Lecture 3: Fibre Optics

Size: px
Start display at page:

Download "Lecture 3: Fibre Optics"

Transcription

1 Lecture 3: Fibre Optics Lecture aims to explain: 1. Fibre applications in telecommunications 2. Principle of operation 3. Single- and multi-mode fibres 4. Light losses in fibres Fibre is a transparent cylinder made of a dielectric. Most common material used in fibres is fused silica (amorphous SiO 2 )

2 Nobel Prize for Fibre Optics Nobel Prize for Physics 2009 Sir Charles K. Kao for "groundbreaking achievements concerning the transmission of light in fibers for optical communication Work was mainly done at Standard Telecommunication Laboratories (STL) in Harlow, England in 1960s, with groundbreaking predictions for use of glass fibres for telecommunications in 1966

3 Applications in telecommunications

4 Information encoded using light Light has very high frequency: f 15 = c / λ 10 Hz About more information can be transmitted than by microwave Very short light pulses can be used to transmit bits of information Information can be encoded using wavelength (or colour) Multiplexing: use of single pathway to transmit simultaneously several signals which nonetheless retain their individuality 1970, Corning Glass Works, first fibre 22 April 1977, first live telephone traffic through fiber optics 6 Mbit/s at 0.8 µm. The second generation: early 1980s, 1.3 µm. By 1987 rates of up to 1.7 Gb/s, repeater spacing up to 50 km. The first transatlantic telephone cable with optical fibre in Third- and fourth-generation in 1990s and 2000s: at 1.55 µm, losses only about 0.2 db/km. Bit rate of 10 Tb/s was reached by Repeaters at 100 km and more.

5 Advantages of fibres 1. Low-loss transmission 2. High information carrying capacity 3. Small size and weight 4. Immunity to electro-magnetic interference (bringing unparalleled signal security), no cross-talk between parallel fibres, can be installed in dense areas 5. Abundant availability of the required raw material (sand) Other major applications: Medical applications (endoscopes etc) Industrial application (e.g. as probes)

6 Principle of operation

7 Total internal reflection in fibres n c n o Fibre: transparent cylinder of refractive index n f imbedded in a material of refractive index n c n f θ p θ i If we consider a ray travelling in the plane containing the optical axis then it will remain constrained as long as: cosθ p n n c f Role of cladding: Cladding provides medium with lower n and protects from frustrated total internal reflection e.g. from fibre touching, dust or moisture on the surface

8

9 Single and multi-mode fibres

10 Fibre modes y d k θ p n f z For the wave to propagate in the fibre, electromagnetic wave theory requires waves to interfere constructively Allowed angles of propagation inside the fibre: sinθ = p p λ 2dn f The lowest order mode is p=0 and is along the fibre axis. The highest order is near θ c.

11 Different types of multi-mode fibres Typical sizes 50µm Step-index fibres: abrupt change in material refractive index Disadvantage: Dispersion Graded-index fibres: a gradual decrease of the refractive index towards the cladding. Often by a parabola law Advantage: serpentine modes travel similar time to the central mode, since it is slower (larger n)

12 Single mode fibre If for the mode with p=1 θ 1 is greater than the critical angle for the total internal reflection θ c then it cannot propagate, only the p=0 mode will. This is the case for a single mode fibre The condition for single mode propagation d < 2 λ 2 2 n f nc To generalise a fibre will carry modes 0,1,2 p-1 (that is, p modes) if d < pλ 2 2 / 2 n f nc

13 Light losses in fibres

14 Attenuation in silica fibres Ultraviolet range: electronic absorption Infrared range: lattice vibrations (phonons) Transparent regions at 1.3 and 1.55 µm Losses due to Rayleigh scattering ~1/λ 4 and water-related absorption (max at 1.38µm). Additional losses due to imperfections and sharp bends Minimum loss (attenuation) ~0.1dB/km at 1.55 micron (1550nm): 100km before reamplification (10 times attenuation) db = 10 log10 ( ) P out P in

15 EXAMPLE 3.1: Single mode fibre Calculate the diameter of a single mode fibre with n f =1.62 and n c =1.52 operating at λ=1.55µm EXAMPLE 3.2: Multi-mode fibre A glass fibre with n f = 1.52 and n c = 1.50 and a diameter d = 1.8 micron operates with light of wavelength 1.3 micron. (i) What is the highest order mode that can propagate? (ii)what is the highest order of the mode for wavelength in the visible red region? (iii) What is the external angle of acceptance corresponding to the modes with the highest numbers in (i) and (ii) EXAMPLE 3.3: Fibre design Design a fibre enabling propagation of only two lowest modes at the wavelength of 1.55 micron using glass with low dispersion and n f = 1.45 for the fibre core.

16

What are Fibre Optics?

What are Fibre Optics? Fibre Optics Fibre Optics? Fibre optics (optical fibres) are the guiding channels through which light energy propagates. These are long, thin strands of very pure glass about the diameter of a human hair

More information

INTRODUCTION FIGURE 1 1. Cosmic Rays. Gamma Rays. X-Rays. Ultraviolet Violet Blue Green Yellow Orange Red Infrared. Ultraviolet.

INTRODUCTION FIGURE 1 1. Cosmic Rays. Gamma Rays. X-Rays. Ultraviolet Violet Blue Green Yellow Orange Red Infrared. Ultraviolet. INTRODUCTION Fibre optics behave quite different to metal cables. The concept of information transmission is the same though. We need to take a "carrier" signal, identify a signal parameter we can modulate,

More information

GLOBAL COLLEGE OF ENGINEERING &TECHNOLOGY: YSR DIST. Unit VII Fiber Optics Engineering Physics

GLOBAL COLLEGE OF ENGINEERING &TECHNOLOGY: YSR DIST. Unit VII Fiber Optics Engineering Physics Introduction Fiber optics deals with the light propagation through thin glass fibers. Fiber optics plays an important role in the field of communication to transmit voice, television and digital data signals

More information

Limiting factors in fiber optic transmissions

Limiting factors in fiber optic transmissions Limiting factors in fiber optic transmissions Sergiusz Patela, Dr Sc Room I/48, Th. 13:00-16:20, Fri. 9:20-10:50 sergiusz.patela@pwr.wroc.pl eportal.pwr.wroc.pl Copying and processing permitted for noncommercial

More information

Fiber Optics: Fiber Basics

Fiber Optics: Fiber Basics Photonics Technical Note # 21 Fiber Optics Fiber Optics: Fiber Basics Optical fibers are circular dielectric wave-guides that can transport optical energy and information. They have a central core surrounded

More information

Optical Fibers Fiber Optic Cables Indoor/Outdoor

Optical Fibers Fiber Optic Cables Indoor/Outdoor presents Optical Fibers Fiber Optic Cables Indoor/Outdoor Content Optical fiber function, types optical effects applications production of optical fibre Cable - general types Indoor Indoor / outdoor Outdoor

More information

Optical fiber basics in a nutshell

Optical fiber basics in a nutshell Optical fiber basics in a nutshell Nuphar Lipkin, Lambda Crossing, Israel Talk outline (a taste of): (Late 70-s: 1 st phone lines, 1988: 1 st TAT, now: FTTH) Optical communication systems- basic concepts,

More information

The Conversion Technology Experts. Fiber Optics Basics

The Conversion Technology Experts. Fiber Optics Basics The Conversion Technology Experts Fiber Optics Basics Introduction Fiber optic technology is simply the use of light to transmit data. The general use of fiber optics did not begin until the 1970s. Robert

More information

Signal directionality Lower frequency signals are omnidirectional Higher frequency signals can be focused in a directional beam

Signal directionality Lower frequency signals are omnidirectional Higher frequency signals can be focused in a directional beam Transmission Media Transmission medium Physical path between transmitter and receiver May be guided (wired) or unguided (wireless) Communication achieved by using em waves Characteristics and quality of

More information

Fiber Optics: Engineering from Global to Nanometer Dimensions

Fiber Optics: Engineering from Global to Nanometer Dimensions Fiber Optics: Engineering from Global to Nanometer Dimensions Prof. Craig Armiento Fall 2003 1 Optical Fiber Communications What is it? Transmission of information using light over an optical fiber Why

More information

Fiber optic communication

Fiber optic communication Fiber optic communication Fiber optic communication Outline Introduction Properties of single- and multi-mode fiber Optical fiber manufacture Optical network concepts Robert R. McLeod, University of Colorado

More information

Module 13 : Measurements on Fiber Optic Systems

Module 13 : Measurements on Fiber Optic Systems Module 13 : Measurements on Fiber Optic Systems Lecture : Measurements on Fiber Optic Systems Objectives In this lecture you will learn the following Measurements on Fiber Optic Systems Attenuation (Loss)

More information

Optical Communications

Optical Communications Optical Communications Telecommunication Engineering School of Engineering University of Rome La Sapienza Rome, Italy 2005-2006 Lecture #2, May 2 2006 The Optical Communication System BLOCK DIAGRAM OF

More information

SINGLEMODE OR MULTIMODE FIBER OPTIC PATCHCORDS

SINGLEMODE OR MULTIMODE FIBER OPTIC PATCHCORDS Features: SINGLEMODE OR MULTIMODE FIBER OPTIC PATCHCORDS Low insertion loss < 0.2 db Excellent repeatability FC/PC, SC, ST, LC, MU, E2000 termination available Custom ferrule termination available Designed

More information

Simulation of Gaussian Pulses Propagation Through Single Mode Optical Fiber Using MATLAB . MATLAB

Simulation of Gaussian Pulses Propagation Through Single Mode Optical Fiber Using MATLAB . MATLAB Iraqi Journal of Science, 213, Vol.4, No.3, pp.61-66 Simulation of Gaussian Pulses Propagation Through Single Mode Optical Fiber Using MATLAB Salah Al Deen Adnan Taha *, Mehdi M. Shellal, and Ahmed Chyad

More information

Different Types of Dispersions in an Optical Fiber

Different Types of Dispersions in an Optical Fiber International Journal of Scientific and Research Publications, Volume 2, Issue 12, December 2012 1 Different Types of Dispersions in an Optical Fiber N.Ravi Teja, M.Aneesh Babu, T.R.S.Prasad, T.Ravi B.tech

More information

Waves - Transverse and Longitudinal Waves

Waves - Transverse and Longitudinal Waves Waves - Transverse and Longitudinal Waves wave may be defined as a periodic disturbance in a medium that carries energy from one point to another. ll waves require a source and a medium of propagation.

More information

OPTICAL FIBER CABLES

OPTICAL FIBER CABLES OPTICAL FIBER CABLES CONTENTS INTRODUCTION QUALITY ASSURANCE RECOMMENDED ORDERING PARAMETERS GENERALITIES :. Advantage. General Description.. Construction.. Principle TYPICAL SPECIFICATIONS OF OPTICAL

More information

FIBER OPTIC COMMUNICATIONS: TECHNO-ECONOMICS

FIBER OPTIC COMMUNICATIONS: TECHNO-ECONOMICS FIBER OPTIC COMMUNICATIONS: TECHNO-ECONOMICS Balaji Srinivasan and Anil Prabhakar Department of Electrical Engineering Indian Institute of Technology Madras Adyar, Chennai 600 036. India. Keywords: Optical

More information

Antennas & Propagation. CS 6710 Spring 2010 Rajmohan Rajaraman

Antennas & Propagation. CS 6710 Spring 2010 Rajmohan Rajaraman Antennas & Propagation CS 6710 Spring 2010 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception

More information

Optical Fiber. Smart cabling: constructing a cost-effective, reliable and upgradeable cable infrastructure for your enterprise network

Optical Fiber. Smart cabling: constructing a cost-effective, reliable and upgradeable cable infrastructure for your enterprise network Optical Fiber Smart cabling: constructing a cost-effective, reliable and upgradeable cable infrastructure for your enterprise network Carl Roberts robertsc@corning.com Cabling considerations for DCs and

More information

Data Transmission. Raj Jain. Professor of CIS. The Ohio State University. Columbus, OH 43210 Jain@ACM.Org http://www.cis.ohio-state.

Data Transmission. Raj Jain. Professor of CIS. The Ohio State University. Columbus, OH 43210 Jain@ACM.Org http://www.cis.ohio-state. Data Transmission Professor of CIS Columbus, OH 43210 Jain@ACM.Org http://www.cis.ohio-state.edu/~jain/ 2-1 Overview Time Domain and Frequency Domain Bit, Hertz Decibels Data vs Signal Attenuation, Delay

More information

Measuring of optical output and attenuation

Measuring of optical output and attenuation Measuring of optical output and attenuation THEORY Measuring of optical output is the fundamental part of measuring in optoelectronics. The importance of an optical power meter can be compared to an ammeter

More information

Attenuation: Bending Loss

Attenuation: Bending Loss Consequences of Stress Optical Communications Systems Stress Bending Loss and Reliability in Optical Fibres Increased Loss in the Fibre Increased Probability of Failure Bending Loss in Fibres At a bend

More information

Waves Sound and Light

Waves Sound and Light Waves Sound and Light r2 c:\files\courses\1710\spr12\wavetrans.doc Ron Robertson The Nature of Waves Waves are a type of energy transmission that results from a periodic disturbance (vibration). They are

More information

Fiber Optic Specifications

Fiber Optic Specifications Fiber Optic Specifications All Fiber Optic shall be Corning Altos Single Mode OS1 Outdoor Loose Tube Gel Free Cable Corning Fiber Products only will be accepted and no substitutions or alternates will

More information

FIBER OPTIC COMMUNICATIONS. Optical Fibers

FIBER OPTIC COMMUNICATIONS. Optical Fibers FIBER OPTIC COMMUNICATIONS Optical Fibers Fiber optics (optical fibers) are long, thin strands of very pure glass about the size of a human hair. They are arranged in bundles called optical cables and

More information

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak FIBER OPTIC COMMUNICATIONS Optical Fibers Fiber optics (optical fibers) are long, thin strands of very pure glass about the size of a human hair. They are arranged in bundles called optical cables and

More information

1. Basics of LASER Physics

1. Basics of LASER Physics 1. Basics of LASER Physics Dr. Sebastian Domsch (Dipl.-Phys.) Computer Assisted Clinical Medicine Medical Faculty Mannheim Heidelberg University Theodor-Kutzer-Ufer 1-3 D-68167 Mannheim, Germany sebastian.domsch@medma.uni-heidelberg.de

More information

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with

More information

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to : PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material

More information

OPTICAL FIBERS INTRODUCTION

OPTICAL FIBERS INTRODUCTION OPTICAL FIBERS References: J. Hecht: Understanding Fiber Optics, Ch. 1-3, Prentice Hall N.J. 1999 D. R. Goff: Fiber Optic Reference Guide (2 nd ed.) Focal Press 1999 Projects in Fiber Optics (Applications

More information

Fiber Optic Training Guide By Sarkis Abrahamian

Fiber Optic Training Guide By Sarkis Abrahamian Fiber Optic Training Guide By Sarkis Abrahamian Copyright 2006 All rights reserved. No part of this publication may be reproduced without the express written permission of Evertz Microsystems Ltd. Introduction

More information

Designing Fiber Optic Systems David Strachan

Designing Fiber Optic Systems David Strachan Designing Fiber Optic Systems David Strachan Everyone knows that fiber optics can carry a huge amount of data. There are more benefits to using fiber optics in broadcast applications than you might realize.

More information

and LP 11 are illustrated at right.

and LP 11 are illustrated at right. Fiber Basics Optical fibers are circular dielectric waveguides that can transport optical energy and information. They have a central core surrounded by a concentric cladding with slightly lower (by 1%)

More information

Lecture 5. Transmission Media

Lecture 5. Transmission Media Two main groups: Lecture 5 Transmission Media -Wire based media (hardwire, or guided), either : -electric, like twisted pair cable TP, coaxial cable -optic, like fiber optics -Wireless (softwire, or unguided),

More information

Electromagnetic Radiation (EMR) and Remote Sensing

Electromagnetic Radiation (EMR) and Remote Sensing Electromagnetic Radiation (EMR) and Remote Sensing 1 Atmosphere Anything missing in between? Electromagnetic Radiation (EMR) is radiated by atomic particles at the source (the Sun), propagates through

More information

Service Description blizznetdarkfiber

Service Description blizznetdarkfiber Service Description blizznetdarkfiber Version: 2.1 Inhalt: 1. About Wien Energie and blizznet... 1 2. Basic Services... 1 3. Prerequisites... 1 1.1. Physical availability... 1 1.2. Construction prerequisites/space

More information

Introduction to Optical Link Design

Introduction to Optical Link Design University of Cyprus Πανεπιστήµιο Κύπρου 1 Introduction to Optical Link Design Stavros Iezekiel Department of Electrical and Computer Engineering University of Cyprus HMY 445 Lecture 08 Fall Semester 2014

More information

After a wave passes through a medium, how does the position of that medium compare to its original position?

After a wave passes through a medium, how does the position of that medium compare to its original position? Light Waves Test Question Bank Standard/Advanced Name: Question 1 (1 point) The electromagnetic waves with the highest frequencies are called A. radio waves. B. gamma rays. C. X-rays. D. visible light.

More information

The Structure and Physics of an Optical Fiber

The Structure and Physics of an Optical Fiber 5 Optical Fibers Takis Hadjifotiou Telecommunications Consultant Introduction Optical fiber communications have come a long way since Kao and Hockman (then at the Standard Telecommunications Laboratories

More information

Multiplexing. Multiplexing is the set of techniques that allows the simultaneous transmission of multiple signals across a single physical medium.

Multiplexing. Multiplexing is the set of techniques that allows the simultaneous transmission of multiple signals across a single physical medium. Multiplexing Multiplexing is the set of techniques that allows the simultaneous transmission of multiple signals across a single physical medium. The following two factors in data communications lead to

More information

Radiation-Resistant Single-Mode Optical Fibers

Radiation-Resistant Single-Mode Optical Fibers Radiation-Resistant Single-Mode Optical Fibers Kazuhiko Aikawa, 1 Katsuaki Izoe, 1 Naoki Shamoto, 1 Manabu Kudoh, 1 and Takashi Tsumanuma 1 Loss of silica-based optical fibers increases when they are exposed

More information

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What

More information

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly

More information

TELECOMMUNICATION SYSTEMS AND TECHNOLOGIES Vol. I -Optical Fibers - Atousa Vali Sichani and Hussein T. Mouftah

TELECOMMUNICATION SYSTEMS AND TECHNOLOGIES Vol. I -Optical Fibers - Atousa Vali Sichani and Hussein T. Mouftah OPTICAL FIBERS Atousa Vali Sichani and Hussein T. University of Ottawa, Ontario, Canada Keywords: attenuation, bandwidth, data transmission, dispersion, frequency, modulation, multiplexing. Contents 1.

More information

OFS AllWave Zero Water Peak (ZWP) single-mode

OFS AllWave Zero Water Peak (ZWP) single-mode The New Standard for Single-Mode Fiber Product Description OFS AllWave Zero Water Peak (ZWP) single-mode optical fiber is the industry s first full-spectrum fiber designed for optical transmission systems

More information

Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus

Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus Please do not remove this manual from from the lab. It is available at www.cm.ph.bham.ac.uk/y2lab Optics Introduction Optical fibres are widely used for transmitting data at high speeds. In this experiment,

More information

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,

More information

Attaching the PA-A1-ATM Interface Cables

Attaching the PA-A1-ATM Interface Cables CHAPTER 4 Attaching the PA-A1-ATM Interface Cables To continue your PA-A1-ATM port adapter installation, you must attach the port adapter cables. The instructions that follow apply to all supported platforms.

More information

Optical Fibres...Seeing the Light

Optical Fibres...Seeing the Light http://library.thinkquest.org/c006694f/optical%20fibres/homepage.htm Optical Fibres...Seeing the Light Fibre optics is one of the most interesting and current fields of Physics today. It is the backbone

More information

The following terms are defined within the context of the fiber optic industry

The following terms are defined within the context of the fiber optic industry The following terms are defined within the context of the fiber optic industry Adapter A mechanical media termination device designed to align and join fiber optic connectors. Often referred to as coupling,

More information

Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B

Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B CSE 3461 / 5461: Computer Networking & Internet Technologies Data Transmission Presentation B Kannan Srinivasan 08/30/2012 Data Communications Model Figure 1.2 Studying Assignment: 3.1-3.4, 4.1 Presentation

More information

Acousto-optic modulator

Acousto-optic modulator 1 of 3 Acousto-optic modulator F An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency).

More information

COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION

COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION 2011(2): WAVES Doppler radar can determine the speed and direction of a moving car. Pulses of extremely high frequency radio waves are sent out in a narrow

More information

Preview of Period 3: Electromagnetic Waves Radiant Energy II

Preview of Period 3: Electromagnetic Waves Radiant Energy II Preview of Period 3: Electromagnetic Waves Radiant Energy II 3.1 Radiant Energy from the Sun How is light reflected and transmitted? What is polarized light? 3.2 Energy Transfer with Radiant Energy How

More information

A Guide to Acousto-Optic Modulators

A Guide to Acousto-Optic Modulators A Guide to Acousto-Optic Modulators D. J. McCarron December 7, 2007 1 Introduction Acousto-optic modulators (AOMs) are useful devices which allow the frequency, intensity and direction of a laser beam

More information

How To Read A Fiber Optic Sensor

How To Read A Fiber Optic Sensor 2572-17 Winter College on Optics: Fundamentals of Photonics - Theory, Devices and Applications 10-21 February 2014 Optical Fiber Sensors Basic Principles Scuola Superiore Sant'Anna Pisa Italy Optical Fiber

More information

Plastic Optical Fiber for In-Home communication systems

Plastic Optical Fiber for In-Home communication systems Plastic Optical Fiber for In-Home communication systems Davide Visani 29 October 2010 Bologna E-mail: davide.visani3@unibo.it Summary Reason for Fiber in the Home (FITH) FITH scenario Comparison of CAT5

More information

Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications

Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications Saulius Marcinkevičius Optics, ICT, KTH 1 Outline Optical near field. Principle of scanning near field optical microscope

More information

Explanation of Reflection Features in Optical Fiber as Sometimes Observed in OTDR Measurement Traces

Explanation of Reflection Features in Optical Fiber as Sometimes Observed in OTDR Measurement Traces Explanation of Reflection Features in Optical Fiber as Sometimes Observed in OTDR Measurement Traces WP1281 Issued: November 2015 Supersedes: 2012 Author: Dr. Russell Ellis ISO 9001 Registered Background

More information

Fundamentals of Optical Communications

Fundamentals of Optical Communications University of Applied Science Departement of Electrical Eng. and Computer Science Fundamentals of Optical Communications Referent: Prof. Dr.-Eng. habilitas Steffen Lochmann S.Lochmann@gmx.net www.prof-lochmannde

More information

Cabling & Test Considerations for 10 Gigabit Ethernet LAN

Cabling & Test Considerations for 10 Gigabit Ethernet LAN Introduction Current communication data rates in local networks range from 10/100 megabits per second (Mbps) in Ethernet to 1 gigabit per second (Gbps) in fiber distributed data interface (FDDI) and Gigabit

More information

Removing the Mystery from OTDR Measurements. Keith Foord Product Manager Greenlee Communications

Removing the Mystery from OTDR Measurements. Keith Foord Product Manager Greenlee Communications Removing the Mystery from OTDR Measurements Keith Foord Product Manager Greenlee Communications Why an OTDR? Terminology Theory Standards Key specifications Trade-offs Cleaning and Inspection Measurements

More information

Cisco - Calculating the Maximum Attenuation for Optical Fiber Links

Cisco - Calculating the Maximum Attenuation for Optical Fiber Links Page 1 of 5 Calculating the Maximum Attenuation for Optical Fiber Links Document ID: 27042 Contents Introduction Prerequisites Requirements Components Used Conventions What is Attenuation? Wavelength Estimate

More information

Optical transmission systems over Plastic Optical Fiber (POF) at high bit rate

Optical transmission systems over Plastic Optical Fiber (POF) at high bit rate Optical transmission systems over Plastic Optical Fiber (POF) at high bit rate Politecnico di Torino, 13 Sept. 2007 Daniel Cárdenas OptCom Group Photonlab Dipartimento di Elettronica Politecnico di Torino

More information

OPTICAL FIBER COMMUNICATION

OPTICAL FIBER COMMUNICATION OPTICAL FIBER COMMUNICATION Zafar Yasin OUTLINE - Introduction about Optical Fibers. - Main Characteristics of Fiber Optics Communication System. - Light propagation in an Optical Fiber. - Mode Analysis

More information

Integrated Photonic. Electronic. Optics. Optoelettronics. Integrated Photonic - G. Breglio L1. Quantum Mechanics Materials Science Nano/Bio-photonic

Integrated Photonic. Electronic. Optics. Optoelettronics. Integrated Photonic - G. Breglio L1. Quantum Mechanics Materials Science Nano/Bio-photonic Integrated Photonic Quantum Mechanics Materials Science Nano/Bio-photonic Optoelettronics Optics Electronic Applications of Optoelectronic Systems Solar cells OLED display LED Laser diodes Flexible OLED

More information

Optical Fiber: The New Era of High Speed Communication (Technology, Advantages and Future Aspects)

Optical Fiber: The New Era of High Speed Communication (Technology, Advantages and Future Aspects) International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 4, Issue 2 (October 2012), PP. 19-23 Fiber: The New Era of High Speed Communication

More information

Introduction to Optical Networks

Introduction to Optical Networks Yatindra Nath Singh Assistant Professor Electrical Engineering Department Indian Institute of Technology, Kanpur Email: ynsingh@ieee.org http://home.iitk.ac.in/~ynsingh 1 What are optical network? Telecomm

More information

TRANSMISSION MEDIA CHAPTER 4

TRANSMISSION MEDIA CHAPTER 4 CHAPTER 4 TRANSMISSION MEDIA 4.1 Guided Transmission Media Twisted Pair Coaxial Cable Optical Fiber 4.2 Wireless Transmission Antennas Terrestrial Microwave Satellite Microwave Broadcast Radio Infrared

More information

Sol: Optical range from λ 1 to λ 1 +Δλ contains bandwidth

Sol: Optical range from λ 1 to λ 1 +Δλ contains bandwidth 1. Use Figure 3.47 and Figure 3.50 to explain why the bandwidth of twisted-wire pairs and coaxial cable decreases with distance. Figure 3.47 figure 3.50 sol: The bandwidth is the range of frequencies where

More information

Infrared Optical Fiber. Datasheets and Price list. JTIngram Sales and Marketing www.jtingram.com

Infrared Optical Fiber. Datasheets and Price list. JTIngram Sales and Marketing www.jtingram.com Infrared Optical Fiber Datasheets and Price list JTIngram Sales and Marketing www.jtingram.com Polycrystalline InfraRed (PIR-) & Chalcogenide InfraRed (CIR-) Fibers for spectral range of 1-18µm (10.000-550cm-1)

More information

IEO 5701 Optical Fiber Communication. 2015 Lecture 1

IEO 5701 Optical Fiber Communication. 2015 Lecture 1 IEO 5701 Optical Fiber Communication 2015 Lecture 1 Course Outline Lecturer : Prof. CHOW Chi Wai ( 鄒 志 偉 ) Email : cwchow@faculty.nctu.edu.tw TA: Mr. C. W. Hsu ( 許 勁 崴 ) Email : dicky0812@gmail.com Course

More information

EECC694 - Shaaban. Transmission Channel

EECC694 - Shaaban. Transmission Channel The Physical Layer: Data Transmission Basics Encode data as energy at the data (information) source and transmit the encoded energy using transmitter hardware: Possible Energy Forms: Electrical, light,

More information

5.33 Lecture Notes: Introduction to Spectroscopy

5.33 Lecture Notes: Introduction to Spectroscopy 5.33 Lecture Notes: ntroduction to Spectroscopy What is spectroscopy? Studying the properties of matter through its interaction with different frequency components of the electromagnetic spectrum. Latin:

More information

White Paper: 10GbE Fiber A Practical Understanding and Functional Approach

White Paper: 10GbE Fiber A Practical Understanding and Functional Approach White Paper: 10GbE Fiber A Practical Understanding and Functional Approach Dennis Manes, RCDD Senior Applications Engineer Leviton Network Solutions E/8 #2509 Table of Contents Introduction 3 Types of

More information

BOTDR Measurement Techniques and Brillouin Backscatter Characteristics of Corning Single-Mode Optical Fibers

BOTDR Measurement Techniques and Brillouin Backscatter Characteristics of Corning Single-Mode Optical Fibers BOTDR Measurement Techniques and Brillouin Backscatter Characteristics of Corning Single-Mode Optical Fibers WP4259 Issued: January 2015 Brillouin Optical Time Domain Reflectometry The Brillouin Optical

More information

Dispersion in Optical Fibers

Dispersion in Optical Fibers Dispersion in Optical Fibers By Gildas Chauvel Anritsu Corporation TABLE OF CONTENTS Introduction Chromatic Dispersion (CD): Definition and Origin; Limit and Compensation; and Measurement Methods Polarization

More information

AS COMPETITION PAPER 2008

AS COMPETITION PAPER 2008 AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question

More information

Ch 25 Chapter Review Q & A s

Ch 25 Chapter Review Q & A s Ch 25 Chapter Review Q & A s a. a wiggle in time is called? b. a wiggle in space & time is called? a. vibration b. wave What is the period of a pendulum? The period is the time for 1 cycle (back & forth)

More information

THE ORIGINS OF FIBER OPTIC COMMUNICATIONS

THE ORIGINS OF FIBER OPTIC COMMUNICATIONS C H A P T E R 1 THE ORIGINS OF FIBER OPTIC COMMUNICATIONS JEFF HECHT Optical communication systems date back two centuries, to the optical telegraph invented by French engineer Claude Chappe in the 1790s.

More information

Has profound implications for the efficiency with which non-linear light is generated!

Has profound implications for the efficiency with which non-linear light is generated! Non-Linear Optics Lecture 3: Achieving Phase Matching Learning goals By the end of this lecture you should: Show that we can use refractive index ellipsoids to define particular directions for phase matching.

More information

Regularities of Signal and Sensitivity Variation of a Reflection Fiber Optopair Sensor Dependent on the Angle between Axes of Fiber Tips

Regularities of Signal and Sensitivity Variation of a Reflection Fiber Optopair Sensor Dependent on the Angle between Axes of Fiber Tips Nonlinear Analysis: Modelling and Control, 9, Vol., No., 9 Regularities of Signal and Sensitivity Variation of a Reflection Fiber Optopair Sensor Dependent on the Angle between Axes of Fiber Tips V. Kleiza,

More information

Guide to Industrial Fiber Optics

Guide to Industrial Fiber Optics Guide to Industrial Fiber Optics All rights reserved. No part of this manual may be reproduced, photocopied, stored on a retrieval system or transmitted without the express prior consent of Relcom, Inc.

More information

Hard Clad Silica (Standard OH) Radius

Hard Clad Silica (Standard OH) Radius guide Industries DESCRIPTION With numerical aperture (N.A.) of 0.39 and a hard polymer cladding that allows a high core-to-clad ratio, the is the low cost fiber of choice. The pure fused silica (SiO 2

More information

CN1047 INTRODUCTION TO COMPUTER NETWORKING CHAPTER 1 BASIC CONCEPTS OF NETWORK

CN1047 INTRODUCTION TO COMPUTER NETWORKING CHAPTER 1 BASIC CONCEPTS OF NETWORK CN1047 INTRODUCTION TO COMPUTER NETWORKING CHAPTER 1 BASIC CONCEPTS OF NETWORK DEFINTION & APPLICATIONS DEFINTION: A computer network is defined as the interconnection of two or more computers. It is done

More information

ELECTRICAL POWER OVER FIBER OPTICS

ELECTRICAL POWER OVER FIBER OPTICS International Journal on Technical and Physical Problems of Engineering (IJTPE) Published by International Organization on TPE (IOTPE) ISSN 077-358 IJTPE Journal www.iotpe.com ijtpe@iotpe.com December

More information

Synthetic Sensing: Proximity / Distance Sensors

Synthetic Sensing: Proximity / Distance Sensors Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For non-contact distance measurement,

More information

Acoustic GHz-Microscopy: Potential, Challenges and Applications

Acoustic GHz-Microscopy: Potential, Challenges and Applications Acoustic GHz-Microscopy: Potential, Challenges and Applications A Joint Development of PVA TePLa Analytical Systems GmbH and Fraunhofer IWM-Halle Dr. Sebastian Brand (Ph.D.) Fraunhofer CAM Fraunhofer Institute

More information

Basics of Fiber Optics Mark Curran/Brian Shirk

Basics of Fiber Optics Mark Curran/Brian Shirk Basics of Fiber Optics Mark Curran/Brian Shirk Fiber optics, which is the science of light transmission through very fine glass or plastic fibers, continues to be used in more and more applications due

More information

Fiber Selection and Standards Guide for Premises Networks

Fiber Selection and Standards Guide for Premises Networks Fiber Selection and Standards Guide for Premises Networks WP1160 Issued: November 2013 Supersedes: November 2012 Authors: Carl Roberts and Dr. Russell Ellis Introduction There are several main types of

More information

I. Wireless Channel Modeling

I. Wireless Channel Modeling I. Wireless Channel Modeling April 29, 2008 Qinghai Yang School of Telecom. Engineering qhyang@xidian.edu.cn Qinghai Yang Wireless Communication Series 1 Contents Free space signal propagation Pass-Loss

More information

Wavelength Division Multiplexing

Wavelength Division Multiplexing WDM Wavelength Division Multiplexing -CWDM vs DWDM- Fargo, ND 1 Agenda 1. Overview 2. Fiber Cable WDM Characteristics 3. CWDM Course WDM 4. DWDM Dense WDM 5. Applications Best Fit- Future? 6. Summary Fargo,

More information

Suppression of Four Wave Mixing in 8 Channel DWDM System Using Hybrid Modulation Technique

Suppression of Four Wave Mixing in 8 Channel DWDM System Using Hybrid Modulation Technique International Journal of Electronic and Electrical Engineering. ISSN 0974-2174, Volume 7, Number 2 (2014), pp. 97-108 International Research Publication House http://www.irphouse.com Suppression of Four

More information

How To Get A Better Signal From A Fiber To A Coax Cable

How To Get A Better Signal From A Fiber To A Coax Cable Gigabit Transmission What s the Limit? Fanny Mlinarsky Page 1 What s the Limit? Speed Faster higher frequency higher attenuation less headroom Distance Longer higher attenuation more jitter less headroom

More information

Time out states and transitions

Time out states and transitions Time out states and transitions Spectroscopy transitions between energy states of a molecule excited by absorption or emission of a photon hn = DE = E i - E f Energy levels due to interactions between

More information

Near-field scanning optical microscopy (SNOM)

Near-field scanning optical microscopy (SNOM) Adviser: dr. Maja Remškar Institut Jožef Stefan January 2010 1 2 3 4 5 6 Fluorescence Raman and surface enhanced Raman 7 Conventional optical microscopy-limited resolution Two broad classes of techniques

More information

WHITE PAPER. 50 versus 62.5 micron multimode fiber

WHITE PAPER. 50 versus 62.5 micron multimode fiber WHITE PAPER 50 versus 62.5 micron multimode fiber www.ixiacom.com 915-6919-01 Rev. A, July 2014 2 Table of Contents What are 50μm fiber and 62.5μm fiber?... 4 Why two standards?... 4 Which technology should

More information