Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm"

Transcription

1 Progress In Electromagnetics Research Symposium Proceedings, Taipei, March 5 8, Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm Yoshito Sonoda, Takashi Samatsu, and Toshiyuki Nakamiya Graduate School of Industrial Engineering, Tokai University, Toroku 9--, Kumamoto , Japan Abstract The optical wave microphone with no diaphragm (or the optophone), which can detect sound waves wave-optically by using a laser beam without disturbing a sound field and an air flow, is presented as a novel sound measurement technique. In the optical receiving system, the diffraction light generated by sound waves is passed through an optical Fourier-transform system and is focused on an observing plane. The spatial position of diffraction light pattern in the plane is rotated around the laser beam axis when changing the sound incidence angle to the axis, which property can be used as a separation method of sounds with different incidence angles and a hand control method of directivity. In the present experiment, an optical fiber bundle with 6ch fibers is used to detect the diffraction light patterns generated by sounds with different incidence angle. The experimental results show that it is possible to separate two sounds with incidence angle difference of 9 degree and to control the receiving directivity by synthesizing some of fiber output signals.. INTRODUCTION As a standard technique to measure sound waves, various types of microphone have been developed and used over one hundred years. However, they have many restrictions on practical applications because they use a diaphragm or any vibrating object to detect sound waves. On the other hand, the optophone based on the wave optical principle [] can transform a sound signal to an electrical signal by detecting an ultraweak diffraction light, which is generated by sounds crossing the laser beam. By experiments carried out so far, it was shown that sounds from about Hz to khz could be simultaneously detected by a visible laser beam of 5 to mw []. In this method, it is possible to change the sound receiving property such as directivity, signal amplification and frequency response by transforming the construction of a laser beam antenna (or a sound antenna). Furthermore, as the position of diffraction light pattern appeared in the observing plane is varied by the incidence angle of sound, it is expected that the separation of sounds with different incidence angles and the hand control of directivity become possible by using a divided photo detector or an optical fiber bundle connected to photo detectors. In this paper, the principle and theory of the method is shortly introduced and the experimental results about the receiving property of optophone using an optical fiber bundle with 6ch fibers in the light detection plane are presented and discussed.. PRINCIPLE AND THEORY The method is based on the theory of the Fraunhofer diffraction method, which has been developed as a new means to detect the electromagnetic radiation scattered by long-wavelength plasma waves within the penetrating laser beam in the plasma nuclear fusion research [3, 4]. By using the theory, the method has been applied to sound measurement from audio to ultrasonic waves and developed [5, 6]. An image figure of the optophone of one-dimensional straight laser beam type is shown in Figure. The abstract of the model for theoretical analysis is shown in Figure. When an incidence probing laser beam crosses a sound wave, diffraction light waves are generated and propagate with and in the penetrating beam through the Fourier optical system and reach the detection plane, which is set in the back focal plane of a receiving lens. The diffracted light is heterodynedetected there by using the penetrating laser light as a local oscillating power. The spatial intensity of diffraction light signal for the theoretical model shown in Figure is given by the following equation [3, 4]. I () ac = I φ exp ( u ) [ exp{ (u θ) } exp{ (u + θ) } ] cos ω a t () where I = (P /πw f ) exp[ (y f /w f ) ] [W/m ], φ = k i (µ ) z p/γp, µ : refractive index of air, γ: specific heat ratio, z: width of sound, p: atmospheric pressure, p: sound pressure,

2 36 PIERS Proceedings, Taipei, March 5 8, 3 (ω i,k i ) Laser f Z Z f Detector Lens Lens (ωa,k a ) Sound Back Focal Plane Figure : Image of the optical wave microphone. Figure : Optical setup for theoretical analysis. - - Intensity θ=. /.5. u - - Φ Phas e π π/ π/ θ=.,.5,. u (a) Spatial intensity profile (b) Spatial phase profile Figure 3: Theoretical profiles of diffracted light distribution. k i : wave number of laser light, ω a : angular frequency of sound wave, P : laser power, u = x f /w f : the normalized x-coordinate in the back focal plane, θ = k a w /: the normalized wave number, k a : wave number of sound wave, w : radius of laser beam waist in sound incident region, w f, x f, y f : radius of the beam cross section, x-coordinate and y-coordinate in the observing plane, respectively. Based on the above equations, numerical calculations of the diffraction pattern are carried out, in which a visible laser was assumed as a probing laser beam. Examples of spatial distributions of the intensity and the phase of the diffraction light pattern are shown in Figures 3(a) and (b), respectively. The spatial profile of diffracted light pattern (I) oscillating at the sound frequency has two peaks, which spatial positions do not change with frequency in the audio-wave or the low frequency ultrasonic band. On the other hand, the temporal phase difference (Φ) between the right and left diffraction patterns oscillating at ω a is π, as shown in Figure 3(b). From Equation (), it is found that the optical signal intensity is theoretically in proportion to the frequency of sound wave. In application to sound measurement, the frequency response of the optophone system is made flat over the whole frequency band by an electric signal processing circuit. If many sounds enter a laser beam from different directions, the diffraction patterns appear at different positions in the observing plane as shown in Figure 4(a). This property can be used to separate sound signals to each incident direction and/or control the sound receiving directivity by using a divided multiple photo-detector, as shown in Figure 4(b), or an optical fiber bundle connected to photo detectors, as shown in Figure 6 in the next chapter. 3. EXPERIMENTAL APPARATUS AND METHOD The experimental apparatus is shown in Figure 5 where a visible diode laser (wavelength 635 nm, output power 5 mw) was used. The radius of laser beam is.5 mm. The optical Fourier transform and setting of light diffraction pattern size are controlled by three lenses in front of the observing plane. The radius of laser beam at detection plane is about.6 mm. Two low-frequency ultrasonic oscillators of 5 khz (diameter 6 mm) and 4 khz (diameter 6 mm) are used as sound sources. Sounds are perpendicularly injected to the laser beam. As shown in Figure 5, the ultrasonic oscillators of 4 khz is attached to metal ring (diameter mm) and rotated from to 36 around the optical axis. The incidence angle is set just above the laser beam. The 4 khz sound source is rotated to clock hand rotation direction. The sound source of 5 khz is fixed at angle of 8 (just below the laser beam) and 6 mm apart from the metal ring position. As the laser

3 Progress In Electromagnetics Research Symposium Proceedings, Taipei, March 5 8, 3 36 (a) (b) Figure 4: Relation between sound incidence direction and diffraction light pattern. (b) Control of directivity by multiple photo detectors. (a) Physical image. Fiber Fiber 3 Fiber 5 Fiber 9 Cross Section Laser Beam Output Signals Optical Fiber Bundle Figure 5: Experimental apparatus. Figure 6: Optical fiber bundle. beam is parallel beam in the sound injection area, the sensitivity is same at two injection positions of 5 khz and 4 khz sounds. A /4 inch electrostatic microphone is used as a monitor of sound pressure level. The sound pressure level at the laser beam position is set 9 db for both 5 khz and 4 khz. The output of photo-detector is input to a preamplifier and a band path filter and finally measured by a FFT analyzer or a digital oscilloscope with a computer. The abstract of optical fiber bundle used in the light detection part of optophone is shown in Figure 6, where 6 fibers of. mm diameter are set on the circle of 3 mm diameter. The fiber is connected to avalanche photodiode module with a FC connecter. 4. EXPERIMENTAL RESULTS Experiment using an optical fiber bundle shown in Figure 6 in optical signal detection part was carried out. The sound source of 5 khz was used and fixed at incidence angle of 8. The result is shown in Figure 7 in which the signal intensities from each fiber are plotted at each fiber position (or angle) on a circle. The signal has the maximum value at fiber No. ( ) and the minimum at fiber No. 5 (9 ). It is found that if a single fiber is used, the bidirectional property is obtained, which is similar to the experimental result using a single photodiode. In the next experiment, the sound source of 5 khz was fixed at incidence angle of 8 and the 4 khz source was fixed at 9. The experimental result is shown in Figure 8. The signal of 4 khz has the maximum value at fiber 5 (9 ) and fiber 3 (7 ) and is nearly zero at fiber ( ) and fiber 9 (8 ). The shape of plotted line is similar to a bidirectional curve. Inversely, the signal of 5 khz has the maximum value at fiber ( ) and fiber 9 (8 ) and is nearly zero at fiber 5 (9 ) and fiber 3 (7 ). By the experimental result described above, it is shown that when the incidence angle difference between two sound waves is about 9, nearly perfect separation of these can be achieved. If the incidence angle difference becomes smaller than 9, the performance becomes a little less good.

4 36 PIERS Proceedings, Taipei, March 5 8, 3 Fiber Fiber Fiber khz 4khz Fiber Figure 7: Output signal intensity of each optical fiber. Figure 8: Output signal intensity of each optical fiber for two sounds with different frequency and different incidence angle. Figure 9: Synthesized directivity by two optical fibers. From a view of directivity control, the bidirectional property of ±4 is obtained in case of using a single fiber. The 6ch fibers positioned on a circle compose a set of sound sensor, each of which has bidirectional directivity and maximum sensitivity at the radius direction (or on the line connecting the center of fiber bundle and the fiber position). Next experiment synthesizing output signals from some fibers was carried out. The optical fibers of No. and No. 5 were used and output electrical signals from these were electrically added by using audio transformers. The sound source of 4 khz was rotated around the laser axis. The output signal intensity for each incidence angle is plotted on Figure 9. It is found that the maximum point of the synthesized directivity is around and the directivity wider than Figure 7 is obtained. From these results, if many fibers output signals from No. to No. 8 are used, we can realize a variable directivity or a hand control sound receiver by synthesizing some of output signals from the 6ch fibers. 5. CONCLUSION The final purpose of this study is to establish the separation measurement method of sounds with different incidence angle and the hand control method of sound receiving directivity. The main result obtained in the present study is as follows: ) Experiments using an optical fiber bundle with 6ch fibers set on a circle of 3 mm diameter as optical detectors to measure the diffraction light generated by sounds with different incidence angle were carried out ) Two sounds injected with incidence angle difference of 9 can be separated by using two fibers set at and 9, respectively. 3) It is possible to control the receiving directivity by synthesizing the output electrical signals from some fibers. ACKNOWLEDGMENT The authors acknowledge the supports of the Grant-in-Aid for Scientific Research (C; No. 5649) from Japan Society for the Promotion of Science. REFERENCES. Goodman, J. W., Introduction to Fourier Optics, 3rd Edition, Roberts & Company Publishers, 5.. Sonoda, Y., Direct detection of acoustic waves by laser light diffraction and proposals of the optophone, Proc. 6th Int. Cong. on Acoust. and 35th Meet. of Acoust. Soc. America, Vol., 47 48, Evans, D. E., M. von Hellermann, and E. Holzhauer, Fourier optics approach to far forward scattering and related refractive index phenomena in laboratory plasmas, Plasma Phys., Vol. 4, , Sonoda, Y., Y. Suetsugu, K. Muraoka, and M. Akazaki, Applications of the Fraunhoferdiffraction method for plasma-wave measurements, Plasma Phys., Vol. 5, 3 3, 983.

5 Progress In Electromagnetics Research Symposium Proceedings, Taipei, March 5 8, Sakoda, T. and Y. Sonoda, Visualization of sound field with uniform phase distribution using laser beam microphone coupled with computerized tomography method, Acoustical Science and Technology, Vol. 9, No. 4, 95 99, Sonoda, Y. and Y. Nakazono, Development of optophone with no diaphragm and application to sound measurement in jet flow, Advances in Acoustics and Vibration, Vol., Article ID 99437, 7 pages,.

Visualization of sound field with uniform phase distribution using laser beam microphone coupled with computerized tomography method

Visualization of sound field with uniform phase distribution using laser beam microphone coupled with computerized tomography method Acoust. Sci. & Tech. 29, 4 (28) #28 The Acoustical Society of Japan Visualization of sound field with uniform phase distribution using laser beam microphone coupled with computerized tomography method

More information

A Guide to Acousto-Optic Modulators

A Guide to Acousto-Optic Modulators A Guide to Acousto-Optic Modulators D. J. McCarron December 7, 2007 1 Introduction Acousto-optic modulators (AOMs) are useful devices which allow the frequency, intensity and direction of a laser beam

More information

Lab 9: The Acousto-Optic Effect

Lab 9: The Acousto-Optic Effect Lab 9: The Acousto-Optic Effect Incoming Laser Beam Travelling Acoustic Wave (longitudinal wave) O A 1st order diffracted laser beam A 1 Introduction qb d O 2qb rarefractions compressions Refer to Appendix

More information

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator. PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

More information

Diffraction of a Circular Aperture

Diffraction of a Circular Aperture Diffraction of a Circular Aperture Diffraction can be understood by considering the wave nature of light. Huygen's principle, illustrated in the image below, states that each point on a propagating wavefront

More information

Projects. Objective To gain hands-on design and measurement experience with real-world applications. Contents

Projects. Objective To gain hands-on design and measurement experience with real-world applications. Contents Projects Contents 9-1 INTRODUCTION...................... 43 9-2 PROJECTS......................... 43 9-2.1 Alarm Radar Sensor................ 43 9-2.2 Microwave FM Communication Link....... 46 9-2.3 Optical

More information

Distributed optical fibre audible frequency sensor

Distributed optical fibre audible frequency sensor Distributed optical fibre audible frequency sensor Ali Masoudi 1, Mohammad Belal 1 and Trevor P. Newson 1 1 ORC, University of Southampton, Southampton, SO17 1BJ, UK ABSTRACT A distributed optical fibre

More information

Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus

Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus Please do not remove this manual from from the lab. It is available at www.cm.ph.bham.ac.uk/y2lab Optics Introduction Optical fibres are widely used for transmitting data at high speeds. In this experiment,

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two radio antennas are 120 m apart on a north-south line. The two antennas radiate in

More information

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 12. Physical Optics: Diffraction, Interference, and Polarization of Light

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 12. Physical Optics: Diffraction, Interference, and Polarization of Light PHYSICS 171 UNIVERSITY PHYSICS LAB II Experiment 12 Physical Optics: Diffraction, Interference, and Polarization of Light Equipment: Supplies: Laser, photometer with optic probe, optical bench, and angular

More information

Verdet Constant Measurement of Olive Oil for Magnetic Field Sensor

Verdet Constant Measurement of Olive Oil for Magnetic Field Sensor International Journal of Advances in Electrical and Electronics Engineering 362 Available online at www.ijaeee.com& www.sestindia.org/volume-ijaeee ISSN: 2319-1112 Verdet Constant Measurement of Olive

More information

Waves - Transverse and Longitudinal Waves

Waves - Transverse and Longitudinal Waves Waves - Transverse and Longitudinal Waves wave may be defined as a periodic disturbance in a medium that carries energy from one point to another. ll waves require a source and a medium of propagation.

More information

OPTICAL FIBERS INTRODUCTION

OPTICAL FIBERS INTRODUCTION OPTICAL FIBERS References: J. Hecht: Understanding Fiber Optics, Ch. 1-3, Prentice Hall N.J. 1999 D. R. Goff: Fiber Optic Reference Guide (2 nd ed.) Focal Press 1999 Projects in Fiber Optics (Applications

More information

Theory From the diffraction pattern to the distribution size

Theory From the diffraction pattern to the distribution size Theory From the diffraction pattern to the distribution size 1- Principle This method is based on diffraction and diffusion phenomenon. To obtain the particle size Fraunhofer and Mie theory are used. When

More information

Agilent AEDB-9140 Series Three Channel Optical Incremental Encoder Modules with Codewheel, 100 CPR to 500 CPR Data Sheet

Agilent AEDB-9140 Series Three Channel Optical Incremental Encoder Modules with Codewheel, 100 CPR to 500 CPR Data Sheet Agilent AEDB-9140 Series Three Channel Optical Incremental Encoder Modules with Codewheel, 100 CPR to 500 CPR Data Sheet Description The AEDB-9140 series are three channel optical incremental encoder modules

More information

PREVIOUS 8 YEARS QUESTIONS (1 mark & 2 marks) 1 mark questions

PREVIOUS 8 YEARS QUESTIONS (1 mark & 2 marks) 1 mark questions 230 PREVIOUS 8 YEARS QUESTIONS (1 mark & 2 marks) 1 mark questions 1. An object is held at the principal focus of a concave lens of focal length f. Where is the image formed? (AISSCE 2008) Ans: That is

More information

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Background theory. 1. Band structure of semiconductors. 2. The theory of operation of a semiconductor (diode)

More information

High-Concentration Submicron Particle Size Distribution by Dynamic Light Scattering

High-Concentration Submicron Particle Size Distribution by Dynamic Light Scattering High-Concentration Submicron Particle Size Distribution by Dynamic Light Scattering Power spectrum development with heterodyne technology advances biotechnology and nanotechnology measurements. M. N. Trainer

More information

2. Do Not use the laser without getting instructions from the demonstrator.

2. Do Not use the laser without getting instructions from the demonstrator. EXPERIMENT 3 Diffraction Pattern Measurements using a Laser Laser Safety The Helium Neon lasers used in this experiment and are of low power (0.5 milliwatts) but the narrow beam of light is still of high

More information

Modelling optical system consisting Top Hat beam shaper and F-Theta Scanner by using physical optics model in VirtualLab Fusion Software

Modelling optical system consisting Top Hat beam shaper and F-Theta Scanner by using physical optics model in VirtualLab Fusion Software Modelling optical system consisting Top Hat beam shaper and F-Theta Scanner by using physical optics model in VirtualLab Fusion Software Authors: HOLO/OR Date: 31/10/2016 Version: 1 Introduction F-Theta

More information

Synthetic Sensing: Proximity / Distance Sensors

Synthetic Sensing: Proximity / Distance Sensors Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For non-contact distance measurement,

More information

Magnetic Field of a Circular Coil Lab 12

Magnetic Field of a Circular Coil Lab 12 HB 11-26-07 Magnetic Field of a Circular Coil Lab 12 1 Magnetic Field of a Circular Coil Lab 12 Equipment- coil apparatus, BK Precision 2120B oscilloscope, Fluke multimeter, Wavetek FG3C function generator,

More information

Thermal Diffusivity, Specific Heat, and Thermal Conductivity of Aluminum Oxide and Pyroceram 9606

Thermal Diffusivity, Specific Heat, and Thermal Conductivity of Aluminum Oxide and Pyroceram 9606 Report on the Thermal Diffusivity, Specific Heat, and Thermal Conductivity of Aluminum Oxide and Pyroceram 9606 This report presents the results of phenol diffusivity, specific heat and calculated thermal

More information

Refractive Index and Dispersion: Prism Spectrometer

Refractive Index and Dispersion: Prism Spectrometer Refractive Index and Dispersion: Prism Spectrometer OBJECTIVES: The purpose of this experiment is to study the phenomenon of dispersion i.e. to determine the variation of refractive index of the glass

More information

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to : PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material

More information

INTERFERENCE OF SOUND WAVES

INTERFERENCE OF SOUND WAVES 1/2016 Sound 1/8 INTERFERENCE OF SOUND WAVES PURPOSE: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves and to observe interference phenomena with ultrasonic sound waves.

More information

EM Waves Practice Problems

EM Waves Practice Problems EM Waves Practice Problems PSI AP Physics B Name Multiple Choice 1. Which of the following theories can explain the bending of waves behind obstacles into shadow region? (A) Particle theory of light (B)

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena. Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric)

More information

P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours)

P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours) INSURANCE SCAM OPTICS - LABORATORY INVESTIGATION P R E A M B L E The original form of the problem is an Experimental Group Research Project, undertaken by students organised into small groups working as

More information

Holographically corrected telescope for high bandwidth optical communications (as appears in Applied Optics Vol. 38, No. 33, , 20 Nov.

Holographically corrected telescope for high bandwidth optical communications (as appears in Applied Optics Vol. 38, No. 33, , 20 Nov. Holographically corrected telescope for high bandwidth optical communications (as appears in Applied Optics Vol. 38, No. 33, 6833-6835, 20 Nov. 1999) Geoff Andersen and R. J. Knize Laser and Optics Research

More information

STANDING WAVES & ACOUSTIC RESONANCE

STANDING WAVES & ACOUSTIC RESONANCE REFERENCES & ACOUSTIC RESONANCE R.H. Randall, An Introduction to Acoustics, (Addison-Wesley, 1951), Sect. 7-1, 7-. A.B. Wood, A Textbook of Sound, (Bell & Sons, 1944), pp.179 et seq. Berkeley Physics Course,

More information

Experiment 4: Refraction and Interference with Microwaves

Experiment 4: Refraction and Interference with Microwaves Experiment 4: Refraction and Interference with Microwaves Introduction Many phenomena whose study comes under the heading of "physical optics" arise from certain integral relationships between the wavelength

More information

hypothesis of Louis de Broglie (1924): particles may have wave-like properties

hypothesis of Louis de Broglie (1924): particles may have wave-like properties Wave properties of particles hypothesis of Louis de Broglie (1924): particles may have wave-like properties note: it took almost 20 years after noting that waves have particle like properties that particles

More information

A Note on the Effects of Broadcast Antenna Gain, Beam Width and Height Above Average Terrain

A Note on the Effects of Broadcast Antenna Gain, Beam Width and Height Above Average Terrain A Note on the Effects of Broadcast Antenna Gain, Beam Width and Height Above Average Terrain John L. Schadler - Director of Antenna Development Dielectric L.L.C. Raymond, ME 30 September 2014 Abstract

More information

Engineering Sciences 151. Electromagnetic Communication Laboratory Assignment 3 Fall Term 1998-99

Engineering Sciences 151. Electromagnetic Communication Laboratory Assignment 3 Fall Term 1998-99 Engineering Sciences 151 Electromagnetic Communication Laboratory Assignment 3 Fall Term 1998-99 WAVE PROPAGATION II: HIGH FREQUENCY SLOTTED LINE AND REFLECTOMETER MEASUREMENTS OBJECTIVES: To build greater

More information

Optics. LD Physics Leaflets. Diffraction Gratings P Photonic experiments Optical Applications. Objects of the experiment.

Optics. LD Physics Leaflets. Diffraction Gratings P Photonic experiments Optical Applications. Objects of the experiment. PJD 2014-12 Optics Photonic experiments Optical Applications LD Physics Leaflets Diffraction Gratings Objects of the experiment Investigation the principle of gratings Measuring wavelength and grating

More information

ENGR 210 Lab 11 Frequency Response of Passive RC Filters

ENGR 210 Lab 11 Frequency Response of Passive RC Filters ENGR 210 Lab 11 Response of Passive RC Filters The objective of this lab is to introduce you to the frequency-dependent nature of the impedance of a capacitor and the impact of that frequency dependence

More information

BCM 6200 - Protein crystallography - I. Crystal symmetry X-ray diffraction Protein crystallization X-ray sources SAXS

BCM 6200 - Protein crystallography - I. Crystal symmetry X-ray diffraction Protein crystallization X-ray sources SAXS BCM 6200 - Protein crystallography - I Crystal symmetry X-ray diffraction Protein crystallization X-ray sources SAXS Elastic X-ray Scattering From classical electrodynamics, the electric field of the electromagnetic

More information

Polarization of Light

Polarization of Light Polarization of Light References Halliday/Resnick/Walker Fundamentals of Physics, Chapter 33, 7 th ed. Wiley 005 PASCO EX997A and EX999 guide sheets (written by Ann Hanks) weight Exercises and weights

More information

1051-232 Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002

1051-232 Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002 05-232 Imaging Systems Laboratory II Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002 Abstract: For designing the optics of an imaging system, one of the main types of tools used today is optical

More information

Christian Huygen Light is a wave, not merely a ray As waves propagate each point on the wavefront produces new wavelets. Wave Nature of Light

Christian Huygen Light is a wave, not merely a ray As waves propagate each point on the wavefront produces new wavelets. Wave Nature of Light Wave Nature of Light Christian Huygen Light is a wave, not merely a ray As waves propagate each point on the wavefront produces new wavelets Chapter 24 Wavelength Changes Wavelength of light changes in

More information

Physics 6C, Summer 2006 Homework 2 Solutions

Physics 6C, Summer 2006 Homework 2 Solutions Physics 6C, Summer 006 Homework Solutions All problems are from the nd edition of Walker. Numerical values are different for each student. Chapter 3 Problems. Figure 3-30 below shows a circuit containing

More information

Using light scattering method to find The surface tension of water

Using light scattering method to find The surface tension of water Experiment (8) Using light scattering method to find The surface tension of water The aim of work: The goals of this experiment are to confirm the relationship between angular frequency and wave vector

More information

Chapter 2 Laser Diode Beam Propagation Basics

Chapter 2 Laser Diode Beam Propagation Basics Chapter 2 Laser Diode Beam Propagation Basics Abstract Laser diode beam propagation characteristics, the collimating and focusing behaviors and the M 2 factor are discussed using equations and graphs.

More information

APPLICATION NOTE AP050830

APPLICATION NOTE AP050830 APPLICATION NOTE AP050830 Selection and use of Ultrasonic Ceramic Transducers Pro-Wave Electronics Corp. E-mail: sales@pro-wave.com.tw URL: http://www.prowave.com.tw The purpose of this application note

More information

Study of the Human Eye Working Principle: An impressive high angular resolution system with simple array detectors

Study of the Human Eye Working Principle: An impressive high angular resolution system with simple array detectors Study of the Human Eye Working Principle: An impressive high angular resolution system with simple array detectors Diego Betancourt and Carlos del Río Antenna Group, Public University of Navarra, Campus

More information

Light as a wave. VCE Physics.com. Light as a wave - 1

Light as a wave. VCE Physics.com. Light as a wave - 1 Light as a wave Huygen s wave theory Newton s corpuscular theory Young s double slit experiment Double slit interference Diffraction Single slit interference The electromagnetic nature of light The electromagnetic

More information

application note Directional Microphone Applications Introduction Directional Hearing Aids

application note Directional Microphone Applications Introduction Directional Hearing Aids APPLICATION NOTE AN-4 Directional Microphone Applications Introduction The inability to understand speech in noisy environments is a significant problem for hearing impaired individuals. An omnidirectional

More information

LASER OPTICAL DISK SET

LASER OPTICAL DISK SET LASER OPTICAL DISK SET LODS01 5 6 7 4 8 3 9 2 10 1 11 1. Description The laser Optical Disk Set includes a Laser Ray Box powered by a low voltage wall-mount power supply, a set of eight ray optics elements

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A single slit forms a diffraction pattern, with the first minimum at an angle of 40 from

More information

Optics. Determining the velocity of light by means of the rotating-mirror method according to Foucault and Michelson. LD Physics Leaflets P5.6.1.

Optics. Determining the velocity of light by means of the rotating-mirror method according to Foucault and Michelson. LD Physics Leaflets P5.6.1. Optics Velocity of light Measurement according to Foucault/Michelson LD Physics Leaflets P5.6.1.1 Determining the velocity of light by means of the rotating-mirror method according to Foucault and Michelson

More information

104 Practice Exam 2-3/21/02

104 Practice Exam 2-3/21/02 104 Practice Exam 2-3/21/02 1. Two electrons are located in a region of space where the magnetic field is zero. Electron A is at rest; and electron B is moving westward with a constant velocity. A non-zero

More information

An Overview of Fiber Optic Technology

An Overview of Fiber Optic Technology Fiber Optic Technology Overview - 1/6 An Overview of Fiber Optic Technology The use of fiber optics in telecommunications and wide area networking has been common for many years, but more recently fiber

More information

Procedure: Geometrical Optics. Theory Refer to your Lab Manual, pages 291 294. Equipment Needed

Procedure: Geometrical Optics. Theory Refer to your Lab Manual, pages 291 294. Equipment Needed Theory Refer to your Lab Manual, pages 291 294. Geometrical Optics Equipment Needed Light Source Ray Table and Base Three-surface Mirror Convex Lens Ruler Optics Bench Cylindrical Lens Concave Lens Rhombus

More information

Sound absorption and acoustic surface impedance

Sound absorption and acoustic surface impedance Sound absorption and acoustic surface impedance CHRISTER HEED SD2165 Stockholm October 2008 Marcus Wallenberg Laboratoriet för Ljud- och Vibrationsforskning Sound absorption and acoustic surface impedance

More information

MICROWAVE OPTICS THE MEASUREMENTS OF THE WAVELENGTH OF THE MICROWAVES BASED ON THE INTERFERENTIAL METHODS.

MICROWAVE OPTICS THE MEASUREMENTS OF THE WAVELENGTH OF THE MICROWAVES BASED ON THE INTERFERENTIAL METHODS. MICROWAVE OPICS HE MEASUREMENS OF HE WAVELENGH OF HE MICROWAVES BASED ON HE INERFERENIAL MEHODS. BASIC HEORY Microwaves belong to the band of very short electromagnetic waves. he wavelengths of the microwaves

More information

Module 13 : Measurements on Fiber Optic Systems

Module 13 : Measurements on Fiber Optic Systems Module 13 : Measurements on Fiber Optic Systems Lecture : Measurements on Fiber Optic Systems Objectives In this lecture you will learn the following Measurements on Fiber Optic Systems Attenuation (Loss)

More information

PHYS 39a Lab 3: Microscope Optics

PHYS 39a Lab 3: Microscope Optics PHYS 39a Lab 3: Microscope Optics Trevor Kafka December 15, 2014 Abstract In this lab task, we sought to use critical illumination and Köhler illumination techniques to view the image of a 1000 lines-per-inch

More information

AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE

AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE Thank you for purchasing your Amplified High Speed Fiber Photodetector. This user s guide will help answer any questions you may have regarding the

More information

Polarization of Light

Polarization of Light Polarization of Light Introduction Light, viewed classically, is a transverse electromagnetic wave. Namely, the underlying oscillation (in this case oscillating electric and magnetic fields) is along directions

More information

Lab Exercise 1: Acoustic Waves

Lab Exercise 1: Acoustic Waves Lab Exercise 1: Acoustic Waves Contents 1-1 PRE-LAB ASSIGNMENT................. 2 1-3.1 Spreading Factor: Spherical Waves........ 2 1-3.2 Interference In 3-D................. 3 1-4 EQUIPMENT........................

More information

Efficiency of a Light Emitting Diode

Efficiency of a Light Emitting Diode PHYSICS THROUGH TEACHING LABORATORY VII Efficiency of a Light Emitting Diode RAJESH B. KHAPARDE AND SMITHA PUTHIYADAN Homi Bhabha Centre for Science Education Tata Institute of Fundamental Research V.

More information

Biophotonics. Basic Microscopy. NPTEL Biophotonics 1

Biophotonics. Basic Microscopy. NPTEL Biophotonics 1 Biophotonics Basic Microscopy NPTEL Biophotonics 1 Overview In this lecture you will learn Elements of a basic microscope Some imaging techniques Keywords: optical microscopy, microscope construction,

More information

Bronx High School of Science Regents Physics

Bronx High School of Science Regents Physics Bronx High School of Science Regents Physics 1. Orange light has a frequency of 5.0 10 14 hertz in a vacuum. What is the wavelength of this light? (A) 1.5 10 23 m (C) 6.0 10 7 m (B) 1.7 10 6 m (D) 2.0

More information

Electrical Resonance

Electrical Resonance Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION

More information

Interferometers. OBJECTIVES To examine the operation of several kinds of interferometers. d sin = n (1)

Interferometers. OBJECTIVES To examine the operation of several kinds of interferometers. d sin = n (1) Interferometers The true worth of an experimenter consists in his pursuing not only what he seeks in his experiment, but also what he did not seek. Claude Bernard (1813-1878) OBJECTIVES To examine the

More information

Optical Communications

Optical Communications Optical Communications Telecommunication Engineering School of Engineering University of Rome La Sapienza Rome, Italy 2005-2006 Lecture #2, May 2 2006 The Optical Communication System BLOCK DIAGRAM OF

More information

Alignement of a ring cavity laser

Alignement of a ring cavity laser Alignement of a ring cavity laser 1 Introduction This manual describes a procedure to align the cavity of our Ti:Sapphire ring laser and its injection with an Argon-Ion pump laser beam. The setup is shown

More information

PHY 171. Homework 5 solutions. (Due by beginning of class on Wednesday, February 8, 2012)

PHY 171. Homework 5 solutions. (Due by beginning of class on Wednesday, February 8, 2012) PHY 171 (Due by beginning of class on Wednesday, February 8, 2012) 1. Consider the figure below which shows four stacked transparent materials. In this figure, light is incident at an angle θ 1 40.1 on

More information

On the beam deflection method applied to ultrasound absorption measurements

On the beam deflection method applied to ultrasound absorption measurements On the beam deflection method applied to ultrasound absorption measurements K. Giese To cite this version: K. Giese. On the beam deflection method applied to ultrasound absorption measurements. Journal

More information

THE FIBRE-OPTICS TRAINER MANUAL

THE FIBRE-OPTICS TRAINER MANUAL THE FIBRE-OPTICS TRAINER MANUAL THE FIBRE-OPTICS TRAINER MANUAL THE FIBRE-OPTICS TRAINER CONTAINS: TRANSMITTER UNIT RECEIVER UNIT 5m. LENGTH OF TERMINATED OPTICAL CABLE INSTRUCTION MANUAL (THIS BOOK) CARRYING

More information

not to be republished NCERT WAVE OPTICS Chapter Ten MCQ I

not to be republished NCERT WAVE OPTICS Chapter Ten MCQ I Chapter Ten WAVE OTICS MCQ I 10.1 Consider a light beam incident from air to a glass slab at Brewster s angle as shown in Fig. 10.1. A polaroid is placed in the path of the emergent ray at point and rotated

More information

FYSP 103/K2. FRAUNHOFER S DIFFRACTION

FYSP 103/K2. FRAUNHOFER S DIFFRACTION FYSP 103/K2. FRAUNHOFER S DIFFRACTION Goals for the measurement To illustrate the phenomena related to diffraction and interference with different slit systems To deepen the understanding of the theory

More information

An introduction to synchronous detection. A.Platil

An introduction to synchronous detection. A.Platil An introduction to synchronous detection A.Platil Overview: Properties of SD Fourier transform and spectra General synchronous detector (AKA lock-in amplifier, syn. demodulator, Phase Sensitive Detector)

More information

AS COMPETITION PAPER 2008

AS COMPETITION PAPER 2008 AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Chapter 20. Traveling Waves You may not realize it, but you are surrounded by waves. The waviness of a water wave is readily apparent, from the ripples on a pond to ocean waves large enough to surf. It

More information

PHYS 2426 Engineering Physics II (Revised July 7, 2011) AC CIRCUITS: RLC SERIES CIRCUIT

PHYS 2426 Engineering Physics II (Revised July 7, 2011) AC CIRCUITS: RLC SERIES CIRCUIT PHYS 2426 Engineering Physics II (Revised July 7, 2011) AC CIRCUITS: RLC SERIES CIRCUIT INTRODUCTION The objective of this experiment is to study the behavior of an RLC series circuit subject to an AC

More information

TopHat StableTop Beamshaper

TopHat StableTop Beamshaper TopHat StableTop Beamshaper The top-hat beam shaper is a diffractive optical element (DOE) used to transform a near-gaussian incident laser beam into a uniform-intensity spot of either round, rectangular,

More information

arxiv:astro-ph/0509450 v1 15 Sep 2005

arxiv:astro-ph/0509450 v1 15 Sep 2005 arxiv:astro-ph/0509450 v1 15 Sep 2005 TESTING THERMO-ACOUSTIC SOUND GENERATION IN WATER WITH PROTON AND LASER BEAMS K. GRAF, G. ANTON, J. HÖSSL, A. KAPPES, T. KARG, U. KATZ, R. LAHMANN, C. NAUMANN, K.

More information

Examples of Uniform EM Plane Waves

Examples of Uniform EM Plane Waves Examples of Uniform EM Plane Waves Outline Reminder of Wave Equation Reminder of Relation Between E & H Energy Transported by EM Waves (Poynting Vector) Examples of Energy Transport by EM Waves 1 Coupling

More information

INTRODUCTION FIGURE 1 1. Cosmic Rays. Gamma Rays. X-Rays. Ultraviolet Violet Blue Green Yellow Orange Red Infrared. Ultraviolet.

INTRODUCTION FIGURE 1 1. Cosmic Rays. Gamma Rays. X-Rays. Ultraviolet Violet Blue Green Yellow Orange Red Infrared. Ultraviolet. INTRODUCTION Fibre optics behave quite different to metal cables. The concept of information transmission is the same though. We need to take a "carrier" signal, identify a signal parameter we can modulate,

More information

Note it they ancients had known Newton s first law, the retrograde motion of the planets would have told them that the Earth was moving.

Note it they ancients had known Newton s first law, the retrograde motion of the planets would have told them that the Earth was moving. 6/24 Discussion of the first law. The first law appears to be contained within the second and it is. Why state it? Newton s laws are not always valid they are not valid in, say, an accelerating automobile.

More information

Diffraction of Laser Light

Diffraction of Laser Light Diffraction of Laser Light No Prelab Introduction The laser is a unique light source because its light is coherent and monochromatic. Coherent light is made up of waves, which are all in phase. Monochromatic

More information

Introduction to Spectroscopy.

Introduction to Spectroscopy. Introduction to Spectroscopy. ARCHIMEJ TECHNOLOGY The SPECTROSCOPY 2.0 Company To understand what the core of our project is about, you need to grasp some basic notions of optical spectroscopy. This lesson

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 660-Hz tone has an intensity level of 54 db. The velocity of sound in air is 345 m/s.

More information

Blackbody Radiation References INTRODUCTION

Blackbody Radiation References INTRODUCTION Blackbody Radiation References 1) R.A. Serway, R.J. Beichner: Physics for Scientists and Engineers with Modern Physics, 5 th Edition, Vol. 2, Ch.40, Saunders College Publishing (A Division of Harcourt

More information

EXPERIMENT 4. Microwave Experiments. Introduction. Experimental Procedure. Part 1 : Double Slit

EXPERIMENT 4. Microwave Experiments. Introduction. Experimental Procedure. Part 1 : Double Slit EXPERIMENT 4 Microwave Experiments Introduction Microwaves are electromagnetic radiation in the centimeter range of wavelengths. As such, they, like light, will exhibit typical wave properties like interference

More information

Imaging techniques with refractive beam shaping optics

Imaging techniques with refractive beam shaping optics Imaging techniques with refractive beam shaping optics Alexander Laskin, Vadim Laskin AdlOptica GmbH, Rudower Chaussee 29, 12489 Berlin, Germany ABSTRACT Applying of the refractive beam shapers in real

More information

PHYS-2020: General Physics II Course Lecture Notes Section XIII

PHYS-2020: General Physics II Course Lecture Notes Section XIII PHYS-2020: General Physics II Course Lecture Notes Section XIII Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and

More information

MICROSURGICAL Nd:YAG LASER USED IN OPHTHALMOLOGY

MICROSURGICAL Nd:YAG LASER USED IN OPHTHALMOLOGY MICROSURGICAL Nd:YAG LASER USED IN OPHTHALMOLOGY D. SAVASTRU 1, S. MICLOS 1, C. COTIRLAN 1, MARINA MUSTATA 1, ESOFINA RISTICI 1, TEODORA BREZEANU 1, SIMONA DONTU 1, M. RUSU 1, V. SAVU 1, A. STEFANESCU

More information

Optical Interference and Diffraction Laboratory: a Practical Guide

Optical Interference and Diffraction Laboratory: a Practical Guide Optical Interference and Diffraction Laboratory: a Practical Guide Authors: Amparo Pons, Universitat de València, Dept. of Optics, Spain amparo.pons-marti@uv.es Juan C. Barreiro, Universitat de València,

More information

Holography 1 HOLOGRAPHY

Holography 1 HOLOGRAPHY Holography 1 HOLOGRAPHY Introduction and Background The aesthetic appeal and commercial usefulness of holography are both related to the ability of a hologram to store a three-dimensional image. Unlike

More information

Sound Waves. PHYS102 Previous Exam Problems CHAPTER. Sound waves Interference of sound waves Intensity & level Resonance in tubes Doppler effect

Sound Waves. PHYS102 Previous Exam Problems CHAPTER. Sound waves Interference of sound waves Intensity & level Resonance in tubes Doppler effect PHYS102 Previous Exam Problems CHAPTER 17 Sound Waves Sound waves Interference of sound waves Intensity & level Resonance in tubes Doppler effect If the speed of sound in air is not given in the problem,

More information

APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS

APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS Selection and use of Ultrasonic Ceramic Transducers The purpose of this application note is to aid the user in the selection and application of the Ultrasonic

More information

PHYS2090 OPTICAL PHYSICS Laboratory Fresnel Zone Plate

PHYS2090 OPTICAL PHYSICS Laboratory Fresnel Zone Plate PHYS2090 OPTICAL PHYSICS Laboratory Fresnel Zone Plate References Hecht Optics, Addison-Wesley Smith & King, Optics and Photonics: An Introduction, Wiley Higbie, Fresnel Zone Plate: Anomalous foci, American

More information

The Role of Electric Polarization in Nonlinear optics

The Role of Electric Polarization in Nonlinear optics The Role of Electric Polarization in Nonlinear optics Sumith Doluweera Department of Physics University of Cincinnati Cincinnati, Ohio 45221 Abstract Nonlinear optics became a very active field of research

More information

Sensor Accessories. EasySense Laser module with Optical slides. DS 058 No 3. (Product No. 3285)

Sensor Accessories. EasySense Laser module with Optical slides. DS 058 No 3. (Product No. 3285) Sensor Accessories EasySense Laser module with Optical slides (Product No. 3285) Data Harvest Group Ltd. 1 Eden Court, Leighton Buzzard, Beds, LU7 4FY Tel: 01525 373666 Fax: 01525 851638 e-mail: sales@data-harvest.co.uk

More information

Limiting factors in fiber optic transmissions

Limiting factors in fiber optic transmissions Limiting factors in fiber optic transmissions Sergiusz Patela, Dr Sc Room I/48, Th. 13:00-16:20, Fri. 9:20-10:50 sergiusz.patela@pwr.wroc.pl eportal.pwr.wroc.pl Copying and processing permitted for noncommercial

More information

PHYS 2212L - Principles of Physics Laboratory II

PHYS 2212L - Principles of Physics Laboratory II PHYS 2212L - Principles of Physics Laboratory II Laboratory Advanced Sheet Diffraction 1. Objectives. The objectives of this laboratory are a. To be able use a diffraction grating to measure the wavelength

More information

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007 PUMPED Nd:YAG LASER Last Revision: August 21, 2007 QUESTION TO BE INVESTIGATED: How can an efficient atomic transition laser be constructed and characterized? INTRODUCTION: This lab exercise will allow

More information