Physics 41 Chapter 38 HW Key

Size: px
Start display at page:

Download "Physics 41 Chapter 38 HW Key"

Transcription

1 Physics 41 Chapter 38 HW Key 1. Helium neon laser light (63..8 nm) is sent through a mm-wide single slit. What is the width of the central imum on a screen 1.00 m from the slit? sin θ a y 4. mm 3 y tan θ sin θ θ (for small θ) 1.00 m. A beam of monochromatic green light is diffracted by a slit of width mm. The diffraction pattern forms on a wall.06 m beyond the slit. The distance between the positions of zero intensity on both sides of the central bright fringe is 4.m. Calculate the wavelength of the light. y P38. The positions of the first-order minima are sin θ ±. Thus, the spacing between these two minima is L a y L and the wavelength is a 3 3 y a L.06 m 547 nm Coherent light of wavelength nm is sent through two parallel slits in a large, flat wall. Each slit is µ m wide. Their centers are.80 µ m apart. The light then falls on a semicylindrical screen, with its axis at the midline between the slits. (a) Predict the direction of each interference imum on the screen as an angle away from the bisector of the line joining the slits. (b) Describe the pattern of light on the screen, specifying the number of bright fringes and the location of each. (c) Find the intensity of light on the screen at the center of each bright fringe, expressed as a fraction of the light intensity at the center of the pattern. Solution: First some review: The total intensity of the double slit interference pattern is a combination of single slit diffraction and the double slit interference. The cosine squared term gives the intensity of the fringes inside the single slit ima. The sine squared terms is the envelope that shapes the fringes. ( πa θ / ) πd sin θ sin sin cos πa sin θ / Without the diffraction envelope all of the fringes would have equal intensity. This is what we were shown in chapter 37, although this pattern doesn t really exist.

2 So for this problem, you use the full expression to find the intensity of the bright fringes. The single slit minima DOMNATE the double slit interference so if a double ima falls on a single slit minima, the spot will be dark. To find the location of the fringes: Double-slit interference ima are at angles given by Single-slit diffraction minima, at asin θ m. dsin θ m. (a) The semicylindrical screen is irrelevant. The point is, they include that because it would be difficult to SEE fringes at large angles unless the screen was curved but it doesn t matter when you are solving for the angles. Double-slit interference ima are at angles given by dsin θ m. For m 0, θ m, (.80 µ m ) sin θ 1( µ m ) : ( ) For 1 θ 1 sin Similarly, for m, 3, 4, 5 and 6, θ 1.0, θ 3 3.5, θ θ, and θ 6 sin ( 1.07) nonexistent Thus, counting the central fringe, there are directions for interference ima. (b) We check for missing orders by looking for single-slit diffraction minima, at asin θ m because the single slit diffraction DOMNATES the double slit interference: For 1 m, ( µ m ) sin θ 1( µ m ) and θ Thus, there is no bright fringe at this angle. There are only nine bright fringes, at θ 0, ± 10.3, ± 1.0, ± 3.5, and ± c) To find the ratio of intensities, you have to use this: ( πa θ / ) πd sin θ sin sin cos πa sin θ /

3 The teacher s solution is using this equation too but they don t explain HOW they use it. That is why reverse engineering the teacher s solution manual can be a waste of time. Let me explain their solution. n part (a) we found angles for which dsin θ m. f you put those angles into this equation, the cosine squared term will always be equal to 1. We solved for the ima. Where the cosine squared term is equal to 1. SO that term drops out and we just end up with using: ( π a sinθ ) sin πasinθ Now what they are doing for the rest of the solution is just solving for the argument and making the units work out because you can t have use both radian and degrees at the same time in your calculator. Check it out. f had just one big equation, see what happens. m going to substitute in the givens and simplify, leaving only the angle: ( π x m θ x m ) ( θ ) sin (.7 10 ) sin ( ) sin sin (.7 10 )sin ( ) sinθ 6 6 π x m θ x m Check it out if you put in an angle, the top argument in the sine is then in radians and you can t have both radians and angles at the same time in your calculator. So the easiest way THNK to do this is to make a substitution: ( β ) sin β where β πa sinθ Then for each angle, solve for β in degree measure and then switch your calculator to radian and put β in and solve for the final answer. Atθ 0, lim sin θ 1and θ Atθ 10.3, use degrees: β ( ) 1.00 π a sinθ π µ m sin which is RADANS µ m Now switch your calculator to radians: ( ) sin OR, if you don t want to switch to radians, then you have to convert β into degrees for the top and then you can keep your calculator in degrees: π asin θ π ( µ ) µ m sin rad m sin And that is what the teacher solution manual did. t works either way but for this intensity formula you can t use both radians and degrees at the same time!!!! So, moral of the story, maybe it is better not to have the teacher solution manual!!!!

4 Similarly, atθ 1.0, Atθ 3.5, Atθ 63.6, π asin θ 1.57 rad 90.0 and π asin θ.36 rad 135 and π asin θ 3.93 rad 5 and The pupil of a cat s eye narrows to a vertical slit of width mm in daylight. What is the angular resolution for horizontally separated mice? Assume that the average wavelength of the light is 500 nm sin θ rad 4 a The mpressionist painter Georges Seurat created paintings with an enormous number of dots of pure pigment, each of which was approximately.00 mm in diameter. The idea was to have colors such as red and green next to each other to form a scintillating canvas. Outside what distance would one be unable to discern individual dots on the canvas? (Assume that 500 nm and that the pupil diameter is 4.00 mm.) Sunday Afternoon on the sland of La Grande Jatte, by Georges Seurat. By Rayleigh s criterion, two dots separated center-to-center by.00 mm would overlap d when θ min 1.. L D Thus, 3 3 (.00 ) ( 4.00 ) 9 ( ) dd L m.

5 5. A circular radar antenna on a Coast Guard ship has a diameter of. and radiates at a frequency of 15.0 GHz. Two small boats are located 9.00 km away from the ship. How close together could the boats be and still be detected as two objects? d P c m D L f D. L m ( m ) ( m ) d m. 6. The hydrogen spectrum includes a red line at 656 n and a blue-violet line at 434 nm. What are the angular separations between these two spectral lines obtained with a diffraction grating that has grooves/cm? P38.1The grating spacing is m d n the 1st-order spectrum, diffraction angles are given by sin θ : sin θ d. so that for red θ and for blue so that θ sin θ The angular separation is in first-order, θ n the second-order spectrum, θ sin sin d d 13. Again, in the third order, θ sin sin d d 6.5 Since the red does not appear in the fourth-order spectrum, the answer is complete. 7. A helium neon laser ( 63.8 nm) is used to calibrate a diffraction grating. f the first-order imum occurs at 0.5, what is the spacing between adjacent grooves in the grating? P38. sin θ : Line spacing 1.81 µ m 63.8 nm nm d sin θ A diffraction grating has 4 00 rulings/cm. On a screen.00 m from the grating, it is found that for a particular order m, the ima corresponding to two closely spaced wavelengths of sodium (589.0 nm and nm) are separated by 1.59 mm. Determine the value of m.

6 P d nm 4 00 cm dsin θ m or 1 m y Ltan θ Ltan sin d 1 m θ sin d and Thus, 1 m 1 m1 y L tan sin tan sin d d For m 1, y (.00 m ) tan sin tan sin mm For m, ( ) ( ) y (.00 m ) tan sin tan sin 1.54 mm For m 3, ( ) ( ) y (.00 m ) tan sin tan sin 5.04 mm Thus, the observed order must be m. 9. Unpolarized light passes through two ideal Polaroid sheets.the axis of the first is vertical and that of the second is at 30.0 to the vertical. What fraction of the incident light is transmitted? P38.34 The average value of the cosine-squared function is one-half, so the first polarizer transmits 1 the light. The second 3 transmits cos f i i 10. The critical angle for total internal reflection for sapphire surrounded by air is Calculate the polarizing angle for sapphire. P sin θ c or n 1 1 n sin θ sin 34.4 Also, tan θ p n. Thus, 1 θ tan ( ) tan 1 p n ( 1.77) c

7 11. The Very Large Array (VLA) is a set of 7 radio telescope dishes in Caton and Socorro Counties, New Mexico (Fig. P38.54). The antennas can be moved apart on railroad tracks, and their combined signals give the resolving power of a synthetic aperture 36.0 km in diameter. (a) f the detectors are tuned to a frequency of 1.40 GHz, what is the angular resolution of the VLA? (b) Clouds of hydrogen radiate at this frequency. What must be the separation distance of two clouds at the center of the galaxy, lightyears away, if they are to be resolved? (c) What f? As the telescope looks up, a circling hawk looks down. Find the angular resolution of the hawk s eye. Assume that that the hawk is most sensitive to green light having a wavelength of 500 nm and that it has a pupil of diameter 1.0 mm. (d) A mouse is on the ground 30.0 m below. By what distance must the mouse s whiskers be separated if the hawk can resolve them? P38.50 (a) v : f s 0.14 m s (b) θ min : min 4 min 1. D 0.14 m θ µ rad s θ min 7.6 µ rad 1.50 arc seconds π d d θminl rad ly ly L θ : ( ) ( ) (c) min 1. D m 1.0 θ θ µ rad ( 10.5 seconds of arc) min 3 (d) d θ L ( )( ) 6 3 min rad 30.0 m mm 1. An American standard television picture is composed of about 485 horizontal lines of varying light intensity. Assume that your ability to resolve the lines is limited only by the Rayleigh criterion and that the pupils of your eyes are 5.00 mm in diameter. Calculate the ratio of minimum viewing distance to the vertical dimension of the picture such that you will not be able to resolve the lines. Assume that the average wavelength of the light coming from the screen is 550 nm. P38.57 The limiting resolution between lines θ 9 ( 550 ) ( 5.00 ) rad. D min 3 Assuming a picture screen with vertical dimension, the minimum viewing distance for no visible lines is found from 485 θ min. The desired ratio is then L L θ rad min ( ) 13. f the interplanar spacing of NaCl is , what is the predicted angle at which X-rays of wavelength nm will be diffracted in a first-order imum? Answer: 14.4

8 14. Suppose a 5-meter diameter telescope were constructed on the dark side of the moon. The viewing there (except for brief periods of sunlight) would be excellent. As an example, what would be the separation between two objects that could just be resolved on the planet Mars in 500 nm light? [The distance to Mars at closest approach is 50 million miles]. Answer: 9.8 km 15. Suppose a 5-meter diameter telescope were constructed on the dark side of the moon. The viewing there (except for brief periods of sunlight) would be excellent. As an example, what would be the separation between two objects that could just be resolved on the planet Mars in 500 nm light? [The distance to Mars at closest approach is 50 million miles]. 16. An unpolarized beam of light is incident on a stack ofideal polarizing filters. The axis of the first filter is perpendicular to the axis of the last filter in the stack. Find the fraction by which the transmitted beam s intensity is reduced in the following three cases. (a) Three filters are in the stack, each with its transmission axis at 45.0 relative to the preceding filter. (b) Four filters are in the stack, each with its transmission axis at 30.0 relative to the preceding filter. (c) Seven filters are in the stack, each with its axis at 15.0 relative to the preceding filter.(d) Comment on comparing the answers to parts (a), (b), and (c). 17. Monochromatic light is beamed into a Michelson interferometer. The movable mirror is displaced 0.38 mm, causing the interferometer pattern to reproduce itself times. Determine the wavelength of the light. What color is it?

Physics 111 Fall 2007 Wave Optics Solutions

Physics 111 Fall 2007 Wave Optics Solutions Physics 111 Fall 2007 Wave Optics Solutions 1. The pupil of a cat s eye narrows to a vertical slit of width 0.500 mm in daylight. What is the angular resolution for horizontally separated mice? Assume

More information

6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm?

6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm? Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes through

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A single slit forms a diffraction pattern, with the first minimum at an angle of 40 from

More information

Wave Optics. b. the crest from one wave overlaps with the d. darkness cannot occur as the two waves are coherent.

Wave Optics. b. the crest from one wave overlaps with the d. darkness cannot occur as the two waves are coherent. Wave Optics 1. Two beams of coherent light are shining on the same piece of white paper. With respect to the crests and troughs of such waves, darkness will occur on the paper where: a. the crest from

More information

EM Waves Practice Problems

EM Waves Practice Problems EM Waves Practice Problems PSI AP Physics B Name Multiple Choice 1. Which of the following theories can explain the bending of waves behind obstacles into shadow region? (A) Particle theory of light (B)

More information

(a) (i) Label the diagram of the human eye to show the lens, retina and optic nerve.

(a) (i) Label the diagram of the human eye to show the lens, retina and optic nerve. Practice Test: 28 marks (42 minutes) Additional Problem: 37 marks (56 minutes) 1. This question is about the human eye. (a) (i) Label the diagram of the human eye to show the lens, retina and optic nerve.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two radio antennas are 120 m apart on a north-south line. The two antennas radiate in

More information

Christian Huygen Light is a wave, not merely a ray As waves propagate each point on the wavefront produces new wavelets. Wave Nature of Light

Christian Huygen Light is a wave, not merely a ray As waves propagate each point on the wavefront produces new wavelets. Wave Nature of Light Wave Nature of Light Christian Huygen Light is a wave, not merely a ray As waves propagate each point on the wavefront produces new wavelets Chapter 24 Wavelength Changes Wavelength of light changes in

More information

Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 )

Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 ) 1 of 14 2/22/2016 11:28 PM Signed in as Weida Wu, Instructor Help Sign Out Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 ) My Courses Course Settings University Physics with Modern Physics,

More information

Interference. Physics 102 Workshop #3. General Instructions

Interference. Physics 102 Workshop #3. General Instructions Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by

More information

Diffraction. Today Single-slit diffraction Diffraction by a circular aperture Use of phasors in diffraction Double-slit diffraction

Diffraction. Today Single-slit diffraction Diffraction by a circular aperture Use of phasors in diffraction Double-slit diffraction Diffraction Today Single-slit diffraction Diffraction by a circular aperture Use of phasors in diffraction Double-slit diffraction Diffraction by a single slit Single slit: Pattern on screen Bright and

More information

Physics 2111 Unit 29

Physics 2111 Unit 29 Physics 2111 Unit 29 Physical Optics - Thin Film Interference - Two Slit Interference - Single Slit Interference - Resolution - Diffraction Gratings - X-Ray Diffraction Physical Optics, Unit 29 - Slide

More information

Interference and Diffraction

Interference and Diffraction Chapter 14 nterference and Diffraction 14.1 Superposition of Waves... 14-14. Young s Double-Slit Experiment... 14-4 Example 14.1: Double-Slit Experiment... 14-7 14.3 ntensity Distribution... 14-8 Example

More information

Objectives 450 CHAPTER 10 LIGHT AND OPTICAL SYSTEMS

Objectives 450 CHAPTER 10 LIGHT AND OPTICAL SYSTEMS Objectives Use wave properties to explain interference and diffraction of light. Explain how double slits, a diffraction grating, a single slit, and an aperture produce interference patterns. Use measurements

More information

and that for the minima is min ( m 1 2). Divide the second equation by the first and solve for the order of the maximum, m.

and that for the minima is min ( m 1 2). Divide the second equation by the first and solve for the order of the maximum, m. USEFUL FORMULAE AND DATA 1. Wien s Law: pt = 2.90 10-3 m K 2. v=c/n, is the speed of light in a material with an index of refraction n 3. Snell s Law: n1 sin 1 = n2 sin 2, where subscripts 1 stands for

More information

Chapter 37 - Interference and Diffraction. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 37 - Interference and Diffraction. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapter 37 - Interference and Diffraction A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should

More information

Unit 2 Particles and Waves

Unit 2 Particles and Waves North Berwick High School Department of Physics Higher Physics Unit 2 Particles and Waves Section 5 Interference and Diffraction Section 5 Interference and Diffraction Note Making Make a dictionary with

More information

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7th edition Giancoli Lecture PowerPoints Chapter 24 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Lecture 4. Physics 1502: Lecture 34 Today s Agenda

Lecture 4. Physics 1502: Lecture 34 Today s Agenda Physics 1502: Lecture 34 Today s Agenda Announcements: Midterm 2: graded soon Homework 09: Friday December 4 Optics Interference Diffraction» Introduction to diffraction» Diffraction from narrow slits»

More information

Interference and the wave nature of light

Interference and the wave nature of light Interference and the wave nature of light Fig 27.2 Sound waves combining result in constructive and destructive interference, and Light waves (electromagnetic waves) do, too! The waves emitted by source

More information

Physics 1653 Final Exam - Review Questions

Physics 1653 Final Exam - Review Questions Chapter 22 Reflection & Refraction Physics 1653 Final Exam - Review Questions 1. The photon energy for light of wavelength 500 nm is approximately A) 1.77 ev B) 3.10 ev C) 6.20 ev D) 2.48 ev E) 5.46 ev

More information

2. Do Not use the laser without getting instructions from the demonstrator.

2. Do Not use the laser without getting instructions from the demonstrator. EXPERIMENT 3 Diffraction Pattern Measurements using a Laser Laser Safety The Helium Neon lasers used in this experiment and are of low power (0.5 milliwatts) but the narrow beam of light is still of high

More information

CH 35. Interference. A. Interference of light waves, applied in many branches of science.

CH 35. Interference. A. Interference of light waves, applied in many branches of science. CH 35 Interference [SHIVOK SP212] March 17, 2016 I. Optical Interference: A. Interference of light waves, applied in many branches of science. B. The blue of the top surface of a Morpho butterfly wing

More information

10.3 The Diffraction Grating

10.3 The Diffraction Grating diffraction grating a device with a large number of equally spaced parallel slits that produces interference patterns 10.3 The Diffraction Grating It is difficult to measure the wavelength of light accurately

More information

Waves and Light Test

Waves and Light Test Name: K T/A C Waves and Light Test Short Answer (Knowledge) 1. Signals from AM stations (frequency range of 550 1650 khz) can often be heard very easily behind large hills, while those from FM stations

More information

Ch. 27. Interference and the Wave Nature of Light

Ch. 27. Interference and the Wave Nature of Light Ch. 27. Interference and the Wave Nature of Light Up to now, we have been studying geometrical ti optics, where the wavelength of the light is much smaller than the size of our mirrors and lenses and the

More information

physics 112N interference and diffraction

physics 112N interference and diffraction physics 112N interference and diffraction the limits of ray optics shadow of the point of a pin physics 112N 2 the limits of ray optics physics 112N 3 the limits of ray optics physics 112N 4 this is how

More information

Physics 111 Homework Solutions Week #9 - Tuesday

Physics 111 Homework Solutions Week #9 - Tuesday Physics 111 Homework Solutions Week #9 - Tuesday Friday, February 25, 2011 Chapter 22 Questions - None Multiple-Choice 223 A 224 C 225 B 226 B 227 B 229 D Problems 227 In this double slit experiment we

More information

Interference & Diffraction

Interference & Diffraction Purpose A single-slit diffraction pattern results when a light beam passes through a single narrow aperture, or slit, whose width is not too much larger than a wavelength. A double-slit interference pattern

More information

Chapter 38: Diffraction (interference part 2)

Chapter 38: Diffraction (interference part 2) Chapter 38: Diffraction (interference part 2) Diffraction is an interference effect like in Ch 37, but usually refers more specifically to bending of waves around obstacles (similar to refraction). Diffraction

More information

Laboratory 6: Diffraction and Interference

Laboratory 6: Diffraction and Interference Laboratory 6: Diffraction and Interference Renjie Li ID: 804291044 Physics 4BL Lab 8 May 20th 2015 Partner: Christine Truong TA: Eddie S. 1 Introduction In this lab, we will be performing experiments that

More information

PHYS-2020: General Physics II Course Lecture Notes Section XIII

PHYS-2020: General Physics II Course Lecture Notes Section XIII PHYS-2020: General Physics II Course Lecture Notes Section XIII Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and

More information

HW2 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.

HW2 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. HW2 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 15.P.041 The wave function for a harmonic wave on a string

More information

PHY 171. Homework 5 solutions. (Due by beginning of class on Wednesday, February 8, 2012)

PHY 171. Homework 5 solutions. (Due by beginning of class on Wednesday, February 8, 2012) PHY 171 (Due by beginning of class on Wednesday, February 8, 2012) 1. Consider the figure below which shows four stacked transparent materials. In this figure, light is incident at an angle θ 1 40.1 on

More information

Interference A simplified explanation of single, double and multi-slit interference

Interference A simplified explanation of single, double and multi-slit interference Interference A simplified explanation of single, double and multi-slit interference The tpe of interference we will be looking at is the interference of coherent light. Think of the light beams in the

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena. Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric)

More information

PRACTICE EXAM IV P202 SPRING 2004

PRACTICE EXAM IV P202 SPRING 2004 PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order

More information

PREVIOUS 8 YEARS QUESTIONS (1 mark & 2 marks) 1 mark questions

PREVIOUS 8 YEARS QUESTIONS (1 mark & 2 marks) 1 mark questions 230 PREVIOUS 8 YEARS QUESTIONS (1 mark & 2 marks) 1 mark questions 1. An object is held at the principal focus of a concave lens of focal length f. Where is the image formed? (AISSCE 2008) Ans: That is

More information

Section 1 Interference: Practice Problems

Section 1 Interference: Practice Problems Section 1 Interference: Practice Problems 1. Violet light falls on two slits separated by 1.90 10 5 m. A first-order bright band appears 13.2 mm from the central bright band on a screen 0.600 m from the

More information

Ch 24 Wave Optics. concept questions #8, 11 problems #1, 3, 9, 15, 19, 31, 45, 48, 53

Ch 24 Wave Optics. concept questions #8, 11 problems #1, 3, 9, 15, 19, 31, 45, 48, 53 Ch 24 Wave Optics concept questions #8, 11 problems #1, 3, 9, 15, 19, 31, 45, 48, 53 Light is a wave so interference can occur. Interference effects for light are not easy to observe because of the short

More information

Review: Double Slit Path Differences. Diffraction II. Single slit: Pattern on screen. Double-slit interference fringes. Single Slit dark fringes

Review: Double Slit Path Differences. Diffraction II. Single slit: Pattern on screen. Double-slit interference fringes. Single Slit dark fringes Diffraction II Today Single-slit diffraction review Multiple slit diffraction review Xray diffraction Diffraction intensities Review: Double Slit Path Differences For point P at angle triangle shows L

More information

Answer: b. Answer: a. Answer: d

Answer: b. Answer: a. Answer: d Practice Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes

More information

Interference and Diffraction of EM waves

Interference and Diffraction of EM waves Interference and Diffraction of EM waves Maxwell Equations in General Form Differential form Integral Form D v B E H 0 B t D J t L L DdS s s E dl H dl B ds s v J dv 0 t v s B ds D ds t Gauss s Law for

More information

For visible light, 700nm(red) > λ > 400 nm(indigo) See page 631 for wavelengths of colours

For visible light, 700nm(red) > λ > 400 nm(indigo) See page 631 for wavelengths of colours 1 Light Section 20.5, Electromagnetic waves Light is an electromagnetic which travels at 3.00 10 8 m/s in a vacuum. It obeys the relationship: λf = c just like other traveling waves. For visible light,

More information

TWO AND MULTIPLE SLIT INTERFERENCE

TWO AND MULTIPLE SLIT INTERFERENCE TWO AND MULTIPLE SLIT INTERFERENCE Double Slit and Diffraction Grating. THEORY: L P L+nλ Light d θ L 0 C nλ Wall Screen P Figure 1 If plane waves of light fall at normal incidence on an opaque wall containing

More information

Chapter 34 The Wave Nature of Light; Interference. Copyright 2009 Pearson Education, Inc.

Chapter 34 The Wave Nature of Light; Interference. Copyright 2009 Pearson Education, Inc. Chapter 34 The Wave Nature of Light; Interference Units of Chapter 34 Waves versus Particles; Huygens Principle and Diffraction Huygens Principle and the Law of Refraction Interference Young s Double-Slit

More information

Physics 122 Class #10 Outline. Announcements Interference of light waves Double slit Diffraction Grating Single slit Interferometer

Physics 122 Class #10 Outline. Announcements Interference of light waves Double slit Diffraction Grating Single slit Interferometer Physics 122 Class #10 Outline Announcements Interference of light waves Double slit Diffraction Grating Single slit Interferometer Reading Next Week ALL of Chapter 25 It is key to rest of course. Main

More information

Diffraction of Laser Light

Diffraction of Laser Light Diffraction of Laser Light No Prelab Introduction The laser is a unique light source because its light is coherent and monochromatic. Coherent light is made up of waves, which are all in phase. Monochromatic

More information

PHYS 2212L - Principles of Physics Laboratory II

PHYS 2212L - Principles of Physics Laboratory II PHYS 2212L - Principles of Physics Laboratory II Laboratory Advanced Sheet Diffraction 1. Objectives. The objectives of this laboratory are a. To be able use a diffraction grating to measure the wavelength

More information

Lesson 18: Diffraction and Interference!

Lesson 18: Diffraction and Interference! Lesson 18: Diffraction and Interference Part 1: The Double Slit Experiment What is light? - A particle? - A wave? In 1801, Thomas Young s Double Slit Experiment confirmed the wave nature of light: If light

More information

Experiment #3: Interference and Diffraction

Experiment #3: Interference and Diffraction Experiment #3: Interference and Diffraction EYE HAZARD: never look directly into a laser! Starting with experiment #4, Please always bring a formatted high-density PC diskette with you to the lab. Purpose:

More information

ConcepTest Superposition. If waves A and B are superposed (that is, their amplitudes are added) the resultant wave is

ConcepTest Superposition. If waves A and B are superposed (that is, their amplitudes are added) the resultant wave is ConcepTest 24.1 Superposition If waves A and B are superposed (that is, their amplitudes are added) the resultant wave is 1) 2) 3) 4) ConcepTest 24.1 Superposition If waves A and B are superposed (that

More information

PRACTICE Q6--Quiz 6, Ch15.1 &15.2 Interference & Diffraction

PRACTICE Q6--Quiz 6, Ch15.1 &15.2 Interference & Diffraction Name: Class: Date: ID: A PRACTICE Q6--Quiz 6, Ch5. &5. Interference & Diffraction Multiple Choice Identify the choice that best completes the statement or answers the question.. The trough of the sine

More information

(Answers to odd-numbered Conceptual Questions can be found in the back of the book, beginning on page ANS-xx.)

(Answers to odd-numbered Conceptual Questions can be found in the back of the book, beginning on page ANS-xx.) [Problems] Walker, Physics, 3 rd Edition Chapter 28 Conceptual Questions (Answers to odd-numbered Conceptual Questions can be found in the back of the book, beginning on page ANS-xx.) 1. When two light

More information

DIFFRACTION GRATINGS AND SPECTROSCOPY

DIFFRACTION GRATINGS AND SPECTROSCOPY Experiment 8 Name: S.N.: SECTION: PARTNER: DATE: DIFFRACTION GRATINGS AND SPECTROSCOPY Objectives To introduce and calibrate a diffraction grating, and use it to examine several types of spectra. To learn

More information

Chapter 22. Wave Optics. Chapter 22. Wave Optics. What was the first experiment to show that light is a wave? Chapter 22.

Chapter 22. Wave Optics. Chapter 22. Wave Optics. What was the first experiment to show that light is a wave? Chapter 22. Chapter 22. Wave Optics Chapter 22. Wave Optics Light is an electromagnetic wave. The interference of light waves produces the colors reflected from a CD, the iridescence of bird feathers, and the technology

More information

Physics 102 Extra practice problems Fall The next two questions pertain to the following situation:

Physics 102 Extra practice problems Fall The next two questions pertain to the following situation: The next two questions pertain to the following situation: Three charges are placed located as shown in the figure to the right. The grid spacing is in meters.. y 10. 1. Calculate the x-component of the

More information

INTERFERENCE and DIFFRACTION

INTERFERENCE and DIFFRACTION Course and Section Date Names INTERFERENCE and DIFFRACTION Short description: In this experiment you will use interference effects to investigate the wave nature of light. In particular, you will measure

More information

Chapter 14. Interference and Diffraction

Chapter 14. Interference and Diffraction Chapter 14 Interference and Diffraction 14.1 Superposition of Waves... 14-14.1.1 Interference Conditions for Light Sources... 14-4 14. Young s Double-Slit Experiment... 14-4 Example 14.1: Double-Slit Experiment...

More information

WAVELENGTH OF LIGHT - DIFFRACTION GRATING

WAVELENGTH OF LIGHT - DIFFRACTION GRATING PURPOSE In this experiment we will use the diffraction grating and the spectrometer to measure wavelengths in the mercury spectrum. THEORY A diffraction grating is essentially a series of parallel equidistant

More information

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,

More information

RESOLVING POWER OF A READING TELESCOPE

RESOLVING POWER OF A READING TELESCOPE 96 Lab Experiments Experiment-255 RESOLVING POWER OF A READING TELESCOPE S Dr Jeethendra Kumar P K KamalJeeth Instrumentation & Service Unit, No-60, TATA Nagar, Bangalore-560 092, INDIA. Email:jeeth_kjisu@rediffmail.com

More information

Exam 3--S12--PHYS April 2012

Exam 3--S12--PHYS April 2012 ame: Exam 3--S12--PHYS102 30 April 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following statements is true? a. Newton believed light

More information

University Physics (Prof. David Flory) Chapt_36 Monday, August 06, 2007

University Physics (Prof. David Flory) Chapt_36 Monday, August 06, 2007 Name: Date: 1. In an experiment to measure the wavelength of light using a double slit, it is found that the fringes are too close together to easily count them. To spread out the fringe pattern, one could:

More information

DIFFRACTION OF LIGHT

DIFFRACTION OF LIGHT Laboratory Exercise 4. DIFFRACTION OF LIGHT Diffraction Gratings. Determining the Wavelength of Laser Light Using a Diffraction Grating. Refraction. Observation of Atomic Spectra. Theoretical background:

More information

Activity 9.1 The Diffraction Grating

Activity 9.1 The Diffraction Grating Group Number (number on Intro Optics Kit):. PHY385H1F Introductory Optics Practicals Day 9 Diffraction November 28, 2011 Facilitator Name:. Record-Keeper Name: Time-keeper:. Computer/Wiki-master:. NOTE:

More information

Lab 4: DIFFRACTION GRATINGS AND PRISMS (3 Lab Periods)

Lab 4: DIFFRACTION GRATINGS AND PRISMS (3 Lab Periods) revised version Lab 4: Objectives DIFFRACTION GRATINGS AND PRISMS (3 Lab Periods) Calibrate a diffraction grating using a spectral line of known wavelength. With the calibrated grating, determine the wavelengths

More information

Recap Lecture 34 Matthias Liepe, 2012

Recap Lecture 34 Matthias Liepe, 2012 Recap Lecture 34 Matthias Liepe, 2012 Diffraction Diffraction limited resolution Double slit (again) N slits Diffraction gratings Examples Today: Pointillism Technique of painting in which small, distinct

More information

AIM: To determine the grating element of a diffraction grating using laser source of known wavelength.

AIM: To determine the grating element of a diffraction grating using laser source of known wavelength. AIM: To determine the grating element of a diffraction grating using laser source of known wavelength. Prepared by: 1. Jagmeet singh Submitted to: 2. Ankur badhan Mr.Rohit verma 3. Vikas inder singh 4.

More information

not to be republished NCERT WAVE OPTICS Chapter Ten MCQ I

not to be republished NCERT WAVE OPTICS Chapter Ten MCQ I Chapter Ten WAVE OTICS MCQ I 10.1 Consider a light beam incident from air to a glass slab at Brewster s angle as shown in Fig. 10.1. A polaroid is placed in the path of the emergent ray at point and rotated

More information

Diffraction Grating and Interference

Diffraction Grating and Interference Diffraction Grating and Interference APPARATUS 1. Spectrometer 2. Diffraction grating 3. Mercury arc lamp 4. Board for mounting glass plates 5. Two plane parallel plates of glass 6. Aluminum stand equipped

More information

Chapter 24 Wave Optics. Diffraction Grating Interference by Thin Films Polarization. sinθ=mλ/d or dsinθ=mλ

Chapter 24 Wave Optics. Diffraction Grating Interference by Thin Films Polarization. sinθ=mλ/d or dsinθ=mλ Chapter 24 Wave Optics Diffraction Grating Interference by Thin Films Polarization d Θ Θ Extra distance mλ sinθ=mλ/d or dsinθ=mλ m=0,1,2,3,... Constructive inference m=1/2,3/2,5/2,... Destructive inference

More information

A Simple Introduction to Interference

A Simple Introduction to Interference [ Assignment View ] [ Eðlisfræði 2, vor 2007 35. Interference Assignment is due at 2:00am on Wednesday, January 17, 2007 Credit for problems submitted late will decrease to 0% after the deadline has passed.

More information

Physics 202 Spring 2010 Practice Questions for Chapters 31-33

Physics 202 Spring 2010 Practice Questions for Chapters 31-33 Physics 202 Spring 2010 Practice Questions for Chapters 31-33 1. Mission Control sends a brief wake-up call to astronauts in a distant spaceship. Five seconds after the call is sent, Mission Control hears

More information

Huygens Principle. 7: Interference (Chapter 35) Huygens & Refraction. Diffraction & Interference. Phys130, A01 Dr.

Huygens Principle. 7: Interference (Chapter 35) Huygens & Refraction. Diffraction & Interference. Phys130, A01 Dr. 7: Interference (Chapter 35) Phys130, A01 Dr. Robert MacDonald Huygens Principle Each point on a wave front serves as a source of new spherical wavelets. After a time t, the new position of the wave front

More information

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 12. Physical Optics: Diffraction, Interference, and Polarization of Light

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 12. Physical Optics: Diffraction, Interference, and Polarization of Light PHYSICS 171 UNIVERSITY PHYSICS LAB II Experiment 12 Physical Optics: Diffraction, Interference, and Polarization of Light Equipment: Supplies: Laser, photometer with optic probe, optical bench, and angular

More information

Electromagnetic Radiation

Electromagnetic Radiation Electromagnetic Radiation Wave - a traveling disturbance, e.g., displacement of water surface (water waves), string (waves on a string), or position of air molecules (sound waves). [ π λ ] h = h sin (

More information

Study Guide for Exam on Light

Study Guide for Exam on Light Name: Class: Date: Study Guide for Exam on Light Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which portion of the electromagnetic spectrum is used

More information

Physics 9 Fall 2009 DIFFRACTION

Physics 9 Fall 2009 DIFFRACTION Physics 9 Fall 2009 NAME: TA: SECTION NUMBER: LAB PARTNERS: DIFFRACTION 1 Introduction In these experiments we will review and apply the main ideas of the interference and diffraction of light. After reviewing

More information

Period 14 Activity Solutions: Energy in Nature

Period 14 Activity Solutions: Energy in Nature Period 14 Activity Solutions: Energy in Nature 14.1 The Earth-Sun System 1) Energy from the sun Observe the models of the Earth, Moon, and Sun in the room. a) Imagine that the distance between the Earth

More information

FTIR Instrumentation

FTIR Instrumentation FTIR Instrumentation Adopted from the FTIR lab instruction by H.-N. Hsieh, New Jersey Institute of Technology: http://www-ec.njit.edu/~hsieh/ene669/ftir.html 1. IR Instrumentation Two types of instrumentation

More information

Lecture 2: Interference

Lecture 2: Interference Lecture 2: Interference λ S 1 d S 2 Lecture 2, p.1 Today Interference of sound waves Two-slit interference Lecture 2, p.2 Review: Wave Summary ( ) ( ) The formula y x,t = Acos kx ωt describes a harmonic

More information

Lab 7: Fabry-Perot Interferometer

Lab 7: Fabry-Perot Interferometer Lab 7: Fabry-Perot Interferometer 1 Introduction Refer to Appendix D for photos of the apparatus A Fabry-Perot interferometer is a device that uses multiple beam interference of light for high resolution

More information

PHY208FALL2008. Week2HW. Introduction to Two-Source Interference. Due at 11:59pm on Friday, September 12, View Grading Details [ Print ]

PHY208FALL2008. Week2HW. Introduction to Two-Source Interference. Due at 11:59pm on Friday, September 12, View Grading Details [ Print ] Assignment Display Mode: View Printable Answers PHY208FALL2008 Week2HW Due at 11:59pm on Friday September 12 2008 View Grading Details [ Print ] The following three problems concern interference from two

More information

Diffraction and the Wavelength of Light

Diffraction and the Wavelength of Light Diffraction and the Wavelength of Light Goal: To use a diffraction grating to measure the wavelength of light from various sources and to determine the track spacing on a compact disc. Lab Preparation

More information

GRID AND PRISM SPECTROMETERS

GRID AND PRISM SPECTROMETERS FYSA230/2 GRID AND PRISM SPECTROMETERS 1. Introduction Electromagnetic radiation (e.g. visible light) experiences reflection, refraction, interference and diffraction phenomena when entering and passing

More information

Solutions to Exercises, Section 5.1

Solutions to Exercises, Section 5.1 Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle

More information

WORLD OF LIGHT LABORATORY LAB 4 Diffraction and Interference

WORLD OF LIGHT LABORATORY LAB 4 Diffraction and Interference WORLD OF LIGHT LABORATORY LAB 4 Diffraction and Interference INTRODUCTION: Diffraction and interference are quintessential wavelike properties that essentially all waves exhibit but other things do not.

More information

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator. PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

More information

- the. or may. scales on. Butterfly wing. magnified about 75 times.

- the. or may. scales on. Butterfly wing. magnified about 75 times. Lecture Notes (Applications of Diffraction) Intro: - the iridescent colors seen in many beetles is due to diffraction of light rays hitting the small groovess of its exoskeleton - these ridges are only

More information

Tutorial 6: Solutions

Tutorial 6: Solutions Tutorial 6: Solutions 1. A stationary radiating system consists of a linear chain of parallel oscillators separated by a distance d. The phase of the oscillators varies linearly along the chain, Find the

More information

Pre-Lab Assignment: Interference, Measuring Wavelengths, and Atomic Spectra

Pre-Lab Assignment: Interference, Measuring Wavelengths, and Atomic Spectra Name: Lab Partners: Date: Pre-Lab Assignment: Interference, Measuring Wavelengths, and Atomic Spectra (Due at the beginning of lab) Directions: Read over the lab handout and then answer the following questions

More information

9. Diffraction Grating

9. Diffraction Grating 9. Diffraction Grating Background Diffraction Date Grating : Fraunhofer diffraction Fresnel diffraction Angular dispersion Resolving power Spectral lines Aim of the experiment To determine the wavelengths

More information

Waves and Light Extra Study Questions

Waves and Light Extra Study Questions Waves and Light Extra Study Questions Short Answer 1. Determine the frequency for each of the following. (a) A bouncing spring completes 10 vibrations in 7.6 s. (b) An atom vibrates 2.5 10 10 times in

More information

EP225 Note No. 7 Wave Interference and Di raction

EP225 Note No. 7 Wave Interference and Di raction EP5 Note No. 7 Wave Interference and Di raction 7.1 Superposition of Two Waves of Equal Wavelength When two waves of equal amplitude and wavelength, but with a phase di erence are superposed, E 0 sin(k!t)

More information

Microwave Antennas and Radar. Maria Leonora Guico Tcom 126 2 nd Sem Lecture 8

Microwave Antennas and Radar. Maria Leonora Guico Tcom 126 2 nd Sem Lecture 8 Microwave Antennas and Radar Maria Leonora Guico Tcom 126 2 nd Sem Lecture 8 G P P directional isotropic Antenna Basics Isotropic Dipole High gain directional 0 db i 2.2 db i 14 db i Antenna performance

More information

Wave Phenomena. Constructive and Destructive Interference

Wave Phenomena. Constructive and Destructive Interference Wave Phenomena INTERFERENCE PATTERN OF WATER WAVES DIFFRACTION OF LIGHT OFF A COMPACT DISC Constructive and Destructive Interference Constructive interference produces maxima, where crests meet crests

More information

Module17:Coherence Lecture 17: Coherence

Module17:Coherence Lecture 17: Coherence Module7:Coherence Lecture 7: Coherence We shall separately discuss spatial coherence and temporal coherence. 7. Spatial Coherence The Young s double slit experiment (Figure 7.) essentially measures the

More information

Precision wavelength measurement using a Fabry-Pérot etalon

Precision wavelength measurement using a Fabry-Pérot etalon Please do not remove this manual from from the lab. It is available at www.cm.ph.bham.ac.uk/y2lab Optics Precision wavelength measurement using a Fabry-Pérot etalon Introduction The main purpose of this

More information

Section 3.1 Radian Measure

Section 3.1 Radian Measure Section.1 Radian Measure Another way of measuring angles is with radians. This allows us to write the trigonometric functions as functions of a real number, not just degrees. A central angle is an angle

More information