GRID AND PRISM SPECTROMETERS

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "GRID AND PRISM SPECTROMETERS"

Transcription

1 FYSA230/2 GRID AND PRISM SPECTROMETERS 1. Introduction Electromagnetic radiation (e.g. visible light) experiences reflection, refraction, interference and diffraction phenomena when entering and passing an (optically) active medium like a grid and prism. The phenomena can be explained partly with classical wave-mechanics but are basically quantum mechanical or better quantum electrodynamical in character. Grids and prisms belong to such media. Visible light (spectra) emitted by atoms of gas-discharge tubes are well suited to study properties of atomic excitations and functioning principles of optically active devices, simultaneously. 2. Devices 2.1 Spectrometer A spectrometer is an (optically) active medium (device) sensitive to the energy, polarisation and intensity of electromagnetic or particle radiation (beam) selecting it e.g. according energy into energy spectra. When the energy is 1 kev, an electromagnetic radiation is customary to classify with wavelength (E = h = hc/). The grid and prism spectrometers used here are designed to handle electromagnetic radiation in visible regime. A schematic principle is presented in figure 1 and in more detail in appendix 2. prism red light source slit collimator grid telescope violet Figure 1. Grid and prism spectrometers. Grid deflects and prism refracts the light into different angles according to the wavelength creating energy spectra that can be observed by looking at the transmitted light with a telescope in various angles. Knowing the geometry (number of slits per

2 - 2 - distance) of the grid or the refraction index of the prism the angle information can be translated to wavelength. In practise the energy or wavelength response of a spectrometer is calibrated using known spectra of standard sources and the resulting calibration function = f(θ) is used to analyse spectra of radiation studied. Various optical elements like slits, collimators and focusing devices are needed in experiments with some accuracy desired. A slit (S) narrows the beam from the light source. The collimator (C) parallels it before the grid or prism. The refracted rays with different wavelengths are focused with the objective of the telescope on the position of a hair grate located between the focus point and the ocular. The ocular magnifies the picture formed by the hair grate and the radiation to be observed by naked eye. Read appendix 2! 2.2. Diffraction grid Monochromatic light passing a narrow slit experiences diffraction i.e. deflects forming a diffraction pattern characteristic to the wavelength and the width b of the slit. The intensity minima of the diffraction pattern are located at angles sin(θ) = n/b, (n = 0, 1, 2, ). With several slits the diffracted light from different slits interfere and an interference pattern modulated by the diffraction one appears. The location (angle) of intensity minima and maxima depend now also on the density (location) of the diffraction slits. A regular, 2-dimensional diffraction grid with parallel, rectangular slits (width b, distance a, s.c. grid constant) forms principal intensity maxima at angles defined by n sin( ) (1) a If the light is non monochromatic, each wavelength yields its own diffraction pattern. Usually the main components of a light source are well separated in energy and a clean diffraction pattern of a grid for each wavelength will be observed. The grid and prism can be characterised with their ability to resolve different wavelengths, the dispersion D, which derived from eq. (1) is d n D (2) d acos( ) Irregular grids with 2- or 3-dimensional geometry's yield very complicated diffractioninterference patterns and are used as versatile, optically active devices Prism Light passing through a prism will be reflected and refracted by the entrance and exit surfaces. Monochromatic light (beam) will be refracted by an angle from its original direction. A minimal refraction ( = min ) follows, when the light passes the prism symmetrically (see fig. 2). Now it holds sin(½( min A)) n, (3) sin(½a)

3 - 3 - where A is the angle of the deflecting edge and n = c/c n is the refraction coefficient of the material of the prism (c and c n are the speed of light in air (or vacuum) and in the prism, correspondingly). Since the refraction coefficient n depends of the wavelength, each wavelength has a characteristic min. A 1 2 n min 1 A Figure 2. Minimal deflection. Non-monochromatic light will thus disperse in prism according to the wavelengths. The spectrum created differs in structure from the corresponding grid spectrum. The dispersion of a prism can be derived using eq. (3) and relation n = c/c n d min 2sin(½A) 2B D cos(½( 3, (4) d min A)) where B is a constant. 3. Radiation emitted by an excited atom Possible excitation of an atom are quantum mechanical states of (many) electron configurations. The lowest in energy (E 1 ) is the (stable) ground state and other (meta stable) configurations have higher energies E i (i = 2, 3,...), decaying to lower lying states either directly or via transition states (figure 3). The energy shift occurs emitting electromagnetic radiation, a photon (e.g. visible light) corresponding to the energy difference E i E j (i > j; i = 2, 3,...). The frequency of the photon is thus h Ei E 2 (5) where = c/ and h the Planck s constant. Each atom has a discrete, characteristic energy spectrum.

4 - 4 - E 4 transition E 3 excited E 2 E 1 ground Figure 3. States and transitions of an atom. Here we study electromagnetic radiation of excited atoms in a gas-discharge tube in the regime of visible light. The discrete spectra predicted by the theory presented before are analysed with the aid of grid and prism spectrometers. J. Balmer observed on 19th century that the wavelengths of visible spectral lines of a hydrogen atom obey the rule where RZ 2 '2 n n R = Rydberg s constant = 1, m -1 Z = 1 = atomic number of hydrogen n = 2 = the quantum number of the final state n' = the quantum number of the initial state = 3 for the hydrogen - line = 4 for the hydrogen - line = 5 for the hydrogen - line. (6) Eq. (6) is valid for all atoms with a single electron (like H, He +, Li 2+ ) and it can be derived from Bohr s model of the atom Lymanlines Balmerlines Figure 4. Partial decay scheme of a hydrogen atom.

5 Measurements 4.1. Focusing the spectrometer The spectrometer used is described in details in appendix 2. Fig. 5 shows a schematic diagram of the optics used. A B C D E F G Figure 5. Optical elements of the spectrometer: Slit A, objective of the collimator B, objective of the telescope C, hair grate D, ocular lenses of the telescope E and G, half-transparent mirror F which illuminates the hair grate. The distance between the ocular lenses E and G can be varied so that the image and the hair grate are seen sharp, simultaneously. Focusing the spectrometer is done as follows: If the lines with different colours and the hair grate are seen sharp using the grid, focusing is not necessary. Otherwise, set the lens G so that the hair grate is seen sharp. Then the entire set D, E, F, G is moved so that an object in distance is seen sharp and does not move with the position of the eye (elimination of s.c. parallax). Now the image of the hair grade and the object coincide. The position of the hair grate can be adjusted with the focusing ring M (see figure A1). The collimator B is focused by moving the slit A so that the slit is seen sharp independent of the position of the eye. The slit should be set vertical, exactly, and as narrow as possible depending of the intensity of the light source Grid Place the grid (about 900 slits per mm) on the turn table perpendicular to the optical axis. Optimise the height of the table. Use the helium lamp (He) and measure positions of the 6 brightest lines of the first order and the 3 corresponding of the second order on the both sides of the straight incoming light (angles 1 and 2 ). The deviation is =1/2( 1-2 ). Calculate the grid constant with eq. (1). By using the mercury-cadmium lamp (Hg/Cd), measure deflection angles of the 9 brightest lines of the first order. For hydrogen (H 2 ) observation of 3 brightest lines is sufficient. If you are not able to discern all the lines on both sides of the straight incoming light, record the angles from the the straight incoming light and the line on the other side. The deviation can then be calculated with help of these.

6 Prism With the Hg/Cd lamp optimise the set-up for the prism according to fig. 1 so that the spectrum is clearly visible. Search the minimal deflection angle. This can be done as follows: monitor the position of a selected spectral line and rotate the prism, until you find an angle, where the lines start to move in reverse direction when rotating the prism to same direction. In the limits of the accuracy of the spectrometer it is sufficient to use only one line (e.g. the green one) to define the minimal angle for the entire spectrum. For the other lines move now the position of the telescope, only, to measure the angles (θ 1 ). The minimal deflection for each line is now the difference between the angles measured and the angle (θ 0 ) for straight light when the prism is removed. The wavelengths of the lines are taken from the measurements with the grid. 5. Analysis of results Grid: By using your results for the He lamp and the wavelengths in appendix 1, determine the grid constant a. For H and Hg/Cd calculate the wavelengths using eq. (1) and the measured grid constant a. Verify and compare your values for Hg/Cd to those given in appendix 1 and in the literature to find the lines of mercury. Furthermore draw the curve () using measured results for the Hg/Cd lamp. Prism: Draw the minimal deflection min as a function of the wavelength. Furthermore, calculate the reflection coefficient n in eq. (3) (A = 60) and plot n as a function of. For several materials the so-called Cauchy s formula is valid B C n A, (7) 2 4 where A, B and C are constant parameters characteristic to the material, but independent of the wavelength. Define these parameters and study how well Cauchy s formula is valid. Both grid and prism: To determine the dispersions D = dθ/dλ and D = dδ min /dλ, draw a few tangents of curves θ(λ) and δ min (λ) with fit intervals and calculate their slopes. Plot in the same figure d/d and d min /d as a function of. Balmer s formula Calculate with eq. (6) the wavelengths of -, - and - lines of hydrogen. By comparing the calculated values with your experimental ones (obtained with the grid) define the colours of -, - and - lines.

7 - 7 - Answer to the following questions: What are most striking differences of the spectra obtained with the grid and the prism? Based on the curves D(), what can you tell about properties of the grid and the prism? What is dispersion? Why you don t see the Lyman-lines? Derive eq. (3) using fig. 2 and the Snell s law. Recall that a degree ( ) is not a SI unit. Appendix 1 Wavelengths given in literature (nm): He: Hg: red yellow yellow yellow green (strong) green green (weak) blue blue green violet blue

8 - 8 - Appendix 2 The Spencer-spectrometer In principle the spectrometer is simple (fig. L1), but has many components worth to study and try out their functions carefully before the measurements. Figure A1. Spencer-spectrometer. Slit A, objective of the collimator B, objective of the telescope C, prism D, hair grate E, fixing screw of the table I, fine-tuning screw of the table J, fine-tuning screw of the telescope K, ring of ocular L, focusing ring of telescope M, cover of the Nonie-ring N, height-setting screws of the table O, height-setting screws of the collimator and the telescope P, fixingscrew of the telescope Q, fixing-screws of the telescope R, fixing-screw of the collimator S. The telescope and the optical table rotate around common axis and they can be fixed with screws K and J. The height of the table is set by screw I. Do not over tighten them. When screws K and J are fixed, the position of the table and telescope can be tuned with fine tuning screws. To determine the angles precisely either the table (usually) or the telescope has to be kept fixed. The minimal deflection angle is best to find out with the fine tuning the table. The spectrometer is equipped with two 30' Nonie-scales. It is sufficient to use one of them, only. Learn to read the Nonie-scale correctly!

PHYS 3324 Experiment 2: Atomic Spectra

PHYS 3324 Experiment 2: Atomic Spectra PHYS 3324 Experiment 2: Atomic Spectra Background Reading: Krane, pp. 185-189 Apparatus: Spectrometer, sodium lamp, hydrogen lamp, mercury lamp, diffraction grating, watchmaker eyeglass, small flashlight.

More information

Demonstration Experiments: The Grating Spectrometer 27 September 2012

Demonstration Experiments: The Grating Spectrometer 27 September 2012 8 The Grating Spectrometer Introduction: A spectrometer is an instrument used to study the spectrum of light. The light source can be anything from a cryogenically cooled crystal to a superhot plasma or

More information

THE BOHR QUANTUM MODEL

THE BOHR QUANTUM MODEL THE BOHR QUANTUM MODEL INTRODUCTION When light from a low-pressure gas is subject to an electric discharge, a discrete line spectrum is emitted. When light from such a low-pressure gas is examined with

More information

WAVELENGTH OF LIGHT - DIFFRACTION GRATING

WAVELENGTH OF LIGHT - DIFFRACTION GRATING PURPOSE In this experiment we will use the diffraction grating and the spectrometer to measure wavelengths in the mercury spectrum. THEORY A diffraction grating is essentially a series of parallel equidistant

More information

EXPERIMENT 13. Balmer Series of Hydrogen

EXPERIMENT 13. Balmer Series of Hydrogen EXPERIMENT 13 Balmer Series of Hydrogen Any atomic gas or element (heated to vapor form) can be made to radiate light when suitably "excited" by an electric discharge, spark, or flame. If this light is

More information

O6: The Diffraction Grating Spectrometer

O6: The Diffraction Grating Spectrometer 2B30: PRACTICAL ASTROPHYSICS FORMAL REPORT: O6: The Diffraction Grating Spectrometer Adam Hill Lab partner: G. Evans Tutor: Dr. Peter Storey 1 Abstract The calibration of a diffraction grating spectrometer

More information

PROCEDURE. Part I: The Mercury Spectrum

PROCEDURE. Part I: The Mercury Spectrum The Spectroscope APPARATUS 1. Spectroscope 2. Mercury arc 3. Sodium Lamp 4. Geissler tubes with high voltage unit 5. Desk lamp 6. Filters INTRODUCTION This exercise will permit the student to study the

More information

Refractive Index and Dispersion: Prism Spectrometer

Refractive Index and Dispersion: Prism Spectrometer Refractive Index and Dispersion: Prism Spectrometer OBJECTIVES: The purpose of this experiment is to study the phenomenon of dispersion i.e. to determine the variation of refractive index of the glass

More information

DIFFRACTION GRATINGS AND SPECTROSCOPY

DIFFRACTION GRATINGS AND SPECTROSCOPY Experiment 8 Name: S.N.: SECTION: PARTNER: DATE: DIFFRACTION GRATINGS AND SPECTROSCOPY Objectives To introduce and calibrate a diffraction grating, and use it to examine several types of spectra. To learn

More information

Lab 4: DIFFRACTION GRATINGS AND PRISMS (3 Lab Periods)

Lab 4: DIFFRACTION GRATINGS AND PRISMS (3 Lab Periods) revised version Lab 4: Objectives DIFFRACTION GRATINGS AND PRISMS (3 Lab Periods) Calibrate a diffraction grating using a spectral line of known wavelength. With the calibrated grating, determine the wavelengths

More information

Experiment where A is the apex angle of the prism and D is the angle of minimum deviation for the spectral line.

Experiment where A is the apex angle of the prism and D is the angle of minimum deviation for the spectral line. Introduction Experiment 112-8 Grating and Prism Spectrometer Diffraction Gratings 1 : A master diffraction grating is made by ruling a large number of finely, closely spaced lines on a sheet of glass or

More information

Atomic Emission Spectra

Atomic Emission Spectra Atomic Emission Spectra Objectives The objectives of this laboratory are as follows: To build and calibrate a simple box spectroscope capable of measuring wavelengths of visible light. To use this spectroscope

More information

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block. 1 ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify an unknown

More information

Experimentally Determining Diffraction Grating Constants

Experimentally Determining Diffraction Grating Constants Experimentally Determining Diffraction Grating Constants REFERENCES: Determination of the grating constants of the holographic grating using a He-Ne-laser. LD Didactic Physics Leaflets, P5.7.2.4. Halliday,

More information

2 1. INTENDED LEARNING OUTCOMES The students will be able to: Use physics ideas about light to explain how different types of light bulb function Desi

2 1. INTENDED LEARNING OUTCOMES The students will be able to: Use physics ideas about light to explain how different types of light bulb function Desi SCHOOLGEN ACTIVITIES Teacher-led Activity In this activity, students have the opportunity to find out why compact fluorescent ( energy efficient ) light bulbs are more efficient than conventional incandescent

More information

Diffraction Grating and Interference

Diffraction Grating and Interference Diffraction Grating and Interference APPARATUS 1. Spectrometer 2. Diffraction grating 3. Mercury arc lamp 4. Board for mounting glass plates 5. Two plane parallel plates of glass 6. Aluminum stand equipped

More information

Physics 390, Lab 5: Diffraction and Optical Spectroscopy (modified from materials by KJ Park & Stephen Gregory)

Physics 390, Lab 5: Diffraction and Optical Spectroscopy (modified from materials by KJ Park & Stephen Gregory) Physics 390, Lab 5: Diffraction and Optical Spectroscopy (modified from materials by KJ Park & Stephen Gregory) Second year lab 2, Winter, 2008 Reality provides us with facts so romantic that imagination

More information

Precision wavelength measurement using a Fabry-Pérot etalon

Precision wavelength measurement using a Fabry-Pérot etalon Please do not remove this manual from from the lab. It is available at www.cm.ph.bham.ac.uk/y2lab Optics Precision wavelength measurement using a Fabry-Pérot etalon Introduction The main purpose of this

More information

9. Diffraction Grating

9. Diffraction Grating 9. Diffraction Grating Background Diffraction Date Grating : Fraunhofer diffraction Fresnel diffraction Angular dispersion Resolving power Spectral lines Aim of the experiment To determine the wavelengths

More information

Experiment 1: Grating Spectroscope

Experiment 1: Grating Spectroscope SPECTRA White light is a mixture of all wavelengths. When white light is sent through a prism or a diffraction grating it is broken up into a continuous distribution of colors called a spectrum. The relation

More information

DIFFRACTION OF LIGHT

DIFFRACTION OF LIGHT Laboratory Exercise 4. DIFFRACTION OF LIGHT Diffraction Gratings. Determining the Wavelength of Laser Light Using a Diffraction Grating. Refraction. Observation of Atomic Spectra. Theoretical background:

More information

PHYS General Physics II Lab Diffraction Grating

PHYS General Physics II Lab Diffraction Grating 1 PHYS 1040 - General Physics II Lab Diffraction Grating In this lab you will perform an experiment to understand the interference of light waves when they pass through a diffraction grating and to determine

More information

HB Spectroscopy Lab 3 1. Spectroscopy Lab 3. Reading Your text books. Look under spectra, spectrometer, diffraction.

HB Spectroscopy Lab 3 1. Spectroscopy Lab 3. Reading Your text books. Look under spectra, spectrometer, diffraction. HB 12-09-08 Spectroscopy Lab 3 1 Spectroscopy Lab 3 Reading Your text books. Look under spectra, spectrometer, diffraction. Consult Sargent Welch Spectrum Charts on wall of lab. Note that only the most

More information

DIFFRACTION AND INTERFERENCE OF LIGHT

DIFFRACTION AND INTERFERENCE OF LIGHT DIFFRACTION AND INTERFERENCE OF LIGHT Part A - The Diffraction Grating The objective of this part of the experiment is to measure the wavelength of light produced by a monochromatic source using a diffraction

More information

Experiment #12: The Bohr Atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes, Holder, and Variac Flashlight

Experiment #12: The Bohr Atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes, Holder, and Variac Flashlight Experiment #12: The Bohr Atom Purpose: To observe the visible spectrum of hydrogen and helium and verify the Bohr model of the hydrogen atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes,

More information

physics 112N interference and diffraction

physics 112N interference and diffraction physics 112N interference and diffraction the limits of ray optics shadow of the point of a pin physics 112N 2 the limits of ray optics physics 112N 3 the limits of ray optics physics 112N 4 this is how

More information

PREVIOUS 8 YEARS QUESTIONS (1 mark & 2 marks) 1 mark questions

PREVIOUS 8 YEARS QUESTIONS (1 mark & 2 marks) 1 mark questions 230 PREVIOUS 8 YEARS QUESTIONS (1 mark & 2 marks) 1 mark questions 1. An object is held at the principal focus of a concave lens of focal length f. Where is the image formed? (AISSCE 2008) Ans: That is

More information

Diffraction of light by a grating

Diffraction of light by a grating 1: (ta initials) 2: first name (print) last name (print) brock id (ab13cd) (lab date) Experiment 5 Diffraction of light by a grating In this Experiment you will learn the geometical analysis of a diffraction

More information

Diffraction & Interference

Diffraction & Interference Diffraction & Interference Introduction In 1704, Sir Isaac Newton postulated a theory that light is made up of particles. After all, a picture of light as a stream of particles readily explains the apparent

More information

Purpose of the experiment

Purpose of the experiment Modern Physics Lab Spectroscopy Purpose of the experiment Familiarize you with advanced experimental techniques and equipment. Learn how to identify various elements by their emission spectrum. Background

More information

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,

More information

!! Regarding the information about figures (Fig.XY) please have a look at the german version!! Spektroscopy

!! Regarding the information about figures (Fig.XY) please have a look at the german version!! Spektroscopy 1. Introduction (under construction) Spektroscopy 2. Prism and Grid Spectrometers Basics of Construction and Operation The experiment can be conducted with one of two types of spectrometer in which the

More information

PC1144 Physics IV. Atomic Spectra. Reference angular position θ 0 = Data Table 1

PC1144 Physics IV. Atomic Spectra. Reference angular position θ 0 = Data Table 1 Name: Date: PC1144 Physics IV Atomic Spectra 5 Laboratory Worksheet Part A: Mercury Spectrum Reference angular position θ 0 = Colour λ (10 7 m) θ 1 θ 2 Violet 4.047 Blue 4.358 Blue-Green 4.916 Green 5.461

More information

OPTICAL SPECTRA WITH A DIFFRACTION GRATING

OPTICAL SPECTRA WITH A DIFFRACTION GRATING Optical Spectra with a Diffraction Grating 33 Name Date Partners OPTICAL SPECTRA WITH A DIFFRACTION GRATING INTRODUCTION Light is an electromagnetic wave, its color is determined by its wavelength. The

More information

PRACTICE EXAM IV P202 SPRING 2004

PRACTICE EXAM IV P202 SPRING 2004 PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order

More information

Laboratory 15: Spectroscopy

Laboratory 15: Spectroscopy Spectroscopy 1 aboratory 15: Spectroscopy A transmission diffraction grating consists of a large number of closely spaced parallel lines ruled on some transparent material such as glass. The ruled lines

More information

Light and Spectra. COLOR λ, nm COLOR λ, nm violet 405 yellow 579 blue 436 orange 623 green 492 red 689

Light and Spectra. COLOR λ, nm COLOR λ, nm violet 405 yellow 579 blue 436 orange 623 green 492 red 689 Light and Spectra INTRODUCTION Light and color have intrigued humans since antiquity. In this experiment, you will consider several aspects of light including: a. The visible spectrum of colors (red to

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena. Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric)

More information

WORLD OF LIGHT LABORATORY LAB 4 Diffraction and Interference

WORLD OF LIGHT LABORATORY LAB 4 Diffraction and Interference WORLD OF LIGHT LABORATORY LAB 4 Diffraction and Interference INTRODUCTION: Diffraction and interference are quintessential wavelike properties that essentially all waves exhibit but other things do not.

More information

Experiment 13 ~ Diffraction, Wavelength, and Atomic Line Spectra

Experiment 13 ~ Diffraction, Wavelength, and Atomic Line Spectra Experiment 13 ~ Diffraction, Wavelength, and Atomic Line Spectra Part 1 1.1. Atomic Line Spectra. In this experiment, we will look at the diffraction of light, and how wavelengths can be calculated from

More information

Studies of a Diffraction Grating, Spectral Lines of Hydrogen, and Solar Spectrum

Studies of a Diffraction Grating, Spectral Lines of Hydrogen, and Solar Spectrum Studies of a Diffraction Grating, Spectral Lines of Hydrogen, and Solar Spectrum Objectives: 1. To become familiar with capturing spectral lines using a CCD camera. 2. To study selected properties of a

More information

Pre-Lab Assignment: Interference, Measuring Wavelengths, and Atomic Spectra

Pre-Lab Assignment: Interference, Measuring Wavelengths, and Atomic Spectra Name: Lab Partners: Date: Pre-Lab Assignment: Interference, Measuring Wavelengths, and Atomic Spectra (Due at the beginning of lab) Directions: Read over the lab handout and then answer the following questions

More information

EM Waves Practice Problems

EM Waves Practice Problems EM Waves Practice Problems PSI AP Physics B Name Multiple Choice 1. Which of the following theories can explain the bending of waves behind obstacles into shadow region? (A) Particle theory of light (B)

More information

CAUTION Laser radiation can cause retinal damage and blindness if allowed to be focused into the eye

CAUTION Laser radiation can cause retinal damage and blindness if allowed to be focused into the eye Interference and Diffraction of Light When two or more waves overlap at some point, they can add together so that the combined amplitude could be either greater or less than the amplitudes of the constituent

More information

1 Introduction. 2 Theory. Date: October 22, To: Dr. Frank Kowalski. From: Tim Eller, Matt Bergren, Jon Banks. Subject: Spectroscopy Lab.

1 Introduction. 2 Theory. Date: October 22, To: Dr. Frank Kowalski. From: Tim Eller, Matt Bergren, Jon Banks. Subject: Spectroscopy Lab. Date: October 22, 2007. To: Dr. Frank Kowalski. From: Tim Eller, Matt Bergren, Jon Banks. Subject: Spectroscopy Lab. Abstract We used a spectrometer to measure the angles of the different wavelengths emitted

More information

Light, Light Bulbs and the Electromagnetic Spectrum

Light, Light Bulbs and the Electromagnetic Spectrum Light, Light Bulbs and the Electromagnetic Spectrum Spectrum The different wavelengths of electromagnetic waves present in visible light correspond to what we see as different colours. Electromagnetic

More information

Lab Report on Diffraction and Interference

Lab Report on Diffraction and Interference Lab Report on Diffraction and Interference Michael Goerz, Anton Haase 30. September 2005 GP II Tutor: M. Fushitani 1 Introduction We will do the experiment using the He-Ne-laser instead of the Na-lamp.

More information

TWO AND MULTIPLE SLIT INTERFERENCE

TWO AND MULTIPLE SLIT INTERFERENCE TWO AND MULTIPLE SLIT INTERFERENCE Double Slit and Diffraction Grating. THEORY: L P L+nλ Light d θ L 0 C nλ Wall Screen P Figure 1 If plane waves of light fall at normal incidence on an opaque wall containing

More information

STUDENT SPECTROMETER. Instruction Manual and Experiment Guide for the PASCO scientific Model SP-9268A. Copyright January 1991 $7.50 012-02135F 10/03

STUDENT SPECTROMETER. Instruction Manual and Experiment Guide for the PASCO scientific Model SP-9268A. Copyright January 1991 $7.50 012-02135F 10/03 Instruction Manual and Experiment Guide for the PASCO scientific Model SP-9268A 012-02135F 10/03 STUDENT SPECTROMETER Copyright January 1991 $7.50 10101 Foothills Blvd. P.O. Box 619011 Roseville, CA 95678-9011

More information

COLLEGE PHYSICS. Chapter 29 INTRODUCTION TO QUANTUM PHYSICS

COLLEGE PHYSICS. Chapter 29 INTRODUCTION TO QUANTUM PHYSICS COLLEGE PHYSICS Chapter 29 INTRODUCTION TO QUANTUM PHYSICS Quantization: Planck s Hypothesis An ideal blackbody absorbs all incoming radiation and re-emits it in a spectrum that depends only on temperature.

More information

AIM: To determine the grating element of a diffraction grating using laser source of known wavelength.

AIM: To determine the grating element of a diffraction grating using laser source of known wavelength. AIM: To determine the grating element of a diffraction grating using laser source of known wavelength. Prepared by: 1. Jagmeet singh Submitted to: 2. Ankur badhan Mr.Rohit verma 3. Vikas inder singh 4.

More information

Christian Huygen Light is a wave, not merely a ray As waves propagate each point on the wavefront produces new wavelets. Wave Nature of Light

Christian Huygen Light is a wave, not merely a ray As waves propagate each point on the wavefront produces new wavelets. Wave Nature of Light Wave Nature of Light Christian Huygen Light is a wave, not merely a ray As waves propagate each point on the wavefront produces new wavelets Chapter 24 Wavelength Changes Wavelength of light changes in

More information

Interference. Physics 102 Workshop #3. General Instructions

Interference. Physics 102 Workshop #3. General Instructions Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by

More information

Bronx High School of Science Regents Physics

Bronx High School of Science Regents Physics Bronx High School of Science Regents Physics 1. Orange light has a frequency of 5.0 10 14 hertz in a vacuum. What is the wavelength of this light? (A) 1.5 10 23 m (C) 6.0 10 7 m (B) 1.7 10 6 m (D) 2.0

More information

EXPERIMENT 4. Microwave Experiments. Introduction. Experimental Procedure. Part 1 : Double Slit

EXPERIMENT 4. Microwave Experiments. Introduction. Experimental Procedure. Part 1 : Double Slit EXPERIMENT 4 Microwave Experiments Introduction Microwaves are electromagnetic radiation in the centimeter range of wavelengths. As such, they, like light, will exhibit typical wave properties like interference

More information

The Hydrogen Spectrum

The Hydrogen Spectrum The Hydrogen Spectrum Reading assignment: Chang, Chemistry 10 th edition, pp. 8-87. Goals We will become familiar with the operation of the grating spectroscope in order to determine the wavelengths of

More information

Reflection and Refraction

Reflection and Refraction Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,

More information

Chapter 17 Light and Image Formation

Chapter 17 Light and Image Formation Chapter 7 Light and Image Formation Reflection and Refraction How is an image in a mirror produced? Reflection and Image Formation In chapter 6 we studied physical optics, which involve wave aspects of

More information

Experiment IV: Atomic Spectra and the Bohr model

Experiment IV: Atomic Spectra and the Bohr model P19: INTRODUCTORY PHYSICS III Experiment IV: Atomic Spectra and the Bohr model Department of Physics and Astronomy Dartmouth College 6127 Wilder Laboratory Hanover, NH 03755 USA Overview In this lab, we

More information

Fundamentals of modern UV-visible spectroscopy. Presentation Materials

Fundamentals of modern UV-visible spectroscopy. Presentation Materials Fundamentals of modern UV-visible spectroscopy Presentation Materials The Electromagnetic Spectrum E = hν ν = c / λ 1 Electronic Transitions in Formaldehyde 2 Electronic Transitions and Spectra of Atoms

More information

Physics 1653 Final Exam - Review Questions

Physics 1653 Final Exam - Review Questions Chapter 22 Reflection & Refraction Physics 1653 Final Exam - Review Questions 1. The photon energy for light of wavelength 500 nm is approximately A) 1.77 ev B) 3.10 ev C) 6.20 ev D) 2.48 ev E) 5.46 ev

More information

PHYSICS EXPERIMENTS (LIGHT)

PHYSICS EXPERIMENTS (LIGHT) PHYSICS EXPERIMENTS (LIGHT) In the matter of physics, the first lessons should contain nothing but what is experimental and interesting to see. A pretty experiment is in itself often more valuable than

More information

Light as a wave. VCE Physics.com. Light as a wave - 1

Light as a wave. VCE Physics.com. Light as a wave - 1 Light as a wave Huygen s wave theory Newton s corpuscular theory Young s double slit experiment Double slit interference Diffraction Single slit interference The electromagnetic nature of light The electromagnetic

More information

Basic Optics System OS-8515C

Basic Optics System OS-8515C 40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 C 70 20 80 10 90 90 0 80 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B Basic Optics System

More information

Introduction to spectroscopy

Introduction to spectroscopy Introduction to spectroscopy How do we know what the stars or the Sun are made of? The light of celestial objects contains much information hidden in its detailed color structure. In this lab we will separate

More information

Experiment #5: Qualitative Absorption Spectroscopy

Experiment #5: Qualitative Absorption Spectroscopy Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions

More information

10.3 The Diffraction Grating

10.3 The Diffraction Grating diffraction grating a device with a large number of equally spaced parallel slits that produces interference patterns 10.3 The Diffraction Grating It is difficult to measure the wavelength of light accurately

More information

Interferometers. OBJECTIVES To examine the operation of several kinds of interferometers. d sin = n (1)

Interferometers. OBJECTIVES To examine the operation of several kinds of interferometers. d sin = n (1) Interferometers The true worth of an experimenter consists in his pursuing not only what he seeks in his experiment, but also what he did not seek. Claude Bernard (1813-1878) OBJECTIVES To examine the

More information

Optics and Image formation

Optics and Image formation Optics and Image formation Pascal Chartrand chercheur-agrégé Département de Biochimie email: p.chartrand@umontreal.ca The Light Microscope Four centuries of history Vibrant current development One of the

More information

Chapter Four: Interference

Chapter Four: Interference Chapter Four Interference CHAPTER OUTLINE 4.1 Superposition of Waves 4.2 Interference 4.2.1Theory of Interference 4.2.2Intensity Distribution 4.2.3Superposition of Incoherent Waves 4.2.4Superposition of

More information

Chapter 24 Wave Optics. Diffraction Grating Interference by Thin Films Polarization. sinθ=mλ/d or dsinθ=mλ

Chapter 24 Wave Optics. Diffraction Grating Interference by Thin Films Polarization. sinθ=mλ/d or dsinθ=mλ Chapter 24 Wave Optics Diffraction Grating Interference by Thin Films Polarization d Θ Θ Extra distance mλ sinθ=mλ/d or dsinθ=mλ m=0,1,2,3,... Constructive inference m=1/2,3/2,5/2,... Destructive inference

More information

Physics 9 Fall 2009 DIFFRACTION

Physics 9 Fall 2009 DIFFRACTION Physics 9 Fall 2009 NAME: TA: SECTION NUMBER: LAB PARTNERS: DIFFRACTION 1 Introduction In these experiments we will review and apply the main ideas of the interference and diffraction of light. After reviewing

More information

PHYS-2020: General Physics II Course Lecture Notes Section XI

PHYS-2020: General Physics II Course Lecture Notes Section XI PHYS-2020: General Physics II Course Lecture Notes Section XI Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and

More information

Amplitude Y is the maximum value of the wave variable ( displacement in this case ).

Amplitude Y is the maximum value of the wave variable ( displacement in this case ). NATURE OF VISIBLE LIGHT: Our current knowledge is that light exhibits a dual nature or behavior. It behaves as electromagnetic ( EM for short ) waves or as a particles ( photons ). General description

More information

Lesson 18: Diffraction and Interference!

Lesson 18: Diffraction and Interference! Lesson 18: Diffraction and Interference Part 1: The Double Slit Experiment What is light? - A particle? - A wave? In 1801, Thomas Young s Double Slit Experiment confirmed the wave nature of light: If light

More information

Diffraction and the Wavelength of Light

Diffraction and the Wavelength of Light Diffraction and the Wavelength of Light Goal: To use a diffraction grating to measure the wavelength of light from various sources and to determine the track spacing on a compact disc. Lab Preparation

More information

Ray Tracing: the Law of Reflection, and Snell s Law

Ray Tracing: the Law of Reflection, and Snell s Law Ray Tracing: the Law of Reflection, and Snell s Law Each of the experiments is designed to test or investigate the basic ideas of reflection and the ray-like behavior of light. The instructor will explain

More information

Activity 9.1 The Diffraction Grating

Activity 9.1 The Diffraction Grating Group Number (number on Intro Optics Kit):. PHY385H1F Introductory Optics Practicals Day 9 Diffraction November 28, 2011 Facilitator Name:. Record-Keeper Name: Time-keeper:. Computer/Wiki-master:. NOTE:

More information

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7th edition Giancoli Lecture PowerPoints Chapter 24 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

PS-7.2 Compare the nature and properties of transverse and longitudinal/compressional mechanical waves.

PS-7.2 Compare the nature and properties of transverse and longitudinal/compressional mechanical waves. PS-7.1 Illustrate ways that the energy of waves is transferred by interaction with matter (including transverse and longitudinal /compressional waves). Understand that a wave is a repeating disturbance

More information

P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours)

P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours) INSURANCE SCAM OPTICS - LABORATORY INVESTIGATION P R E A M B L E The original form of the problem is an Experimental Group Research Project, undertaken by students organised into small groups working as

More information

EMISSION SPECTROSCOPY

EMISSION SPECTROSCOPY INTRODUCTION: EMISSION SPECTROSCOPY Lab #4 The emission spectrum is the set of light frequencies emitted by substances after they have been excited with various forms of energy, most commonly heat or electrical.

More information

PHYSICS 262 GEOMETRIC OPTICS

PHYSICS 262 GEOMETRIC OPTICS PHYSICS 262 GEOMETRIC OPTICS Part I Position and Size of Image: Cardinal Points If the indices of refraction of all elements are known, together with the positions and radii of curvature of all surfaces,

More information

RESOLVING POWER OF A READING TELESCOPE

RESOLVING POWER OF A READING TELESCOPE 96 Lab Experiments Experiment-255 RESOLVING POWER OF A READING TELESCOPE S Dr Jeethendra Kumar P K KamalJeeth Instrumentation & Service Unit, No-60, TATA Nagar, Bangalore-560 092, INDIA. Email:jeeth_kjisu@rediffmail.com

More information

Spectroscopy in Astronomy: Emission Spectra

Spectroscopy in Astronomy: Emission Spectra Spectroscopy in Astronomy: Emission Spectra Equipment: (Shared among all lab groups) Blue spectrometer (one for each lab group) Spectrum tube power supplies (5000 volts be careful!) These will be set up

More information

Wave Phenomena. Constructive and Destructive Interference

Wave Phenomena. Constructive and Destructive Interference Wave Phenomena INTERFERENCE PATTERN OF WATER WAVES DIFFRACTION OF LIGHT OFF A COMPACT DISC Constructive and Destructive Interference Constructive interference produces maxima, where crests meet crests

More information

Answer: b. Answer: a. Answer: d

Answer: b. Answer: a. Answer: d Practice Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes

More information

Experimental Determination of Planck s Constant

Experimental Determination of Planck s Constant Experimental Determination of Planck s Constant Ryan Eagan The Pennsylvania State University University Park, Pennsylvania 16802 Email: ree5047@psu.edu July 25, 2011 Abstract Experimental determination

More information

LAUE DIFFRACTION INTRODUCTION CHARACTERISTICS X RAYS BREMSSTRAHLUNG

LAUE DIFFRACTION INTRODUCTION CHARACTERISTICS X RAYS BREMSSTRAHLUNG LAUE DIFFRACTION INTRODUCTION X-rays are electromagnetic radiations that originate outside the nucleus. There are two major processes for X-ray production which are quite different and which lead to different

More information

Description: Vocabulary: Objectives: Materials: Safety:

Description: Vocabulary: Objectives: Materials: Safety: Title: Spectral Analysis with DVDs and CDs Author: Brendan Noon Date Created: Summer 2011 Subject: Physics/Chemistry/Earth Science Grade Level: 9-12 Standards: Standard 1: Analysis, Inquiry, and Design

More information

Laboratory Exercise 8 LIGHT AND OTHER ELECTROMAGNETIC WAVES

Laboratory Exercise 8 LIGHT AND OTHER ELECTROMAGNETIC WAVES Laboratory Exercise 8 LIGHT AND OTHER ELECTROMAGNETIC WAVES In the three parts of this exercise you will study some of the properties of electromagnetic waves. Whatever their wavelength, all e.m. waves

More information

and that for the minima is min ( m 1 2). Divide the second equation by the first and solve for the order of the maximum, m.

and that for the minima is min ( m 1 2). Divide the second equation by the first and solve for the order of the maximum, m. USEFUL FORMULAE AND DATA 1. Wien s Law: pt = 2.90 10-3 m K 2. v=c/n, is the speed of light in a material with an index of refraction n 3. Snell s Law: n1 sin 1 = n2 sin 2, where subscripts 1 stands for

More information

ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = 3 + 4 = 9 + 16 = 25 or 2

ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = 3 + 4 = 9 + 16 = 25 or 2 Forensic Spectral Anaylysis: Warm up! The study of triangles has been done since ancient times. Many of the early discoveries about triangles are still used today. We will only be concerned with the "right

More information

Measurement of Charge-to-Mass (e/m) Ratio for the Electron

Measurement of Charge-to-Mass (e/m) Ratio for the Electron Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic

More information

WAVES AND PARTICLES. (v) i.e (vi) The potential difference required to bring an electron of wavelength to rest

WAVES AND PARTICLES. (v) i.e (vi) The potential difference required to bring an electron of wavelength to rest WAVES AND PARTICLES 1. De Broglie wavelength associated with the charges particles (i) The energy of a charged particle accelerated through potential difference q = charge on the particel (ii) Momentum

More information

Bohr s Model and Emission Spectra of Hydrogen and Helium

Bohr s Model and Emission Spectra of Hydrogen and Helium PHYS-01 LAB-03 Bohr s Model and Emission Spectra of Hydrogen and Helium 1. Objective The objective of this experiment is to study the emission spectrum of hydrogen and to understand its origin in terms

More information

PHYSICS PAPER 1 (THEORY)

PHYSICS PAPER 1 (THEORY) PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) ---------------------------------------------------------------------------------------------------------------------

More information

Quantum Mechanics I Physics 325. Importance of Hydrogen Atom

Quantum Mechanics I Physics 325. Importance of Hydrogen Atom Quantum Mechanics I Physics 35 Atomic spectra and Atom Models Importance of Hydrogen Atom Hydrogen is the simplest atom The quantum numbers used to characterize the allowed states of hydrogen can also

More information

Emission Spectra of Elements

Emission Spectra of Elements Fall 2003 Emission Spectra of Elements Purpose: To compare and contrast the emission spectra of various gases. Investigate quantitatively the emission spectrum of hydrogen and relate it to Bohr's theory

More information

CHEM 343: Problem Set #4 (Spectroscopy)

CHEM 343: Problem Set #4 (Spectroscopy) CHEM 343: Problem Set #4 (Spectroscopy) 1) What is the energy, in ev, of UV radiation at 250 nm? What about Visible radiation at 550 nm? hc a) Use the expression E = = hv. Where c is the speed of light,

More information