Why hot water freezes faster than cold water

Size: px
Start display at page:

Download "Why hot water freezes faster than cold water"

Transcription

1 Why hot water freezes faster than cold water By Daniel Muthukrishna Undergraduate Engineering/Physics Student at the University of Queensland Images also produced by Daniel Muthukrishna

2 Some of the main proposed explanations for the Mpemba effect have been that hotter water loses some of its mass to evaporation and that hot and cold water differ in their gas content causing a difference in freezing times. However, although both of these parameters do have an effect, they are not substantial enough to explain the distinct results. According to Osborne (1979) the amount of mass lost to evaporation is insufficient to explain the results. Additionally, Wojciechowski et al. observed the Mpemba effect in a closed container, which suggests that evaporative cooling is not the sole cause of the effect (Wojciechowski, Owczarek & Bednarz 1988). Furthermore, although hot water can hold less dissolved gas than cold water, causing a disparity in the gas content (Jeng 2005) and thus a difference in the enthalpy of freezing, Mpemba and Osborne s original experiments as well as several other experiments observed the Mpemba effect with recently boiled water, to remove dissolved air (Jeng 1998). These experiments suggest that dissolved gasses are not necessary to the Mpemba effect. Therefore, I will argue that the primary cause of the Mpemba effect is the temperature distribution of the water. As the water cools it develops temperature gradients and convection currents. For most temperatures the density of water decreases as the temperature increases. So over time, as the water cools a hot top will develop, where the surface of the water will be warmer than the bottom. Since the water loses heat primarily through the surface, the water should lose heat faster than one would expect based just on looking at the average temperature of the water (Jeng 1998). Therefore, when the hot water cools down to a colder temperature, it will lose heat faster than a body of water uniformly at that colder temperature because of its hot top. This theory is Figure 1 Convection currents supported by the fact that Deeson (1971) found that gentle stirring substantially raised the time of freezing. This could explain the Mpemba effect because the initially hot water will cool rapidly, and quickly develop convection currents and so the temperature of the water will vary greatly from the top of the water to the bottom. On the other hand, the initially cool water will have a slower rate of cooling, and will thus be slower to develop significant convection currents. Thus, if we compare the initially hot water and initially cold water at the same average temperature, it seems reasonable to believe that the initially hot water will have greater convection currents, and thus have a faster rate of cooling (Jeng 1998). It should also be noted that the density of water reaches a maximum at 4 C. Therefore, below 4 C the density of water actually decreases with decreasing temperature, and a cold top is instead formed. The reason that the water is most dense at 4 C (Robson & Marshall 2010) is most simplistically related to the fact that ice has a lower density than water, which is in fact uncommon for solids. The primary reason for this is because of hydrogen bonding. When water becomes solid, the H 2 O molecules spread apart to form a tetrahedral structure because of the hydrogen bonds. This is because it is more energetically favourable for the molecules to spread apart and for the ice to have a lower density than for the molecules to become more compact. When water falls below 4 C the molecules begin to spread out to make best use of the hydrogen bonds, and thus the density decreases. Figure 2 Convection Currents occur in the opposite direct (colder water rises) when the water falls below 4 C

3 As shown in the figure 1 convection currents mean that a cycle is created whereby the hotter water rises and the colder water sinks. This occurs because hot water is less dense and therefore rises. However, one way to limit the convection currents is by placing baffles in the beaker of water. In this case a baffle (figure 3) is made out of a hard plastic or metal that forms a cross section to separate the water into four sections (figure 4). This means that only small convection currents can occur in each of the quarters. These smaller convection currents would not be able to have as great an effect on creating temperature gradients as the full convection currents shown in figure 1. Therefore, if convection currents have an effect on the freezing time of water, when the baffles are put in the freezing times should increase. Figure 3 Baffle I conducted an experiment which limited the other potential parameters such as frosting, evaporation and dissolved gases. I did this by using a frost-free freezer to eliminate frosting, covered a 250mL plastic beaker with a layer of plasticine to limit evaporation and used recently distilled water to ensure both the cold and hot water were identical in every way except for their initial temperature. I made use of a sofware called DataStudio and three temperature probes at different heights (top, middle and bottom) connected to a laptop to record the temperature change over time and the freezing time (An example data set is shown in Appendix A). I compared water at nine different temperatures between 10 C and 90 C one set with full convection currents, and the other set with limited convection currents using baffles. Figure 4 Convection currents in beaker of water with baffles The next four graphs illustrate the results. Figure 5 Diagram of the beaker put to freeze

4 Freezing Time (minutes) Full Convection Limited Convection - Baffles Initial Temperature ( C) Figure 4.2 Final Freezing time of the water The above graph (Figure 4.2) illustrates the time taken for each of the experiments to completely freeze. The final freezing time is the time for the entire body of water to solidify. This was when all of the probes indicated temperatures below 0 C.

5 Freezing Time (minutes) Freezing Time (minutes) 350 Top Full Convection Limited convection - Baffles Initial Temperature ( C) Figure 4.3 Freezing time of the top section of the water 400 Middle Full Convection Limited Convection - Baffles Initial Temperature ( C) Figure 4.4 Freezing time of the middle section of the water

6 Freezing time (minutes) 400 Bottom Full Convection Limited Convection - Baffles Initial Temperature ( C) Figure 4.5 Freezing time of the bottom section of the water The above three graphs indicated the freezing time (the time taken for the probes to fall below 0 C) for the top, middle and bottom section of the water. These indicate that a temperature gradient exists within each of the bodies of water.

7 The results firstly indicated that the Mpemba effect occurs in distilled water. Although it is not simply a linear trend, where higher temperatures have shorter freezing times as evidenced by the highest freezing time occurring at water with an initial temperature of 50 C, it was clear that much higher temperatures had freezing times shorter than or comparable to much lower temperatures. For example, in graph 1 (blue line full convection beaker) it is evident that the water with an initial temperature of 90 C, had a freezing time much shorter than the water starting at room temperature (20 C). This phenomenon can be explained by convection currents. Firstly, by comparing the two sets of data in figure 5.1 (the red line representing the water with baffles that limited the effect of convection currents, and the blue line representing the water with full convection) it is clear that convection currents have a significant impact on the freezing time. This is evidenced by the fact that all of the data points that had limited convection currents had a much higher freezing time when compared with the water with full convection currents of similar temperatures. However, this does not substantiate that convection currents cause hotter water to freeze first, but only that convection currents influence the freezing time of water. To support the hypothesis that they cause hot water to freeze first, there needs to be a clear indication that the water at higher temperatures are affected to a greater extent by the presence of baffles than the water at lower temperatures. The maximum difference in freezing time when comparing full convection to limited convection occurred in water at an initial temperature of 90 C. By examining the freezing times of the top of the water and comparing the beakers with full and limited convection currents, it is clear that the water with full convection currents froze much faster. The red line is clearly always above the blue, indicating that the freezing times of the top of the water are affected by convection currents. But what really supports my point is the fact that the water at higher temperatures was far more affected by the baffles than the water at the lower temperatures. This is evidenced by the hotter temperatures in the full convection beakers such as 90 C, 80 C etc. all having much quicker freezing times than their corresponding limited convection beakers. Moreover, at 10 C and 20 C, it is clear that the effect of convection currents is minimal and barely affects the freezing Figure 5.1 Copy of figure 4.2 Final freezing time of the water Figure 5.2 Copy of figure 4.3 Freezing time of the top of the water times. This means that convection currents greatly influence the fact that hot water freezes faster than cold water at the top of the body of water. Furthermore, the freezing times of the water at the bottom of the beaker (figure 4.5) present the opposite of the freezing times of water at the top (figure 5.2). The graph shows that the water with limited convection currents has a far shorter freezing time than the water with full convection currents in most cases. This is because convection currents cause the bottom to freeze last. When the temperature of water falls below 4 C, the water becomes less dense. Therefore, the colder water begins to rise (as it is less dense) while the slightly hotter water begins to sink. This causes the top to freeze first and the bottom to freeze last. In the water with baffles, this does not occur

8 because the convection currents do not play a large role. In fact, as represented in Table 5.1, in almost every case in the water with full convection the top froze first; while in nearly every case of the water with baffles, the bottom froze first. This explains why the freezing time of the bottom of the water was quicker for the water with limited convection. Additionally, by examining each of the graphs of each experiment it is clear that water maintains a hot top whilst cooling until it reaches about 4 C (see Appendix C). At this point the Bottom and middle sections plateau for a while, but the top appears to increase its gradient, and cool even faster. Before this point the bottom had the steepest gradient and was losing heat the fastest. The reason that the water plateaus at 4 C is because of hydrogen bonding. Unlike most other substances water s solid state is less dense than its liquid state (as seen by the fact that ice floats on water). This is because the water molecules form tetrahedral structures to make best use of the hydrogen bonding in its solid state (Robson & Marshall 2010). It is more energetically favourable for the water molecules to form this structure which actually spreads apart the molecules and causes it to be less dense. When water falls below 4 C, it begins to form these tetrahedral structures and its density decreases. To form these structures, it requires energy. Therefore, while it is cooling, instead of expending its energy on reducing its temperature it expends it on forming these structures. Therefore, it halts at 4 C for a few minutes while this occurs. But it is at this 4 C that the top of the water increases its gradient quite significantly and freezes first. This is because of its hot top. When it falls below 4 C, the density begins to decrease and thus the cold water begins to rise. This means that it must now have a cold top. This cold top means that the top will freeze first. From all of this, it can be concluded that because of the hot top of water, caused by convection currents, hotter water tends to freeze faster than colder water as supported by Deeson s results (Deeson 1971). This is because the hot top and the temperature gradient are most exaggerated in water at higher temperatures. And since heat is lost most readily through the surface (Jeng 2005), these hot tops allow the water to lose heat rapidly upwards, so that the lower layers cool more quickly. In further support of this, according to Deeson (1971) stirring the water while it was cooling significantly increased the freezing time. This was because the convection currents would be disturbed. In conjunction with the convection current explanation of the Mpemba effect it is possible that the difference in internal energy of the hot water and the cold water can explain the effect. Since hot water has more internal energy, it may be able to use that extra energy to create hydrogen bonds quicker and overcome the latent heat of fusion faster in the freezing process. It is clear that convection currents cause water to freeze faster and also that the convection current s effect on the freezing time was much greater for water at initially higher temperatures. Furthermore, the hot top was much more exaggerated in the water at initially higher temperatures. Since the heat is most readily lost through the surface, the exaggerated hot top in the water at initially higher temperatures allowed it to freeze at a faster rate than the water at initially lower temperatures. In many cases this increased rate allowed the hotter water to freeze first.

9 Appendix A

10 Appendix B Water with full convection currents Initial Temperature ( C) Freezing Time (minutes) Steepest gradient Time to reach 0C Top Middle Bottom Average Top Middle Bottom Order of Freezing Final Freezing time Order before 5 C Top Middle Bottom Max time to reach 0 C Order to hit 0C Top, Bot, Mid 241 bot, mid, top top, mid, bot Top, Mid, Bot 309 bot, mid, top top, mid, bot Top, Bot, Mid 285 bot, mid, top top, bot, mid Bot, Top, Mid 279 bot, mid, top top, bot, mid Top, Bot, Mid 357 bot, mid, top top, mid,bot Top, Mid, Bot 300 bot, mid, top top, mid, bot Top, Bot, Mid 328 bot, mid, top top, mid, bot Top, Bot, Mid 295 bot, mid, top top, mid, bot Top, Mid, Bot 278 bot, mid, top top, mid, bot Water with baffles - Limited Convection Currents Initial Temperature ( C) Freezing Time (minutes) Steepest gradient Time to reach 0 C Top Middle Bottom Average Top Middle Bottom Order of Freezing Final Freezing time Order before 5 C Top Middle Bottom Max time to reach 0 Order to reach 0 C Top, Bot, Mid 263 bot, mid, top top, mid, bot Bot, Top, Mid 341 bot, mid, top top, mid, bot Bot, Top, Mid 308 bot, mid, top top, mid, bot bot, mid, top 289 bot, top, mid top, bot, mid Bot, Top, Mid 328 bot, mid, top top, bot, mid mid, top, bot 322 bot, top, mid top, mid, bot Bot, Top, Mid 354 bot, mid, top bot, mid, top bot, mid, top 300 bot, top, mid top, mid, bot top,mid,bot 351 bot, top, mid top, mid, bot Figure 4.1 Data from all experiments This table provides a comprehensive display of most of the important elements of each of the experiments. The top section shows relevant data for the beakers without baffles and therefore full convection currents, while the bottom section displays the relevant data for the beakers of water with the baffles and therefore limited convection currents. The table firstly states the initial temperatures of each of the experiments therefore each row is a different experiment. It then displays the freezing time for the top, middle and bottom section of the beakers. The next column illustrates the order of freezing. It can be seen that in the Water with full convection currents, the top almost always froze first, while in the water with limited convection currents the bottom mostly froze first. It then displays the final freezing time, which is taken as the time for all of the probes to indicate temperatures below 0 C therefore implying that they had all frozen. The next column indicates that before 5 C that is before water reaches its most dense state the bottom is always cooling the fastest, followed by the middle and then the top in almost all cases. The next columns illustrate the time taken for each section of the beaker to reach 0 C. The max time to reach 0 C is the time taken for all the probes to be at 0 C at the same time. The last column indicates that for all experiments, the top reached 0 C first, followed by the middle and then the top in almost all cases.

11 Appendix C Example of hot top The above graph is an example of water maintain a hot top whereby the top of the beaker cools at the slowest rate until about 4 C, where the hotter water is no longer less dense than the cooler water

12 Bibliography Concetto, G 2007, 'An easy classroom experiment on', Phys. Educ., vol 42, no. 3, pp Deeson, E 1971, 'Cooler-lower down', Phys. Educ., vol 6, pp Freeman, M 1979, 'Cooler still - an answer?', Phys. Educ., vol 14, pp Jeng, M 1998, Can hot water freeze faster than cold water?, viewed 10 July 2011, <http://www.desy.de/user/projects/physics/general/hot_water.html>. Jeng, M 2005, Hot water can freeze faster than cold??, viewed 20 May 2011, <http://www.vnc.qld.edu.au/physics/physproj/mpemba/jeng.pdf>. Mpemba, E & Osborne, D 1969, 'Cool?', Phys. Educ., vol 4, pp Nave, C 2010, Hot Water Freezing?, viewed 18 August 2011, <http://hyperphysics.phyastr.gsu.edu/hbase/thermo/freezhot.html#c1>. Olson, A 2007, Investigating the 'Mpemba Effect': Can Hot Water Freeze Faster than Cold Water?, viewed 5 June 2011, <http://www.sciencebuddies.org/science-fairprojects/project_ideas/phys_p032.shtml?fave=no&isb=cmlkojewmta0odi0lhnpzdowlha6nsxpytpqa Hlz&from=TSW>. Osborne, D 1979, 'Mind on Ice', Phys. Educ, vol 14, pp Robson, D & Marshall, M 2010, The many mysteries of water, viewed 5 June 2011, <http://www.newscientist.com/article/dn18473-the-many-mysteries-of-water.html?full=true>. Wojciechowski, B, Owczarek, I & Bednarz, G 1988, 'Freezing of Aqeous Solutions Containing Gases', Cryst. Res. Technol., vol 23, no. 7, pp

Mpemba effect from a viewpoint of an experimental physical chemist. by Nikola Bregović

Mpemba effect from a viewpoint of an experimental physical chemist. by Nikola Bregović Mpemba effect from a viewpoint of an experimental physical chemist by Nikola Bregović Introduction Checking my email a few weeks ago, I found a message from my close friend with the title This seams like

More information

Does the temperature of water effect how fast the water freezes and does a lid make the freezing process faster?

Does the temperature of water effect how fast the water freezes and does a lid make the freezing process faster? Does the temperature of water effect how fast the water freezes and does a lid make the freezing process faster? Aim: To find out if what temperature water will freeze the fastest. Secondly whether a lid

More information

Heat Transfer: Conduction, Convection, and Radiation

Heat Transfer: Conduction, Convection, and Radiation Heat Transfer: Conduction, Convection, and Radiation Introduction We have learned that heat is the energy that makes molecules move. Molecules with more heat energy move faster, and molecules with less

More information

Test Bank - Chapter 3 Multiple Choice

Test Bank - Chapter 3 Multiple Choice Test Bank - Chapter 3 The questions in the test bank cover the concepts from the lessons in Chapter 3. Select questions from any of the categories that match the content you covered with students. The

More information

Energy Matters Heat. Changes of State

Energy Matters Heat. Changes of State Energy Matters Heat Changes of State Fusion If we supply heat to a lid, such as a piece of copper, the energy supplied is given to the molecules. These start to vibrate more rapidly and with larger vibrations

More information

Practical Applications of Freezing by Boiling Process

Practical Applications of Freezing by Boiling Process Practical Applications of Freezing by Boiling Process Kenny Gotlieb, Sasha Mitchell and Daniel Walsh Physics Department, Harvard-Westlake School 37 Coldwater Canyon, N. Hollywood, CA 9164 Introduction

More information

Chapter 2 Student Reading

Chapter 2 Student Reading Chapter 2 Student Reading Atoms and molecules are in motion We warm things up and cool things down all the time, but we usually don t think much about what s really happening. If you put a room-temperature

More information

Specific Heat Capacity and Latent Heat Mixed Questions

Specific Heat Capacity and Latent Heat Mixed Questions Specific Heat Capacity and Latent Heat Mixed Questions 1. 12 000 J of heat energy raises the temperature of a 2kg block of a metal from 20 0 C to 30 0 C. What is the specific heat capacity of the metal?

More information

Table of contents. Introduction...ix. The National Science Education Standards...1. Features of Inquiry in Action investigations and activities...

Table of contents. Introduction...ix. The National Science Education Standards...1. Features of Inquiry in Action investigations and activities... Table of contents Introduction...ix The National Science Education Standards...1 Inquiry... 1 Selected science teaching standards... 4 Inquiry content standards... 6 Physical science content standards...

More information

LESSON CLUSTER 6 Heating and Cooling, Expansion and Contraction

LESSON CLUSTER 6 Heating and Cooling, Expansion and Contraction LESSON CLUSTER 6 Heating and Cooling, Expansion and Contraction Lesson 6.1: Another Way to Make Something Dissolve Faster In the last lesson you learned one way to make things dissolve faster: you can

More information

Temperature Scales. temperature scales Celsius Fahrenheit Kelvin

Temperature Scales. temperature scales Celsius Fahrenheit Kelvin Ch. 10-11 Concept Ch. 10 #1, 3, 7, 8, 9, 11 Ch11, # 3, 6, 11 Problems Ch10 # 3, 5, 11, 17, 21, 24, 25, 29, 33, 37, 39, 43, 47, 59 Problems: CH 11 # 1, 2, 3a, 4, 5, 6, 9, 13, 15, 22, 25, 27, 28, 35 Temperature

More information

Test Bank - Chapter 5 Multiple Choice

Test Bank - Chapter 5 Multiple Choice Test Bank - Chapter 5 The questions in the test bank cover the concepts from the lessons in Chapter 5. Select questions from any of the categories that match the content you covered with students. The

More information

Topic Page Contents Page

Topic Page Contents Page Heat energy (11-16) Contents Topic Page Contents Page Heat energy and temperature 3 Latent heat energy 15 Interesting temperatures 4 Conduction of heat energy 16 A cooling curve 5 Convection 17 Expansion

More information

Assessment Schedule 2012: Physics: Demonstrate understanding of aspects of heat (90939)

Assessment Schedule 2012: Physics: Demonstrate understanding of aspects of heat (90939) NCEA Level 1 Physics (90939) 2012 page 1 of 6 Assessment Schedule 2012: Physics: Demonstrate understanding of aspects of heat (90939) Assessment Criteria ONE (a)(i) States the term condensation. States

More information

Hot Leaks. See how the temperature of liquids changes the way they flow.

Hot Leaks. See how the temperature of liquids changes the way they flow. P h y s i c s Q u e s t A c t i v i t i e s Activity 2 1 Hot Leaks See how the temperature of liquids changes the way they flow. Safety: This experiment requires using the hot water tap and straight pins.

More information

Heat and Temperature. Temperature Scales. Thermometers and Temperature Scales

Heat and Temperature. Temperature Scales. Thermometers and Temperature Scales Heat and Temperature Thermometers and Temperature Scales The mercury-based one you see here relies on the fact that mercury expands at a predictable rate with temperature. The scale of the thermometer

More information

2. Room temperature: C. Kelvin. 2. Room temperature:

2. Room temperature: C. Kelvin. 2. Room temperature: Temperature I. Temperature is the quantity that tells how hot or cold something is compared with a standard A. Temperature is directly proportional to the average kinetic energy of molecular translational

More information

Chapter 3 Student Reading

Chapter 3 Student Reading Chapter 3 Student Reading If you hold a solid piece of lead or iron in your hand, it feels heavy for its size. If you hold the same size piece of balsa wood or plastic, it feels light for its size. The

More information

Chapter 10: Temperature and Heat

Chapter 10: Temperature and Heat Chapter 10: Temperature and Heat 1. The temperature of a substance is A. proportional to the average kinetic energy of the molecules in a substance. B. equal to the kinetic energy of the fastest moving

More information

Multiple Choice For questions 1-10, circle only one answer.

Multiple Choice For questions 1-10, circle only one answer. Test Bank - Chapter 1 The questions in the test bank cover the concepts from the lessons in Chapter 1. Select questions from any of the categories that match the content you covered with students. The

More information

5.6: Characteristic Physical Properties pg. 192

5.6: Characteristic Physical Properties pg. 192 5.6: Characteristic Physical Properties pg. 192 Key Concepts: 1. Physical properties are characteristics that can be determined without changing the composition of the substance. 3. Pure substances have

More information

Which statement best summarizes what will happen to the water in each of the beakers after a few hours?

Which statement best summarizes what will happen to the water in each of the beakers after a few hours? Name: lass: ate: Question #1 Which best explains how the Earth's atmosphere is warmed? ) Radiation from the sun warms the surface and through conduction and convection the atmosphere is heated. ) Radiation

More information

Conduction, Convention & Radiation

Conduction, Convention & Radiation Name: Class: Date: Grade 11A Science Related Reading/Physics Conduction, Convention & Radiation Physics Gr11A Pre Reading Activity Using prior knowledge, write the definition for each vocabulary term.

More information

REASONING AND SOLUTION

REASONING AND SOLUTION 39. REASONING AND SOLUTION The heat released by the blood is given by Q cm T, in which the specific heat capacity c of the blood (water) is given in Table 12.2. Then Therefore, T Q cm 2000 J 0.8 C [4186

More information

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity

More information

TEACHER BACKGROUND INFORMATION THERMAL ENERGY

TEACHER BACKGROUND INFORMATION THERMAL ENERGY TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to

More information

[8] SA1.2 The student demonstrates an understanding of the processes of science by collaborating

[8] SA1.2 The student demonstrates an understanding of the processes of science by collaborating Convection and Wind Levels Overview: During this project, students observe convection current by performing a lab experiment. As a result of this activity, students develop an understanding of the process

More information

Sue Cascio (Coyote Valley School), Valerie Duncan (Upper lake Middle School), Paul McGuire (Mountain Vista Middle School)

Sue Cascio (Coyote Valley School), Valerie Duncan (Upper lake Middle School), Paul McGuire (Mountain Vista Middle School) TEACHING LEARNING COLLABORATIVE (TLC) PHYSICAL SCIENCE Convection Grade 6 Created by: Sandra Cornell (Terrace Heights School), Stacy Holland (Terrace Heights School), Sue Cascio (Coyote Valley School),

More information

Will an Ice Cube Melt Faster in Freshwater or Saltwater? Teacher Guide:

Will an Ice Cube Melt Faster in Freshwater or Saltwater? Teacher Guide: Will an Ice Cube Melt Faster in Freshwater or Saltwater? Learning Objectives Teacher Guide: Years ago I gave my students four solutions with varying amounts of salt dissolved in water and asked them to

More information

Specific Heat (slope and steepness)

Specific Heat (slope and steepness) 1 Specific Heat (slope and steepness) 10 pages. According to the Physical Science text book, the Specific Heat of a material is DEFINED as the following: Specific heat is the amount of heat energy required

More information

(a) Given that the spacing between polymer chains in PP and PVC is similar, the beads that sink are made of which polymer? Explain.

(a) Given that the spacing between polymer chains in PP and PVC is similar, the beads that sink are made of which polymer? Explain. A student places a mixture of plastic beads consisting of polypropylene (PP) and polyvinyl chloride (PVC) in a 1.0 L beaker containing distilled water. After stirring the contents of the beaker vigorously,

More information

Specific Heat Capacity and Latent Heat Questions A2 Physics

Specific Heat Capacity and Latent Heat Questions A2 Physics 1. An electrical heater is used to heat a 1.0 kg block of metal, which is well lagged. The table shows how the temperature of the block increased with time. temp/ C 20.1 23.0 26.9 30.0 33.1 36.9 time/s

More information

Convection Current and Tectonic Plates

Convection Current and Tectonic Plates Convection Current and Tectonic Plates 9 th -12 th Grade Standards: This activity meets California science standards for grades 7 through 12. Purpose: Students should understand the actions of fluids and

More information

SAM Teachers Guide Heat and Temperature

SAM Teachers Guide Heat and Temperature SAM Teachers Guide Heat and Temperature Overview Students learn that temperature measures average kinetic energy, and heat is the transfer of energy from hot systems to cold systems. They consider what

More information

Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat Chapter 10 Temperature and Heat What are temperature and heat? Are they the same? What causes heat? What Is Temperature? How do we measure temperature? What are we actually measuring? Temperature and Its

More information

Density Lab Materials: One 25, one 50, and one 100ml graduated cylinder Tray with samples of: aluminum, steel, lead, zinc, copper, brass and at least

Density Lab Materials: One 25, one 50, and one 100ml graduated cylinder Tray with samples of: aluminum, steel, lead, zinc, copper, brass and at least Density Lab Materials: One 25, one 50, and one 100ml graduated cylinder Tray with samples of: aluminum, steel, lead, zinc, copper, brass and at least pennies Beaker of salt water Procedural information:

More information

Project TECHNOcean Lesson/Activity Plan

Project TECHNOcean Lesson/Activity Plan Heat Transfer Hayley Vatcher Anna Reh-Gingerich Murray Middle, 7th Objective: Students should be able to: Define and describe conduction Define and describe convection List some good conductors, and poor

More information

(Walter Glogowski, Chaz Shapiro & Reid Sherman) INTRODUCTION

(Walter Glogowski, Chaz Shapiro & Reid Sherman) INTRODUCTION Convection (Walter Glogowski, Chaz Shapiro & Reid Sherman) INTRODUCTION You know from common experience that when there's a difference in temperature between two places close to each other, the temperatures

More information

LESSON CLUSTER 7 Explaining Melting and Solidifying

LESSON CLUSTER 7 Explaining Melting and Solidifying LESSON CLUSTER 7 Explaining Melting and Solidifying Lesson 7.1: Melting Ice and Freezing Water Do you remember the first experiment you did in this unit? It was an ice melting race. You learned then about

More information

Exploring Convection Currents Lab Activity

Exploring Convection Currents Lab Activity NAME: Introduction DATE: Exploring Convection Currents Lab Activity Nearly all of the earth s energy comes from the sun. Some of this radiant energy is reflected by water droplets and dust particles in

More information

Chapter 2 THE ANOMALOUS BEHAVIOUR OF WATER: A SIMPLE EXPERIMENT 1. INTRODUCTION

Chapter 2 THE ANOMALOUS BEHAVIOUR OF WATER: A SIMPLE EXPERIMENT 1. INTRODUCTION Chapter 2 THE ANOMALOUS BEHAVIOUR OF WATER: A SIMPLE EXPERIMENT Farook Al-Shamali Faculty of Science and Technology, Athabasca University, Canada Abstract: A perception exists among students, and many

More information

Water Properties Lab

Water Properties Lab Name: Block: Biology 2/2010 Water Properties Lab Water is a polar molecule. The oxygen atom in water has a greater electronegativity, or a stronger pull on the electrons that it shares with the two hydrogens

More information

Heat Energy FORMS OF ENERGY LESSON PLAN 2.7. Public School System Teaching Standards Covered

Heat Energy FORMS OF ENERGY LESSON PLAN 2.7. Public School System Teaching Standards Covered FORMS OF ENERGY LESSON PLAN 2.7 Heat Energy This lesson is designed for 3rd 5th grade students in a variety of school settings (public, private, STEM schools, and home schools) in the seven states served

More information

ASPECTS OF HEAT QUESTIONS AS ( ) HEAT TRANSER QUESTIONS FROM SCIENCE (EXPIRED)

ASPECTS OF HEAT QUESTIONS AS ( ) HEAT TRANSER QUESTIONS FROM SCIENCE (EXPIRED) ASPECTS OF HEAT QUESTIONS AS 90939 (2011 2013) http://www.nzqa.govt.nz/ncea/assessment/search.do?query=physics&view=exams&level=01 http://www.nzqa.govt.nz/ncea/assessment/search.do?query=physics&view=reports&level=01

More information

Chillin Out: Designing an Insulator

Chillin Out: Designing an Insulator SHPE Jr. Chapter May 2015 STEM Activity Instructor Resource Chillin Out: Designing an Insulator Students learn about the three ways heat can be transferred from one object to another. They also learn what

More information

KINETIC MOLECULAR THEORY OF MATTER

KINETIC MOLECULAR THEORY OF MATTER KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,

More information

The graph shows how the temperature of each thermometer changes with time. Page 1 of 23

The graph shows how the temperature of each thermometer changes with time. Page 1 of 23 Q. The diagram shows two thermometers. The bulb of each thermometer is covered with a piece of wet cotton wool. One of the thermometers is placed in the draught from a fan. The graph shows how the temperature

More information

Earth s Atmosphere. Energy Transfer in the Atmosphere. 3. All the energy from the Sun reaches Earth s surface.

Earth s Atmosphere. Energy Transfer in the Atmosphere. 3. All the energy from the Sun reaches Earth s surface. CHAPTER 12 LESSON 2 Earth s Atmosphere Energy Transfer in the Atmosphere Key Concepts How does energy transfer from the Sun to Earth and to the atmosphere? How are air circulation patterns within the atmosphere

More information

Chapter 2, Lesson 1: Heat, Temperature, and Conduction

Chapter 2, Lesson 1: Heat, Temperature, and Conduction Chapter 2, Lesson 1: Heat, Temperature, and Conduction Key Concepts Adding energy (heating) atoms and molecules increases their motion, resulting in an increase in temperature. Removing energy (cooling)

More information

CONVECTION. cold water (red)

CONVECTION. cold water (red) CONVECTION Name(s) PART 1 Convection and Density The physical world around us is constantly changing. The activities in this section of the unit will introduce a new model (convection) which is very powerful

More information

THE STUDY OF THE EFFECT OF DRY ICE ON THE TEMPERATURE OF WATER

THE STUDY OF THE EFFECT OF DRY ICE ON THE TEMPERATURE OF WATER THE STUDY OF THE EFFECT OF DRY ICE ON THE TEMPERATURE OF WATER Justin Tunley Cary Academy ABSTRACT: The purpose of this study was to find out how much the temperature of water would change over time after

More information

Temperature s Effect on Reaction Rates MS. THOMPSON PERIOD: A1 NOVEMBER 23, 2015

Temperature s Effect on Reaction Rates MS. THOMPSON PERIOD: A1 NOVEMBER 23, 2015 Temperature s Effect on Reaction Rates MS. THOMPSON PERIOD: A1 NOVEMBER 23, 2015 Abstract: For my experiment I wanted to know if increasing the temperature of a chemical reaction would change how fast

More information

Physics 142: Lecture 10 Today s Agenda. Review: Specific Heat. Review: Units of Heat. Review: Internal Energy of Ideal Gas

Physics 142: Lecture 10 Today s Agenda. Review: Specific Heat. Review: Units of Heat. Review: Internal Energy of Ideal Gas Physics 142: Lecture 10 Today s Agenda Heat: Phase Change and Latent Heat Heat Transfer (time permitting) Examples Suggested problems for CH11: 23, 46, 49, 0, 1, 78 Review: Internal Energy of Ideal Gas

More information

Understanding Solar Energy Teacher Page

Understanding Solar Energy Teacher Page Understanding Solar Energy Teacher Page Student Objective The student: will be able to calculate the calorie heat gain for several different containers given containers of several different materials will

More information

Assessment Schedule 2014 Earth and Space Science: Demonstrate understanding of processes in the atmosphere system (91414)

Assessment Schedule 2014 Earth and Space Science: Demonstrate understanding of processes in the atmosphere system (91414) NCEA Level 3 Earth and Space Science (91414) 2014 page 1 of 7 Assessment Schedule 2014 Earth and Space Science: Demonstrate understanding of processes in the atmosphere system (91414) Evidence Statement

More information

Teaching Sciences by Ocean Inquiry SMS 491/ EDW 472 Spring 2008

Teaching Sciences by Ocean Inquiry SMS 491/ EDW 472 Spring 2008 Teaching Sciences by Ocean Inquiry SMS 491/ EDW 472 Spring 2008 HEAT AND TEMPERATURE LAB: Part II 1. Thermal expansion/water thermometer A flask One-hole stopper A long glass tube A container filled with

More information

Heat Transfer. Convection. Introduction. Natural convection

Heat Transfer. Convection. Introduction. Natural convection Heat Transfer Convection Introduction Convection is defined as the circulation of fluids (liquids or gases), either natural or forced. Hot or cold fluids can add or remove heat. Natural convection is caused

More information

Freezing Point Depression: Why Don t Oceans Freeze? Teacher Version

Freezing Point Depression: Why Don t Oceans Freeze? Teacher Version Freezing Point Depression: Why Don t Oceans Freeze? Teacher Version Freezing point depression describes the process where the temperature at which a liquid freezes is lowered by adding another compound.

More information

Instruction Manual and Experiment Guide F. Basic Calorimetry Set TD-8557A

Instruction Manual and Experiment Guide F. Basic Calorimetry Set TD-8557A Instruction Manual and Experiment Guide 012-03060F Basic Calorimetry Set TD-8557A Al Cu W Table of Contents Introduction......................................................................... 1 Notes

More information

1. The following information is from a leaflet produced by a double-glazing company.

1. The following information is from a leaflet produced by a double-glazing company. Heating and insulating buildings 1. The following information is from a leaflet produced by a double-glazing company. Change your single-glazed windows to our energy-efficient double glazed windows and

More information

Heat Transfer. Convection. Introduction. Natural convection

Heat Transfer. Convection. Introduction. Natural convection Heat Transfer Convection Introduction Convection is defined as the circulation of fluids (liquids or gases), either natural or forced. Hot or cold fluids can add or remove heat. Natural convection is caused

More information

States of matter. The three states of matter

States of matter. The three states of matter 1 By the end of this chapter you should be able to: States of matter explain what is meant by the states of matter ; describe physical differences between solids, liquids and gases; explain what is meant

More information

15.2 Convection. It is the material itself that moves

15.2 Convection. It is the material itself that moves 15.2 Convection It is the material itself that moves Learning Objectives What is convection? How can we change the rate of convection? Where do we make use of convection in the home? Particles In fixed

More information

Density Circulation Model ME-6816

Density Circulation Model ME-6816 Instruction Manual 012-12254A *012-12254* PASCO Earth Science Density Circulation Model Pouring Spout 1 Liter Reservoir Top Valve Milliliter Scale 1 Liter Reservoir Valve Handles Centimeter Scale Bottom

More information

Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version

Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version Freezing point depression describes the process where the temperature at which a liquid freezes is lowered by adding another

More information

UNIT 1 GCSE PHYSICS Energy Transfer by Heating 2011 FXA HEAT TRANSFER PROCESS COLD

UNIT 1 GCSE PHYSICS Energy Transfer by Heating 2011 FXA HEAT TRANSFER PROCESS COLD 11 The transfer of energy by conduction, convection, evaporation and condensation involves particles, and how this transfer takes place. How the arrangement and movement of particles determine whether

More information

SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB

SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB Purpose: Most ionic compounds are considered by chemists to be salts and many of these are water soluble. In this lab, you will determine the solubility,

More information

Name Class Date STUDY GUIDE FOR CONTENT MASTERY

Name Class Date STUDY GUIDE FOR CONTENT MASTERY Atmosphere SECTION 11.1 Atmospheric Basics In your textbook, read about the composition of the atmosphere. Circle the letter of the choice that best completes the statement. 1. Most of Earth s atmosphere

More information

Type: Single Date: Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12

Type: Single Date: Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12 Type: Single Date: Objective: Latent Heat Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12 AP Physics B Date: Mr. Mirro Heat and Phase Change When bodies are heated or cooled their

More information

3.3 Phase Changes Charactaristics of Phase Changes phase change

3.3 Phase Changes Charactaristics of Phase Changes phase change When at least two states of the same substance are present, scientists describe each different state as a phase. A phase change is the reversible physical change that occurs when a substance changes from

More information

Chapter 3, Lesson 6: Temperature Affects Density

Chapter 3, Lesson 6: Temperature Affects Density Chapter 3, Lesson 6: Temperature Affects Density Key Concepts Heating a substance causes molecules to speed up and spread slightly further apart, occupying a larger volume that results in a decrease in

More information

Atmospheric Properties Short Study Guide

Atmospheric Properties Short Study Guide Name: Class: Date: Atmospheric Properties Short Study Guide Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Earth s atmosphere contains more

More information

Lecture 23: Terrestrial Worlds in Comparison. This lecture compares and contrasts the properties and evolution of the 5 main terrestrial bodies.

Lecture 23: Terrestrial Worlds in Comparison. This lecture compares and contrasts the properties and evolution of the 5 main terrestrial bodies. Lecture 23: Terrestrial Worlds in Comparison Astronomy 141 Winter 2012 This lecture compares and contrasts the properties and evolution of the 5 main terrestrial bodies. The small terrestrial planets have

More information

Kinetic Theory. Bellringer. Kinetic Theory, continued. Visual Concept: Kinetic Molecular Theory. States of Matter, continued.

Kinetic Theory. Bellringer. Kinetic Theory, continued. Visual Concept: Kinetic Molecular Theory. States of Matter, continued. Bellringer You are already familiar with the most common states of matter: solid, liquid, and gas. For example you can see solid ice and liquid water. You cannot see water vapor, but you can feel it in

More information

The Energy of Evaporation A Lab Investigation

The Energy of Evaporation A Lab Investigation The Energy of Evaporation A Lab Investigation Summary In this investigation, students test evaporation rates for different liquids. Next, students use a thermometer to measure the temperature change during

More information

Convection Currents. Presented by Kesler Science

Convection Currents. Presented by Kesler Science Convection Currents Presented by Kesler Science Essential Questions: 1. How does the Suns energy drive convection within the atmosphere and oceans, D Convection Currents Heat energy transfer between two

More information

Name Date Class THERMOCHEMISTRY. SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510)

Name Date Class THERMOCHEMISTRY. SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510) 17 THERMOCHEMISTRY SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510) This section explains the relationship between energy and heat, and distinguishes between heat capacity and specific heat.

More information

HNRS 227 Fall 2008 Chapter 4. Do You Remember These? iclicker Question. iclicker Question. iclicker Question. iclicker Question

HNRS 227 Fall 2008 Chapter 4. Do You Remember These? iclicker Question. iclicker Question. iclicker Question. iclicker Question HNRS 227 Fall 2008 Chapter 4 Heat and Temperature presented by Prof. Geller Do You Remember These? Units of length, mass and time, and metric Prefixes Density and its units The Scientific Method Speed,

More information

Temperature. Temperature

Temperature. Temperature Chapter 8 Temperature Temperature a number that corresponds to the warmth or coldness of an object measured by a thermometer is a per-particle property no upper limit definite limit on lower end Temperature

More information

Energy Heats Maine. Heat Transfer Scenes

Energy Heats Maine. Heat Transfer Scenes Energy Heats Maine 1G G2 Energy Heats Maine Energy Heats Maine 3G G4 Energy Heats Maine Energy Heats Maine 5G G6 Energy Heats Maine Energy Heats Maine 7G G8 Energy Heats Maine Energy Heats Maine 9G G10

More information

HEAT. Heat is measured in Joules, (J). Heat is a form of Energy and can do work. Expansion happens when objects get hot.

HEAT. Heat is measured in Joules, (J). Heat is a form of Energy and can do work. Expansion happens when objects get hot. HEAT Heat is measured in Joules, (J). Heat is a form of Energy and can do work. Expansion happens when objects get hot. Contraction happens when objects get cold. Advantages: Thermometers use expanding

More information

Copper, Zinc and Brass (an alloy of Cu and Zn) have very similar specific heat capacities. Why should this be so?

Copper, Zinc and Brass (an alloy of Cu and Zn) have very similar specific heat capacities. Why should this be so? Thermal Properties 1. Specific Heat Capacity The heat capacity or thermal capacity of a body is a measure of how much thermal energy is required to raise its temperature by 1K (1 C). This will depend on

More information

Q1. The diagram shows part of a solar water heater. Water circulating through the solar panel is heated by the Sun.

Q1. The diagram shows part of a solar water heater. Water circulating through the solar panel is heated by the Sun. Q. The diagram shows part of a solar water heater. Water circulating through the solar panel is heated by the Sun. (i) Complete the following sentence. Heat energy is transferred from the Sun to the solar

More information

SUGAR CRYSTAL GROWING PROJECT

SUGAR CRYSTAL GROWING PROJECT MINI SCIENCE EXPO 2014 NAME.. GRADE SUGAR CRYSTAL GROWING PROJECT 1 P a g e BACKGROUND INFORMATION One of the reasons that this science project is so popular is because it is relatively easy to do and

More information

Chapter 10 Liquids & Solids

Chapter 10 Liquids & Solids 1 Chapter 10 Liquids & Solids * 10.1 Polar Covalent Bonds & Dipole Moments - van der Waals constant for water (a = 5.28 L 2 atm/mol 2 ) vs O 2 (a = 1.36 L 2 atm/mol 2 ) -- water is polar (draw diagram)

More information

Name: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb.

Name: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb. Name: Class: Date: ID: A PS Chapter 13 Review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. In all cooling

More information

Chapter 12 - Liquids and Solids

Chapter 12 - Liquids and Solids Chapter 12 - Liquids and Solids 12-1 Liquids I. Properties of Liquids and the Kinetic Molecular Theory A. Fluids 1. Substances that can flow and therefore take the shape of their container B. Relative

More information

Lab Activity on Density, Buoyancy and Convection

Lab Activity on Density, Buoyancy and Convection Lab Activity on Density, Buoyancy and Convection 2002 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Introduction One of the four themes for this

More information

CONVECTION CONNECTION

CONVECTION CONNECTION CONVECTION CONNECTION Overview: In this lesson, students observe convection current by performing two lab experiments. As a result of these activities, students develop an understanding of the process

More information

UNIT 6a TEST REVIEW. 1. A weather instrument is shown below.

UNIT 6a TEST REVIEW. 1. A weather instrument is shown below. UNIT 6a TEST REVIEW 1. A weather instrument is shown below. Which weather variable is measured by this instrument? 1) wind speed 3) cloud cover 2) precipitation 4) air pressure 2. Which weather station

More information

You can read more about the Hadley Cells by visiting the NASA website link below.

You can read more about the Hadley Cells by visiting the NASA website link below. Environmental Literacy Framework Activity 5B-Full of Hot Air Preview Focus Question: How is climate affected by air and ocean currents? The distribution of heat around the globe is not even. Due to the

More information

Convection, Conduction & Radiation

Convection, Conduction & Radiation Convection, Conduction & Radiation There are three basic ways in which heat is transferred: convection, conduction and radiation. In gases and liquids, heat is usually transferred by convection, in which

More information

Chemical Bonds. Chemical Bonds. The Nature of Molecules. Energy and Metabolism < < Covalent bonds form when atoms share 2 or more valence electrons.

Chemical Bonds. Chemical Bonds. The Nature of Molecules. Energy and Metabolism < < Covalent bonds form when atoms share 2 or more valence electrons. The Nature of Molecules Chapter 2 Energy and Metabolism Chapter 6 Chemical Bonds Molecules are groups of atoms held together in a stable association. Compounds are molecules containing more than one type

More information

Endothermic and Exothermic Processes

Endothermic and Exothermic Processes Endothermic and Exothermic Processes Teacher Preparation Purpose Students will measure temperature changes that occur as chemical compounds dissolve in water. They will collect temperature data for three

More information

SECTION 5 COMMERCIAL REFRIGERATION UNIT 21 EVAPORATORS AND THE REFRIGERATION SYSTEM

SECTION 5 COMMERCIAL REFRIGERATION UNIT 21 EVAPORATORS AND THE REFRIGERATION SYSTEM SECTION 5 COMMERCIAL REFRIGERATION UNIT 21 EVAPORATORS AND THE REFRIGERATION SYSTEM UNIT OBJECTIVES After studying this unit, the reader should be able to Define high-, medium-, and low-temperature refrigeration.

More information

Materials 10-mL graduated cylinder l or 2-L beaker, preferably tall-form Thermometer

Materials 10-mL graduated cylinder l or 2-L beaker, preferably tall-form Thermometer VAPOR PRESSURE OF WATER Introduction At very low temperatures (temperatures near the freezing point), the rate of evaporation of water (or any liquid) is negligible. But as its temperature increases, more

More information

Energy Transfer in the Atmosphere

Energy Transfer in the Atmosphere Energy Transfer in the Atmosphere Energy Transfer in the Atmosphere The sun provides most of the Earth s energy. This energy is what drives winds and ocean currents and allows Earth s plants to grow and

More information

Salty-Sweet Density Treat Teacher Instructions

Salty-Sweet Density Treat Teacher Instructions Salty-Sweet Density Treat Teacher Instructions Lauren Harris Teaching Objectives: Students will take measurements and record observations Students will understand the concept of density and states of matter

More information

Chapter 5 Student Reading

Chapter 5 Student Reading Chapter 5 Student Reading THE POLARITY OF THE WATER MOLECULE Wonderful water Water is an amazing substance. We drink it, cook and wash with it, swim and play in it, and use it for lots of other purposes.

More information

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

More information