : 400 ~ 800 nm. Wavelength = Frequency / Velocity of propagation The frequency of an electromagnetic wave is constant. Light at different wavelength travels at different velocities in the same medium. Intensity of a light wave is the amount of energy that flows per second across a unit area perpendicular to the direction of propagation, and is proportional to the square of the amplitude and to the square of the frequency.

4 Optical Spectrum

5 Optical Phenomena Refraction takes place when light passes into a medium with a different index of refraction; light change speed, which causes a deflection in path.

6 Optical Phenomena Index of refraction (n) is the ratio of the light velocity (c) in a vacuum, to its velocity (v) in a medium. ( n = c / v ) The indexes of refraction of the incident and receiving medium determine the angle of the refracted beam relative to the incident beam.

7 Optical Phenomena Snell s law : n1 / n2 = sinθ2 / sinθ1 The critical angle of incidence is θ critical where 2= 90 o θ critical = sin 1 n n 2 1

8 Diffraction When a wavefront passes through an aperture that is small relative to the wavelength, diffraction occurs, and the wavefront emerges as a point source. A diffraction grating contains a series of identical equaldistance slits. Because of interference, a wavefront will only leave the grating in directions where light from all the slits is in phase. The angle of the first oblique wave is a function of the wavelength of the light and the space of the slits. The smaller a physical object, the larger the angle over which light must be collected to view the object. This angle is specified as the numerical aperture of the lens.

9 Diffraction A diffraction pattern shows the maxima and minima intensities corresponding to the phase differences. The central maximum is the zero order maxima. Other light is diffracted into a series of higher-order maxima. The diffraction pattern formed behind a circular aperture is known as the Airy pattern.

10 An Airy pattern The focus laser spot is actually an area where the intensity of light varies as an Airy pattern function. About 83% of the total light falls in the central spot, and the brightest intensity in the first ring is only 1/60 that of the central spot. The size of the Airy pattern is determined by the light wavelength and the numerical aperture of the lens. Laser pickup optics are said to be diffraction-limited. Spot size can not be larger than the wavelength. This indicates that a higher-quality lens would result in the same spot size.

11 Resolution of optical systems Rayleigh criterion : The distance between the two diffraction pattern maxima equals the radius of the first dark ring.

12 Resolution of optical systems The resolving power of the lens is determined by its numerical aperture (NA). The numerical aperture of a lens is the diameter of the lens in relation to its focal length and describes the angle over which it collects light. The spot size is often defined as the half-intensity diameter of the Airy pattern : d = 0.61 λ / NA As NA is increased, tolerances become severe : the depth of focus tolerance is proportional to NA -2, skew tolerance is proportional to NA -3, and disc thickness tolerance is proportional to NA -4. Balancing these factors, the CD designer selected NA = Thus spot size is approximately 1.0 µm.

13 Resolution of optical systems NA and λ determine many other specifications : track pitch, spatial cutoff frequency, track velocity and disc play time. The spatial cutoff frequency in a CD system is f co 2NA 2(0.45) = = = 1.15 * 10 9 λ 780 *10 Thus formations with a higher spatial frequency ( ex. Lines smaller than 1.15 lines per µm ) can t be resolved. Optical systems must designed to operate within this constraint. For example, in the CD system, the shortest pit/land length is µm and the track velocity is 1.2 m/s. 6

14 Polarization Unpolarized :an infinite number of electric fields exist and are randomly perpendicular to the direction of travel. E = Ex + Ey Polarized : when only one electric field is allowed to oscillate, in a single direction that is perpendicular to the direction of travel. ( linearly polarized or plane polarized )

15 Polarization

16 Polarization - Birefringence Isotropic materials have one velocity of transmission independent of the plane of propagation. Anisotropic materials : the light does not have the same velocity in all planes. Anisotropic materials can be used to create polarized light. When unpolarized light enters an anisotropic medium, light rays are split into two part rays. The first ray passes through the object, named as ordinary ray following the Snell s law ; the second ray, named as extraordinary ray is refracted more strongly and thus is displaced from the first as it emerges. The two ray are linearly polarized, in mutually perpendicular planes. This is known as double refraction, or birefringence.

17 Polarization - Birefringence The direction along which no birefringence occurs is called the optic axis. The plastic used in optical disc substrates cab exhibit birefringence after it is subjected to the stress of melting and injection molding during disc manufacture.

18 Polarization - Retardation plate Retardation plate : a slice cut from a crystal has different velocities in different plane. A beam of unpolarized light normally incident on the plate will create an ordinary and extraordinary beam. The phase difference between these beams is proportional to the distance travel within the plate. δ = 2π(n 1 -n 2 )/λ

19 Polarization - Retardation plate Quarter-wave plate (QWP) : if the phase difference at emergence between these two beams is λ/4. By passing linearly polarized light through a QWP, it can be converted to circularly or elliptically polarized light, depending on the angle between the incident vibration and the optic axis.

20 Polarization - Retardation plate

21 Polarization - Retardation plate A linear polarized light beam might pass through the QWP to become circularly polarized, strike an optical disc, return through the QWP again, becoming linear polarized. Because the resulting plane of polarization is perpendicular to the incident linearly polarized beam, it can be separated from the incident light by a polarizing prism.

22 Design of Optical Media Most optical storage systems store data across the surface of a flat disc. No physical contact between the media and the pickup. Stored data must undergo both modulation and error correction encoding to maximize data density, and guard against reading errors. Most optical disc pickup shine a laser on the media, and the reflected light is detected by a sensor and decoded to recover the carried data. The media must present two states so the change between them varies the reflected light, and thus data can be recognized. Data can be represented as a phase change, polarization change, or change in the intensity of the reflected light.

23 Design of Optical Media A laser beam is used. That permits a higher information density ( 10 9 to bytes per disc ) to be achieved. A laser light source also is required to provide a sufficient signal-to-noise ratio for a high bit rate. Any optical media must be supported by a sophisticated servo system to provide positioning, tracking, and focusing of the pickup, as well as accurate disc rotation. Radial tracking correction signals can be derived using methods such as twin spot or wobble. Focus correction signals can be generated through methods such as Foucault knife edge, astigmatism, or critical angle.

24 Performance of Optical Media Optical media might provide 100 times the storage capacity of the same size magnetic media. Current generation 120-mm erasable optical disc can hold 4.7 GB with data transfer rates achieving 10 Mbps. Optical discs are removable from the drive and their shelf life is much longer than that of magnetic media. The corrected bit error rate of optical media is comparable to that of hard disks, about Any optical recording material must exhibit long term stability, high absorptivity at the recording wavelength, low writing energy, high signal-to-noise ratio, good forming characteristics, low thermal conductivity, and low manufacturing cost.

25 Read-only optical storage CD-Audio, CD-ROM, DVD-Video, DVD-Audio and DVD- ROM discs are read-only optical media.

26 Read-only optical storage Replication metallization Lacquering Printing

27 Read-only optical storage The numerical aperture of the lens, wavelength of the laser light, thickness and refractive index of the disc substrate, and size and height of the pits all interact to form an optical system.

28 Read-only optical storage The area of light striking a pit is about equal to that striking the surrounding land, and the pit is about onequarter-wavelength in height. Pit depth does not require great accuracy. Equality of pit/land areas is more important.

29 Write-once optical storage With pit formation, a mechanism called ablation uses a laser writer of approximately 10 mw to burn hole in a reflective layer. Bubble formation uses a laser to vaporize a recording layer, causing a bubble in an adjacent reflective layer. Dye-polymer recording uses a recording layer containing a heat-absorptive organic dye. When the layer is heated, it melts and form a depression. An irreversible phase change is used to later the reflectivity of the medium at the point where a writing laser is focused. The recording layer can use an Sb-Se metallic film and the heat absorbing layer can be a Bi-Te metallic film. The texture change method uses a reflective surface with small aberrations with dimensions and spacing designed to diffract a reading laser.

30 Write-once optical storage

31 Magneto-optical optical recording Magneto-optical recording uses a vertical magnetic medium in which magnetic particles are placed perpendicularly to the surface of a pre-grooved disc. A laser beam and magnetic bias field are used to record and erase data, and a laser beam alone is used to read data. A unique property of magnetic materials is used. As the oxide particles are heated to their Curie temperature, their coercivity decreases radically. In other words, when heated, a magnetic material loses its resistance to change in its magnetic orientation; therefore, its orientation can be affected by a small applied magnetic field.

32 Magneto-optical optical recording

33 Magneto-optical optical recording In the case of MO recording, a magnetic field is used to record data. A laser beam heats a spot of magnetic material to its Curie temperature. Only the particles in that spot are affected by the magnetic field.

34 Magneto-optical optical reading The Kerr effect is used to read data; it describe the slight rotation of the plane of polarization of polarized light as it reflected from a magnetized material.

36 Magneto-optical optical erasing To erase data, a magnetic field is applied to the disc, along with the laser heating spot.

37 Magneto-optical optical recording A variety of magnetic materials can be used, selected on the basis of signal-to-noise ratio, orientation properties, and long term stability. In general, amorphous, thin-film magnetic materials are used such as terbium ferrite cobalt ( Tb-Fe-Co ). At room temperature, the coercivity of the recording layer can be more than oersteds, effectively eliminating the possibility of accidental erasure. A two-sided, preformatted, 5.25-inch constant angular velocity disc holds 650 MB of data. The MiniDisc format uses a small MO disc; it is designed to provide record-ability and portability.

38 Magneto-optical optical recording

39 Phase-change optical recording They use materials that exhibit a reversible crystalline / amorphous phase change when recorded at one temperature and erased at another. Information is recorded by heating an area of the crystalline layer to a temperature slightly above its melting point. When the area rapidly cools and solidifies, it is amorphous. When the area is heated to a point just below its melting temperature and cooled gradually, it will return to a crystalline state. (Ga-Sb)(In-Sb), TeGeIn, GeSbTe, and AgInSbTe are used.

40 Phase-change optical recording

41 Phase-change optical recording Initialized Active Layer Written Bit Temp. Tm Tg Time Write Read Erase

42 Phase-change optical recording

43 Phase-change optical recording T melt P write P erase T cryst. P read old data new data Laser spot

### Overview of Optical Recording Technology- Current Status and Near Term Projections

Overview of Optical Recording Technology- Current Status and Near Term Projections Koichi Sadashige Sadashige Associates 15 Amherst Rd, Voorhees NJ 08043-4901 Phone: +1-856-767-2644, FAX: +1-856-767-1462

### Interference. Physics 102 Workshop #3. General Instructions

Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by

### Crystal Optics of Visible Light

Crystal Optics of Visible Light This can be a very helpful aspect of minerals in understanding the petrographic history of a rock. The manner by which light is transferred through a mineral is a means

### Polarization of Light

Polarization of Light References Halliday/Resnick/Walker Fundamentals of Physics, Chapter 33, 7 th ed. Wiley 005 PASCO EX997A and EX999 guide sheets (written by Ann Hanks) weight Exercises and weights

### Overview of Optical Data Storage Technology. Presented at the THIC Meeting at the Hilton San Diego/Del Mar Del Mar CA 92014-1901 on January 22, 2002

Overview of Optical Data Storage Technology Koichi Sadashige Sadashige Associates 15 Amherst Rd, Voorhees NJ 08043-4901 Phone: +1-856-767-2644, FAX: +1-856-767-1462 E-mail: mm306@msn.com Presented at the

### How To Understand Light And Color

PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order

### Diffraction of Laser Light

Diffraction of Laser Light No Prelab Introduction The laser is a unique light source because its light is coherent and monochromatic. Coherent light is made up of waves, which are all in phase. Monochromatic

### Automatic and Objective Measurement of Residual Stress and Cord in Glass

Automatic and Objective Measurement of Residual Stress and Cord in Glass GlassTrend - ICG TC15/21 Seminar SENSORS AND PROCESS CONTROL 13-14 October 2015, Eindhoven Henning Katte, ilis gmbh copyright ilis

### 6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm?

Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes through

### Physics 10. Lecture 29A. "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton

Physics 10 Lecture 29A "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton Converging Lenses What if we wanted to use refraction to converge parallel

### AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,

### PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

### Diffraction and Young s Single Slit Experiment

Diffraction and Young s Single Slit Experiment Developers AB Overby Objectives Preparation Background The objectives of this experiment are to observe Fraunhofer, or far-field, diffraction through a single

### How To Store Data On A Disk Disk (Or Hard Drive)

Computer Peripherals School of Computer Engineering Nanyang Technological University Singapore These notes are part of a 3rd year undergraduate course called "Computer Peripherals", taught at Nanyang Technological

### Data Destruction for Optical Discs

Data Destruction for Optical Discs Tom D. Milster University of Arizona Optical Sciences Center 1630 East University Blvd., Tucson AZ 85721-0094 Phone: +1-520-621-8280 FAX: +1-520-621-4358 E-mail: milster@arizona.edu

### Waves - Transverse and Longitudinal Waves

Waves - Transverse and Longitudinal Waves wave may be defined as a periodic disturbance in a medium that carries energy from one point to another. ll waves require a source and a medium of propagation.

### A Guide to Acousto-Optic Modulators

A Guide to Acousto-Optic Modulators D. J. McCarron December 7, 2007 1 Introduction Acousto-optic modulators (AOMs) are useful devices which allow the frequency, intensity and direction of a laser beam

### Types Of Storage Device

Types Of Storage Device by AA A POG D EE SRM U Outline Categorizing Storage Devices Magnetic Storage Devices Optical Storage Devices Categorizing Storage Devices Storage devices hold data, even when the

### AS COMPETITION PAPER 2008

AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question

### Near-field scanning optical microscopy (SNOM)

Adviser: dr. Maja Remškar Institut Jožef Stefan January 2010 1 2 3 4 5 6 Fluorescence Raman and surface enhanced Raman 7 Conventional optical microscopy-limited resolution Two broad classes of techniques

### P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours)

INSURANCE SCAM OPTICS - LABORATORY INVESTIGATION P R E A M B L E The original form of the problem is an Experimental Group Research Project, undertaken by students organised into small groups working as

### Introduction to microstructure

Introduction to microstructure 1.1 What is microstructure? When describing the structure of a material, we make a clear distinction between its crystal structure and its microstructure. The term crystal

### Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with

### Introduction to Optics

Second Edition Introduction to Optics FRANK L. PEDROTTI, S.J. Marquette University Milwaukee, Wisconsin Vatican Radio, Rome LENO S. PEDROTTI Center for Occupational Research and Development Waco, Texas

### Modern Classical Optics

Modern Classical Optics GEOFFREY BROOKER Department of Physics University of Oxford OXPORD UNIVERSITY PRESS Contents 1 Electromagnetism and basic optics 1 1.1 Introduction 1 1.2 The Maxwell equations 1

### DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND THE THREE-DIMENSIONAL DISTRIBUTION OF THE RADIANT FLUX DENSITY AT THE FOCUS OF A CONVERGENCE BEAM

### Laser expander design of highly efficient Blu-ray disc pickup head

Laser expander design of highly efficient Blu-ray disc pickup head Wen-Shing Sun, 1,* Kun-Di Liu, 1 Jui-Wen Pan, 1 Chuen-Lin Tien, 2 and Min-Sheng Hsieh 1 1 Department of Optics and Photonics, National

### Diffraction of a Circular Aperture

Diffraction of a Circular Aperture Diffraction can be understood by considering the wave nature of light. Huygen's principle, illustrated in the image below, states that each point on a propagating wavefront

### Light Control and Efficacy using Light Guides and Diffusers

Light Control and Efficacy using Light Guides and Diffusers LEDs 2012 Michael Georgalis, LC Marketing Manager, Fusion Optix October 11, 2012 Agenda Introduction What Is Light Control? Improves Application

### Optical laser beam scanner lens relay system

1. Introduction Optical laser beam scanner lens relay system Laser beam scanning is used most often by far in confocal microscopes. There are many ways by which a laser beam can be scanned across the back

### Synthetic Sensing: Proximity / Distance Sensors

Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For non-contact distance measurement,

### Acousto-optic modulator

1 of 3 Acousto-optic modulator F An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency).

### DETERMINING THE POLARIZATION STATE OF THE RADIATION CROSSING THROUGH AN ANISOTROPIC POLY (VINYL ALCOHOL) FILM

DETERMINING THE POLARIZATION STATE OF THE RADIATION CROSSING THROUGH AN ANISOTROPIC POLY (VINYL ALCOHOL) FILM ECATERINA AURICA ANGHELUTA Faculty of Physics,,,Al.I. Cuza University, 11 Carol I Bd., RO-700506,

### USING CDs AND DVDs AS DIFFRACTION GRATINGS

USING CDs AND DVDs AS DIFFRACTION GRATINGS Rama Balachandran Riverwood High School Atlanta, GA Karen Porter-Davis Chamblee Charter High School Chamblee, GA Copyright Georgia Institute of Technology 2009

### Physics 111 Homework Solutions Week #9 - Tuesday

Physics 111 Homework Solutions Week #9 - Tuesday Friday, February 25, 2011 Chapter 22 Questions - None Multiple-Choice 223 A 224 C 225 B 226 B 227 B 229 D Problems 227 In this double slit experiment we

### Writing Assignment #2 due Today (5:00pm) - Post on your CSC101 webpage - Ask if you have questions! Lab #2 Today. Quiz #1 Tomorrow (Lectures 1-7)

Overview of Computer Science CSC 101 Summer 2011 Main Memory vs. Auxiliary Storage Lecture 7 July 14, 2011 Announcements Writing Assignment #2 due Today (5:00pm) - Post on your CSC101 webpage - Ask if

### Advancements in High Frequency, High Resolution Acoustic Micro Imaging for Thin Silicon Applications

Advancements in High Frequency, High Resolution Acoustic Micro Imaging for Thin Silicon Applications Janet E. Semmens Sonoscan, Inc. 2149 E. Pratt Boulevard Elk Grove Village, IL 60007 USA Phone: (847)

### 3.5.4.2 One example: Michelson interferometer

3.5.4.2 One example: Michelson interferometer mirror 1 mirror 2 light source 1 2 3 beam splitter 4 object (n object ) interference pattern we either observe fringes of same thickness (parallel light) or

### GRID AND PRISM SPECTROMETERS

FYSA230/2 GRID AND PRISM SPECTROMETERS 1. Introduction Electromagnetic radiation (e.g. visible light) experiences reflection, refraction, interference and diffraction phenomena when entering and passing

### Using light scattering method to find The surface tension of water

Experiment (8) Using light scattering method to find The surface tension of water The aim of work: The goals of this experiment are to confirm the relationship between angular frequency and wave vector

### Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Introduction Following our previous lab exercises, you now have the skills and understanding to control

### Ultra-High Density Phase-Change Storage and Memory

Ultra-High Density Phase-Change Storage and Memory by Egill Skúlason Heated AFM Probe used to Change the Phase Presentation for Oral Examination 30 th of May 2006 Modern Physics, DTU Phase-Change Material

### WAVELENGTH OF LIGHT - DIFFRACTION GRATING

PURPOSE In this experiment we will use the diffraction grating and the spectrometer to measure wavelengths in the mercury spectrum. THEORY A diffraction grating is essentially a series of parallel equidistant

### Physics 30 Worksheet # 14: Michelson Experiment

Physics 30 Worksheet # 14: Michelson Experiment 1. The speed of light found by a Michelson experiment was found to be 2.90 x 10 8 m/s. If the two hills were 20.0 km apart, what was the frequency of the

### Revision problem. Chapter 18 problem 37 page 612. Suppose you point a pinhole camera at a 15m tall tree that is 75m away.

Revision problem Chapter 18 problem 37 page 612 Suppose you point a pinhole camera at a 15m tall tree that is 75m away. 1 Optical Instruments Thin lens equation Refractive power Cameras The human eye Combining

### v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :

PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material

### Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm

Progress In Electromagnetics Research Symposium Proceedings, Taipei, March 5 8, 3 359 Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm Yoshito Sonoda, Takashi Samatsu, and

### UNIT I: INTRFERENCE & DIFFRACTION Div. B Div. D Div. F INTRFERENCE

107002: EngineeringPhysics Teaching Scheme: Lectures: 4 Hrs/week Practicals-2 Hrs./week T.W.-25 marks Examination Scheme: Paper-50 marks (2 hrs) Online -50marks Prerequisite: Basics till 12 th Standard

### Fiber Optics: Fiber Basics

Photonics Technical Note # 21 Fiber Optics Fiber Optics: Fiber Basics Optical fibers are circular dielectric wave-guides that can transport optical energy and information. They have a central core surrounded

### Physics 41 Chapter 38 HW Key

Physics 41 Chapter 38 HW Key 1. Helium neon laser light (63..8 nm) is sent through a 0.300-mm-wide single slit. What is the width of the central imum on a screen 1.00 m from the slit? 7 6.38 10 sin θ.11

### Spectroscopic Ellipsometry:

Spectroscopic : What it is, what it will do, and what it won t do by Harland G. Tompkins Introduction Fundamentals Anatomy of an ellipsometric spectrum Analysis of an ellipsometric spectrum What you can

### INTERFERENCE OBJECTIVES PRE-LECTURE. Aims

53 L4 INTERFERENCE Aims OBJECTIVES When you have finished this chapter you should understand how the wave model of light can be used to explain the phenomenon of interference. You should be able to describe

### Grazing incidence wavefront sensing and verification of X-ray optics performance

Grazing incidence wavefront sensing and verification of X-ray optics performance Timo T. Saha, Scott Rohrbach, and William W. Zhang, NASA Goddard Space Flight Center, Greenbelt, Md 20771 Evaluation of

### Fiber optic communication

Fiber optic communication Fiber optic communication Outline Introduction Properties of single- and multi-mode fiber Optical fiber manufacture Optical network concepts Robert R. McLeod, University of Colorado

### Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing

LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What

### PHYSICAL PROPERTIES: GLASS. Forensic Science CC 30.07 Spring 2007 Prof. Nehru

PHYSICAL PROPERTIES: GLASS Physical vs. Chemical Properties The forensic scientist must constantly determine those properties that impart distinguishing characteristics to matter, giving it a unique identity.

### X-ray thin-film measurement techniques

Technical articles X-ray thin-film measurement techniques II. Out-of-plane diffraction measurements Toru Mitsunaga* 1. Introduction A thin-film sample is two-dimensionally formed on the surface of a substrate,

### 5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy

5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy Resolution of optical microscope is limited by diffraction. Light going through an aperture makes diffraction

### Physics 441/2: Transmission Electron Microscope

Physics 441/2: Transmission Electron Microscope Introduction In this experiment we will explore the use of transmission electron microscopy (TEM) to take us into the world of ultrasmall structures. This

### Optical Metrology. Third Edition. Kjell J. Gasvik Spectra Vision AS, Trondheim, Norway JOHN WILEY & SONS, LTD

2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Optical Metrology Third Edition Kjell J. Gasvik Spectra Vision AS,

### Module 13 : Measurements on Fiber Optic Systems

Module 13 : Measurements on Fiber Optic Systems Lecture : Measurements on Fiber Optic Systems Objectives In this lecture you will learn the following Measurements on Fiber Optic Systems Attenuation (Loss)

### Theremino System Theremino Spectrometer Technology

Theremino System Theremino Spectrometer Technology theremino System - Theremino Spectrometer Technology - August 15, 2014 - Page 1 Operation principles By placing a digital camera with a diffraction grating

### Digital Image Formation. Storage Technology

Digital Image Formation Storage Technology Storage Technology Quiz Name one type of data storage?! Storage Technology Data Storage Device is a device for recording (storing) information (data).!! Recording

### Optical Design Tools for Backlight Displays

Optical Design Tools for Backlight Displays Introduction Backlights are used for compact, portable, electronic devices with flat panel Liquid Crystal Displays (LCDs) that require illumination from behind.

### View of ΣIGMA TM (Ref. 1)

Overview of the FESEM system 1. Electron optical column 2. Specimen chamber 3. EDS detector [Electron Dispersive Spectroscopy] 4. Monitors 5. BSD (Back scatter detector) 6. Personal Computer 7. ON/STANDBY/OFF

### PIEZOELECTRIC FILMS TECHNICAL INFORMATION

PIEZOELECTRIC FILMS TECHNICAL INFORMATION 1 Table of Contents 1. PIEZOELECTRIC AND PYROELECTRIC EFFECTS 3 2. PIEZOELECTRIC FILMS 3 3. CHARACTERISTICS PROPERTIES OF PIEZOELECTRIC FILMS 3 4. PROPERTIES OF

### Antennas & Propagation. CS 6710 Spring 2010 Rajmohan Rajaraman

Antennas & Propagation CS 6710 Spring 2010 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception

### 4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet Required: READ Hamper pp 115-134 SL/HL Supplemental: Cutnell and Johnson, pp 473-477, 507-513 Tsokos, pp 216-242 REMEMBER TO. Work through all

### E190Q Lecture 5 Autonomous Robot Navigation

E190Q Lecture 5 Autonomous Robot Navigation Instructor: Chris Clark Semester: Spring 2014 1 Figures courtesy of Siegwart & Nourbakhsh Control Structures Planning Based Control Prior Knowledge Operator

### Solid shape molding is not desired in injection molding due to following reasons.

PLASTICS PART DESIGN and MOULDABILITY Injection molding is popular manufacturing method because of its high-speed production capability. Performance of plastics part is limited by its properties which

### Chapter 8 Memory Units

Chapter 8 Memory Units Contents: I. Introduction Basic units of Measurement II. RAM,ROM,PROM,EPROM Storage versus Memory III. Auxiliary Storage Devices-Magnetic Tape, Hard Disk, Floppy Disk IV.Optical

### Refraction of Light at a Plane Surface. Object: To study the refraction of light from water into air, at a plane surface.

Refraction of Light at a Plane Surface Object: To study the refraction of light from water into air, at a plane surface. Apparatus: Refraction tank, 6.3 V power supply. Theory: The travel of light waves

### Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance. Your name Lab section

Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance Your name Lab section 1. What do you investigate in this lab? 2. Two straight wires are in parallel and carry electric currents in opposite directions

### AUDIO. 1. An audio signal is an representation of a sound. a. Acoustical b. Environmental c. Aesthetic d. Electrical

Essentials of the AV Industry Pretest Not sure if you need to take Essentials? Do you think you know the basics of Audio Visual? Take this quick assessment test on Audio, Visual, and Systems to find out!

### Physics 25 Exam 3 November 3, 2009

1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,

### Holographically corrected microscope with a large working distance (as appears in Applied Optics, Vol. 37, No. 10, 1849-1853, 1 April 1998)

Holographically corrected microscope with a large working distance (as appears in Applied Optics, Vol. 37, No. 10, 1849-1853, 1 April 1998) Geoff Andersen and R. J. Knize Laser and Optics Research Center

### Study Guide for Exam on Light

Name: Class: Date: Study Guide for Exam on Light Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which portion of the electromagnetic spectrum is used

### FTIR Instrumentation

FTIR Instrumentation Adopted from the FTIR lab instruction by H.-N. Hsieh, New Jersey Institute of Technology: http://www-ec.njit.edu/~hsieh/ene669/ftir.html 1. IR Instrumentation Two types of instrumentation

### Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation

Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics

### Today. next two weeks

Today Temporal and spatial coherence Spatially incoherent imaging The incoherent PSF The Optical Transfer Function (OTF) and Modulation Transfer Function (MTF) MTF and contrast comparison of spatially

### EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab

EXPERIMENT O-6 Michelson Interferometer Abstract A Michelson interferometer, constructed by the student, is used to measure the wavelength of He-Ne laser light and the index of refraction of a flat transparent

### Liquid Crystal in Precision Optical Devices

Liquid Crystal in Precision Optical Devices 2005 Meadowlark Optics, Inc. Richard Herke, Michael H. Anderson, Thomas Baur Meadowlark Optics, 5964 Iris Parkway, Frederick, CO 80530 ABSTRACT While the liquid

### BIOMEDICAL ULTRASOUND

BIOMEDICAL ULTRASOUND Goals: To become familiar with: Ultrasound wave Wave propagation and Scattering Mechanisms of Tissue Damage Biomedical Ultrasound Transducers Biomedical Ultrasound Imaging Ultrasonic

### Optical Communications

Optical Communications Telecommunication Engineering School of Engineering University of Rome La Sapienza Rome, Italy 2005-2006 Lecture #2, May 2 2006 The Optical Communication System BLOCK DIAGRAM OF

Blackbody Radiation References 1) R.A. Serway, R.J. Beichner: Physics for Scientists and Engineers with Modern Physics, 5 th Edition, Vol. 2, Ch.40, Saunders College Publishing (A Division of Harcourt

### Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications

Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications Saulius Marcinkevičius Optics, ICT, KTH 1 Outline Optical near field. Principle of scanning near field optical microscope

### 1 Basic Optics (1.2) Since. ε 0 = 8.854 10 12 C 2 N 1 m 2 and μ 0 = 4π 10 7 Ns 2 C 2 (1.3) Krishna Thyagarajan and Ajoy Ghatak. 1.

1 1 Basic Optics Krishna Thyagarajan and Ajoy Ghatak 1.1 Introduction This chapter on optics provides the reader with the basic understanding of light rays and light waves, image formation and aberrations,

### GLOBAL COLLEGE OF ENGINEERING &TECHNOLOGY: YSR DIST. Unit VII Fiber Optics Engineering Physics

Introduction Fiber optics deals with the light propagation through thin glass fibers. Fiber optics plays an important role in the field of communication to transmit voice, television and digital data signals

### Today we will learn about:

Storage Devices Today we will learn about: Storage Devices Ancient technology (from my days as a student) Floppies CD_ROM, DVDs Hard drives Magnetic tape Storage versus Memory Memory holds data, programs

### Lecture 3: Fibre Optics

Lecture 3: Fibre Optics Lecture aims to explain: 1. Fibre applications in telecommunications 2. Principle of operation 3. Single- and multi-mode fibres 4. Light losses in fibres Fibre is a transparent

### A NEW LOOK AT RISLEY PRISMS. By Craig Schwarze Senior Systems Engineer OPTRA Inc.

As seen in Photonics Spectra June 2006: A NEW LOOK AT RISLEY PRISMS By Craig Schwarze Senior Systems Engineer OPTRA Inc. Introduction With laser beams finding more and more applications that require aiming

### Components for Infrared Spectroscopy. Dispersive IR Spectroscopy

Components for Infrared Spectroscopy Mid-IR light: 00-000 cm - (5.5 m wavelength) Sources: Blackbody emitters Globar metal oxides Nernst Glower: Silicon Carbide Detectors: Not enough energy for photoelectric

### Physics 202 Problems - Week 8 Worked Problems Chapter 25: 7, 23, 36, 62, 72

Physics 202 Problems - Week 8 Worked Problems Chapter 25: 7, 23, 36, 62, 72 Problem 25.7) A light beam traveling in the negative z direction has a magnetic field B = (2.32 10 9 T )ˆx + ( 4.02 10 9 T )ŷ

### Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

### - the. or may. scales on. Butterfly wing. magnified about 75 times.

Lecture Notes (Applications of Diffraction) Intro: - the iridescent colors seen in many beetles is due to diffraction of light rays hitting the small groovess of its exoskeleton - these ridges are only

### DIFFRACTION AND INTERFERENCE

DIFFRACTION AND INTERFERENCE In this experiment you will emonstrate the wave nature of light by investigating how it bens aroun eges an how it interferes constructively an estructively. You will observe

### NOVEL FOCUSING OPTICS FOR IR LASERS Paper 1504

NOVEL FOCUSING OPTICS FOR IR LASERS Paper 1504 Gary Herrit 1, Alan Hedges 1, Herman Reedy 1 1 II-VI Incorporated, 375 Saxonburg Blvd., Saxonburg, PA, 16056, USA Abstract Traditional focusing optics for

### UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #4 March 15, 2007 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please