# States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

 To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Save this PDF as:

Size: px
Start display at page:

Download "States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided."

## Transcription

1 CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas ideal gas real gas a. The gas will not condense because the molecules do not attract each other. b. Collisions between molecules are perfectly elastic. c. Gas particles passing close to one another exert an attraction on each other. 2. The formula for kinetic energy is KE 1 2 mv 2. a. As long as temperature is constant, what happens to the kinetic energy of the colliding particles during an elastic collision? The energy is transferred between them. b. If two gases have the same temperature and share the same energy but have different molecular masses, which molecules will have the greater speed? Those with the lower molecule mass. 3. Use the kinetic-molecular theory to explain each of the following phenomena: a. A strong-smelling gas released from a container in the middle of a room is soon detected in all areas of that room. Gas molecules are in constant, rapid, random motion. b. As a gas is heated, its rate of effusion through a small hole increases if all other factors remain constant. As a gas is heated, each molecule s speed increases; therefore, the molecules pass through the small hole more frequently. 4. a. b, d, c, a List the following gases in order of rate of effusion, from lowest to highest. (Assume all gases are at the same temperature and pressure.) (a) He (b) Xe (c) HCl (d) Cl 2 MODERN CHEMISTRY STATES OF MATTER 81

2 SECTION 1 continued b. Explain why you put the gases in the order above. Refer to the kinetic-molecular theory to support your explanation. All gases at the same temperature have the same average kinetic energy. Therefore, heavier molecules have slower average speeds. Thus, the gases are ranked from heaviest to lightest in molar mass. 5. Explain why polar gas molecules experience larger deviations from ideal behavior than nonpolar molecules when all other factors (mass, temperature, etc) are held constant. Polar molecules attract neighboring polar molecules and often move out of their straight-line paths because of these attractions. 6. c The two gases in the figure below are simultaneously injected into opposite ends of the tube. The ends are then sealed. They should just begin to mix closest to which labeled point? NH 3 (a) (b) (c) HCl 7. Explain the difference in the speed-distribution curves of a gas at the two temperatures shown in the figure below. Lower temperature Higher temperature Number of molecules Molecular speed In both cases the average speed of the molecules is proportional to temperature. The distribution of molecules becomes broader as the temperature increases. This means that there are a greater number of molecules traveling within a greater range of higher speeds as the temperature increases. 82 STATES OF MATTER MODERN CHEMISTRY

3 CHAPTER 10 REVIEW States of Matter SECTION 2 SHORT ANSWER Answer the following questions in the space provided. 1. a Liquids possess all the following properties except (a) relatively low density. (c) relative incompressibility. (b) the ability to diffuse. (d) the ability to change to a gas. 2. a. Chemists distinguish between intermolecular and intramolecular forces. Explain the difference between these two types of forces. Intermolecular forces are between separate molecules; intramolecular forces are within individual molecules. Classify each of the following as intramolecular or intermolecular: intermolecular intramolecular intermolecular b. hydrogen bonding in liquid water c. the O H covalent bond in methanol, CH 3 OH d. the bonds that cause gaseous Cl 2 to become a liquid when cooled 3. Explain the following properties of liquids by describing what is occurring at the molecular level. a. A liquid takes the shape of its container but does not expand to fill its volume. Liquid molecules are very mobile. This mobility allows a liquid to take the shape of its container. In liquids, molecules are in contact with adjacent molecules, allowing intermolecular forces to have a greater effect than they do in gases. The molecules in a liquid will therefore not necessarily spread out to fill a container s entire volume. b. Polar liquids are slower to evaporate than nonpolar liquids. Polar molecules are attracted to adjacent molecules and are therefore less able to escape from the liquid s surface than are nonpolar molecules. MODERN CHEMISTRY STATES OF MATTER 83

4 SECTION 2 continued 4. Explain briefly why liquids tend to form spherical droplets, decreasing surface area to the smallest size possible. An attractive force pulls adjacent parts of a liquid s surface together, thus decreasing surface area to the smallest possible size. A sphere offers the minimum surface area for a given volume of liquid. 5. Is freezing a chemical change or a physical change? Briefly explain your answer. Freezing is a physical change. The substance solidifying is changing its state, which is a physical change. It is still the same substance so it has not changed chemically. 6. Is evaporation a chemical or physical change? Briefly explain your answer. Evaporation is a physical change because it involves a change of physical state. There is no change in the chemical makeup of the substance, which would be necessary for a chemical change. 7. What is the relationship between vaporization and evaporation? Evaporation is a form of vaporization. It occurs only in nonboiling liquids when some liquid particles enter the gas state. Vaporization is a more general term that refers to either a liquid or a solid changing to a gas. 84 STATES OF MATTER MODERN CHEMISTRY

5 CHAPTER 10 REVIEW States of Matter SECTION 3 SHORT ANSWER Answer the following questions in the space provided. 1. Match description on the right to the correct crystal type on the left. b ionic crystal (a) has mobile electrons in the crystal c covalent molecular crystal (b) is hard, brittle, and nonconducting a metallic crystal (c) typically has the lowest melting point of the four d covalent network crystal crystal types (d) has strong covalent bonds between neighboring atoms 2. For each of the four types of solids, give a specific example other than one listed in Table 1 on page 340 of the text. some possible answers: ionic solid: MgO, CaO, KI, CuSO 4 covalent network solid: graphite, silicon carbide covalent molecular solid: dry ice (CO 2 ), sulfur, iodine metallic solid: any metal from the far left side of the periodic table 3. A chunk of solid lead is dropped into a pool of molten lead. The chunk sinks to the bottom of the pool. What does this tell you about the density of the solid lead compared with the density of the molten lead? Solid lead is denser than the liquid form. 4. Answer amorphous solid or crystalline solid to the following questions: crystalline solid crystalline solid amorphous solid amorphous solid a. Which is less compressible? b. Which has a more clearly defined shape? c. Which is sometimes described as a supercooled liquid? d. Which has a less clearly defined melting point? MODERN CHEMISTRY STATES OF MATTER 85

6 SECTION 3 continued 5. Explain the following properties of solids by describing what is occurring at the atomic level. a. Metallic solids conduct electricity well, but covalent network solids do not. Metals have many electrons that are not bound to any one atom; therefore they are able to move throughout the crystal. In covalent network solids, all atoms (and electrons) are strongly bound in place and are not free to move. b. The volume of a solid changes only slightly with a change in temperature or pressure. Solids have definite volume because their particles are packed very close together. There is very little empty space into which the particles can be compressed. Even at high temperatures their particles are held in relatively fixed positions. c. Amorphous solids do not have a definite melting point. In amorphous solids, particles are arranged randomly; no specific amount of kinetic energy is needed to overcome the attractive forces holding the particles together. Thus, they do not have a point at which they melt, but melt over a range of temperatures. d. Ionic crystals are much more brittle than covalent molecular crystals. Ionic crystals have strong binding forces between the positive and negative ions in the crystal structure. Covalent molecular crystals have weaker bonds between the molecules. 6. Experiments show that it takes 6.0 kj of energy to melt 1 mol of water ice at its melting point but only about 1.1 kj to melt 1 mol of methane, CH 4, at its melting point. Explain in terms of intermolecular forces why it takes so much less energy to melt the methane. The attractive forces between CH 4 molecules are weak (dispersion forces). Little energy is needed to separate the molecules. Melting water ice involves the breaking of many hydrogen bonds between molecules, which requires more energy. 86 STATES OF MATTER MODERN CHEMISTRY

7 CHAPTER 10 REVIEW States of Matter SECTION 4 SHORT ANSWER Answer the following questions in the space provided. 1. a When a substance in a closed system undergoes a phase change and the system reaches equilibrium, (a) the two opposing changes occur at equal rates. (b) there are no more phase changes. (c) one phase change predominates. (d) the amount of substance in the two phases changes. 2. Match the following definitions on the right with the words on the left. b equilibrium (a) melting c volatile (b) opposing changes occurring at equal rates in a closed system a fusion (c) readily evaporated d deposition (d) a change directly from a gas to a solid 3. Match the process on the right with the change of state on the left. c solid to gas (a) melting d liquid to gas (b) condensation b gas to liquid (c) sublimation a solid to liquid (d) vaporization 4. Refer to the phase diagram for water in Figure 16 on page 347 of the text to answer the following questions: A C it decreases a. What point represents the conditions under which all three phases can coexist? b. What point represents a temperature above which only the vapor phase exists? c. Based on the diagram, as the pressure on the water system increases, what happens to the melting point of ice? d. What happens when water is at point A on the curve and the temperature increases while the pressure is held constant? ice and liquid water will vaporize, forming water vapor MODERN CHEMISTRY STATES OF MATTER 87

8 SECTION 4 continued 5. Use this general equilibrium equation to answer the following questions: reactants products energy decrease reverse reaction forward reaction a. If the forward reaction is favored, will the concentration of reactants increase, decrease, or stay the same? b. If extra product is introduced, which reaction will be favored? c. If the temperature of the system decreases, which reaction will be favored? 6. Refer to the graph below to answer the following questions: Vapor Pressure vs. Temperature for H 2 O and CCl kpa Vapor Pressure (kpa) CCl 4 H 2 O Temperature ( C) about 75 C a. What is the normal boiling point of CCl 4? about 85 C about 38 kpa b. What would be the boiling point of water if the air pressure over the liquid were reduced to 60 kpa? c. What must the air pressure over CCl 4 be for it to boil at 50 C? d. Although water has a lower molar mass than CCl 4, it has a lower vapor pressure when measured at the same temperature. What makes water vapor less volatile than CCl 4? Based solely on molar mass, CCl 4 would be expected to be less volatile than water. However, CCl 4 is nonpolar and thus has weak intermolecular forces of attraction. Water is polar and contains strong hydrogen bonds between molecules. Thus, water is less volatile despite its smaller molar mass. 88 STATES OF MATTER MODERN CHEMISTRY

9 CHAPTER 10 REVIEW States of Matter SECTION 5 SHORT ANSWER Answer the following questions in the space provided. 1. Indicate whether each of the following is a physical or chemical property of water. physical chemical chemical physical a. The density of ice is less than the density of liquid water. b. A water molecule contains one atom of oxygen and two atoms of hydrogen. c. There are strong hydrogen bonds between water molecules. d. Ice consists of water molecules in a hexagonal arrangement. 2. Compare a polar water molecule with a less-polar molecule, such as formaldehyde, CH 2 O. Both are liquids at room temperature and 1 atm pressure. water formaldehyde water water a. Which liquid should have the higher boiling point? b. Which liquid is more volatile? c. Which liquid has a higher surface tension? d. In which liquid is NaCl, an ionic crystal, likely to be more soluble? 3. Describe hydrogen bonding as it occurs in water in terms of the location of the bond, the particles involved, the strength of the bond, and the effects this type of bonding has on physical properties. Hydrogen bonding in water occurs between a hydrogen atom of one water molecule and the unshared pair of electrons of an oxygen atom of an adjacent water molecule. It is a particularly strong type of dipole-dipole force. Hydrogen bonding causes the boiling point of water and its molar enthalpy of vaporization to be relatively high. The water s high surface tension is also a result of hydrogen bonding. MODERN CHEMISTRY STATES OF MATTER 89

10 SECTION 5 continued PROBLEMS provided. Write the answer on the line to the left. Show all your work in the space 4. The molar enthalpy of vaporization of water is kj/mol, and the molar enthalpy of fusion of ice is kj/mol. The molar mass of water is g/mol kj/mol a. How much energy is absorbed when 30.3 g of liquid water boils? 79.8 cal/g b. An energy unit often encountered is the calorie (4.18 J = 1 calorie). Determine the molar enthalpy of fusion of ice in calories per gram. 5. A typical ice cube has a volume of about 16.0 cm 3. Calculate the amount of energy needed to melt the ice cube. (Density of ice at 0. C g/ml; molar enthalpy of fusion of ice kj/mol; molar mass of H 2 O g/mol.) 14.7 g a. Determine the mass of the ice cube mol b. Determine the number of moles of H 2 O present in the sample kj c. Determine the number of kilojoules of energy needed to melt the ice cube. 90 STATES OF MATTER MODERN CHEMISTRY

11 CHAPTER 10 REVIEW States of Matter MIXED REVIEW SHORT ANSWER Answer the following questions in the space provided. 1. c The average speed of a gas molecule is most directly related to the (a) polarity of the molecule. (b) pressure of the gas. (c) temperature of the gas. (d) number of moles in the sample. 2. Use the kinetic-molecular theory to explain the following phenomena: a. When 1 mol of a real gas is condensed to a liquid, the volume shrinks by a factor of about Molecules in a gas are far apart. They are much closer together in a liquid. Molecules in a gas are easily squeezed closer together as the gas is compressed. b. When a gas in a rigid container is warmed, the pressure on the walls of the container increases. As the temperature increases, the molecules speed up. Thus, they collide with the walls more frequently than before and with a greater force per impact. For both of these reasons, the total force per unit area increases and the pressure increases. 3. b Which of the following statements about liquids and gases is not true? (a) Molecules in a liquid are much more closely packed than molecules in a gas. (b) Molecules in a liquid can vibrate and rotate, but they are bound in fixed positions. (c) Liquids are much more difficult to compress into a smaller volume than are gases. (d) Liquids diffuse more slowly than gases. 4. Answer solid or liquid to the following questions: solid liquid solid solid a. Which is less compressible? b. Which is quicker to diffuse into neighboring media? c. Which has a definite volume and shape? d. Which has molecules that are rotating or vibrating primarily in place? MODERN CHEMISTRY STATES OF MATTER 91

12 MIXED REVIEW continued 5. Explain why almost all solids are denser than their liquid states by describing what is occurring at the molecular level. In solids, particles are more closely packed than in liquids, due to stronger attractive forces between the particles of the solid. 6. A general equilibrium equation for boiling is liquid energy vapor Indicate whether the forward or reverse reaction is favored in each of the following cases: forward reaction reverse reaction reverse reaction a. The temperature of the system is increased. b. More molecules of the vapor are added to the system. c. The pressure on the system is increased kj Freon-11, CCl 3 F has been commonly used in air conditioners. It has a molar mass of g/mol and its enthalpy of vaporization is 24.8 kj/mol at its normal boiling point of 24 C. Ideally how much energy in the form of heat is removed from a room by an air conditioner that evaporates 1.00 kg of freon-11? 8. Use the data table below to answer the following: Enthalpy Molar mass vaporization Normal boiling Critical Composition (g/mol) (kj/mol) point ( C) temperature ( C) He Ne Ar Xe H 2 O HF CH C 2 H higher higher a. Among nonpolar liquids, those with higher molar masses tend to have normal boiling points that are (higher, lower, or about the same). b. Among compounds of approximately the same molar mass, those with greater polarities tend to have enthalpies of vaporization that are (higher, lower, or about the same). c. Which is the only noble gas listed that is stable as a liquid at 0 C? Explain your answer using the concept of critical temperature. Xe; a substance can exist only as a gas at temperatures above its critical temperature. Of the noble gases listed, only Xe has a critical temperature above 0 C. 92 STATES OF MATTER MODERN CHEMISTRY

### KINETIC MOLECULAR THEORY OF MATTER

KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,

### Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

### Chapter 12 - Liquids and Solids

Chapter 12 - Liquids and Solids 12-1 Liquids I. Properties of Liquids and the Kinetic Molecular Theory A. Fluids 1. Substances that can flow and therefore take the shape of their container B. Relative

### INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Sixth Edition by Charles H. Corwin Chapter 13 Liquids and Solids by Christopher Hamaker 1 Chapter 13 Properties of Liquids Unlike gases, liquids do

### Why? Intermolecular Forces. Intermolecular Forces. Chapter 12 IM Forces and Liquids. Covalent Bonding Forces for Comparison of Magnitude

1 Why? Chapter 1 Intermolecular Forces and Liquids Why is water usually a liquid and not a gas? Why does liquid water boil at such a high temperature for such a small molecule? Why does ice float on water?

### Intermolecular Forces

Intermolecular Forces: Introduction Intermolecular Forces Forces between separate molecules and dissolved ions (not bonds) Van der Waals Forces 15% as strong as covalent or ionic bonds Chapter 11 Intermolecular

### 13.1 The Nature of Gases. What is Kinetic Theory? Kinetic Theory and a Model for Gases. Chapter 13: States of Matter. Principles of Kinetic Theory

Chapter 13: States of Matter The Nature of Gases The Nature of Gases kinetic molecular theory (KMT), gas pressure (pascal, atmosphere, mm Hg), kinetic energy The Nature of Liquids vaporization, evaporation,

### Exam 4 Practice Problems false false

Exam 4 Practice Problems 1 1. Which of the following statements is false? a. Condensed states have much higher densities than gases. b. Molecules are very far apart in gases and closer together in liquids

### Chapter 14 Lecture Outline

A. Properties of liquids Chapter 14 Lecture Outline The intermolecular forces in liquids are stronger than those in gases, so although the molecules of a liquid are free to move around, they remain connected

### Chapter 13 The Chemistry of Solids

Chapter 13 The Chemistry of Solids Jeffrey Mack California State University, Sacramento Metallic & Ionic Solids Crystal Lattices Regular 3-D arrangements of equivalent LATTICE POINTS in space. Lattice

### Name Date Class THERMOCHEMISTRY. SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510)

17 THERMOCHEMISTRY SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510) This section explains the relationship between energy and heat, and distinguishes between heat capacity and specific heat.

### Chapter 13 - LIQUIDS AND SOLIDS

Chapter 13 - LIQUIDS AND SOLIDS Problems to try at end of chapter: Answers in Appendix I: 1,3,5,7b,9b,15,17,23,25,29,31,33,45,49,51,53,61 13.1 Properties of Liquids 1. Liquids take the shape of their container,

### Ch. 11: Liquids and Intermolecular Forces

Ch. 11: Liquids and Intermolecular Forces Learning goals and key skills: Identify the intermolecular attractive interactions (dispersion, dipole-dipole, hydrogen bonding, ion-dipole) that exist between

### Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.

Describe the strength of attractive forces between particles. Describe the amount of space between particles. Can the particles in this state be compressed? Do the particles in this state have a definite

### Kinetic Molecular Theory (con t) Kinetic Molecular Theory Gas Liquid Solid 1. Slightly 2. High 3. Does not expand to

Kinetic Energy and (Kelvin) Temperature Temperature is a Kinetic Energy and (Kelvin) Temperature(2) The Kelvin temperature scale is called the Absolute Zero - Zero degrees on the 1. Highly 2. Low 3. Fills

### Chapter 14 Liquids: Condensation, Evaporation, and Dynamic Equilibrium. An Introduction to Chemistry by Mark Bishop

Chapter 14 Liquids: Condensation, Evaporation, and Dynamic Equilibrium An Introduction to Chemistry by Mark Bishop Chapter Map Condensation (Gas to Liquid) Evaporation Particle Escape For a particle to

### CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.102 10.1 INTERACTIONS BETWEEN IONS Ion-ion Interactions and Lattice Energy

### Kinetic Molecular Theory

Kinetic Molecular Theory Particle volume - The volume of an individual gas particle is small compaired to that of its container. Therefore, gas particles are considered to have mass, but no volume. There

### Unit 3: States of Matter Practice Exam

Page 1 Unit 3: States of Matter Practice Exam Multiple Choice. Identify the choice that best completes the statement or answers the question. 1. Two gases with unequal masses are injected into opposite

### Chemistry 13: States of Matter

Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

### CHEM 120 Online Chapter 7

CHEM 120 Online Chapter 7 Date: 1. Which of the following statements is not a part of kinetic molecular theory? A) Matter is composed of particles that are in constant motion. B) Particle velocity increases

### 5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C

1. The average kinetic energy of water molecules increases when 1) H 2 O(s) changes to H 2 O( ) at 0ºC 3) H 2 O( ) at 10ºC changes to H 2 O( ) at 20ºC 2) H 2 O( ) changes to H 2 O(s) at 0ºC 4) H 2 O( )

### Chemistry 1050 Chapter 13 LIQUIDS AND SOLIDS 1. Exercises: 25, 27, 33, 39, 41, 43, 51, 53, 57, 61, 63, 67, 69, 71(a), 73, 75, 79

Chemistry 1050 Chapter 13 LIQUIDS AND SOLIDS 1 Text: Petrucci, Harwood, Herring 8 th Edition Suggest text problems Review questions: 1, 5!11, 13!17, 19!23 Exercises: 25, 27, 33, 39, 41, 43, 51, 53, 57,

### 7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter Kinetic Molecular Theory of Matter The Kinetic Molecular Theory of Matter is a concept that basically states that matter is composed

### Chem. 1A Final Exam Review Problems From ch. 11, 12 & 13

Chem. A Final Exam Review Problems From ch., 2 & 3 f Multiple Choice Identify the choice that best completes the statement or answers the question.. Place the following cations in order from lowest to

### Test 5 Review questions. 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will

Name: Thursday, December 13, 2007 Test 5 Review questions 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will 1. decrease 2. increase 3. remain the same 2. The graph below

### Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008

Name: Review - After School Matter Tuesday, April 29, 2008 1. Figure 1 The graph represents the relationship between temperature and time as heat was added uniformly to a substance starting at a solid

### CHAPTER 6 Chemical Bonding

CHAPTER 6 Chemical Bonding SECTION 1 Introduction to Chemical Bonding OBJECTIVES 1. Define Chemical bond. 2. Explain why most atoms form chemical bonds. 3. Describe ionic and covalent bonding.. 4. Explain

### ESSAY. Write your answer in the space provided or on a separate sheet of paper.

Test 1 General Chemistry CH116 Summer, 2012 University of Massachusetts, Boston Name ESSAY. Write your answer in the space provided or on a separate sheet of paper. 1) Sodium hydride reacts with excess

### 1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

### Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134)

Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134) 1. Helium atoms do not combine to form He 2 molecules, What is the strongest attractive

### Properties of Ionic and Covalent Compounds. Intermolecular Forces

Properties of Ionic and Covalent Compounds Intermolecular Forces Physical Properties & Bond Types Physical properties of substances are affected by the attractive forces between particles Greater attraction

### 10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory

The first scheduled quiz will be given next Tuesday during Lecture. It will last 5 minutes. Bring pencil, calculator, and your book. The coverage will be pp 364-44, i.e. Sections 0.0 through.4. 0.7 Theory

### Unit 11 Practice. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: Unit 11 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1) Crystalline solids. A) have their particles arranged randomly B) have

### Name: Intermolecular Forces Practice Exam Date:

Name: Intermolecular Forces Practice Exam Date: 1. At STP, fluorine is a gas and bromine is a liquid because, compared to fluorine, bromine has 1) stronger covalent bonds 2) stronger intermolecular forces

### APS Science Curriculum Unit Planner

Grade Level/Subject APS Science Curriculum Unit Planner Enduring Understanding Chemistry Stage 1: Desired Results Topic 3: Kinetics: The Kinetic Theory can explain the phases of matter, the energetics

### Name Date Class STATES OF MATTER. SECTION 13.1 THE NATURE OF GASES (pages 385 389)

13 STATES OF MATTER SECTION 13.1 THE NATURE OF GASES (pages 385 389) This section introduces the kinetic theory and describes how it applies to gases. It defines gas pressure and explains how temperature

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

General Chemistry PHS 1015 Practice Exam 4 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following statements about pressure

### Covalent Bonding and Intermolecular Forces

Intermolecular forces are electromagnetic forces that hold like molecules together. Strong intermolecular forces result in a high melting point and a solid state at room temperature. Molecules that are

### comparing ionic and covalent bonding.notebook October 16, 2014 Bond strength IMF strength Oct 6 10:43 AM Oct 14 10:06 PM

Bond strength IMF strength Oct 6 10:43 AM Oct 14 10:06 PM 1 Oct 14 10:07 PM Oct 14 10:07 PM 2 Oct 14 10:10 PM Oct 14 10:11 PM 3 comparing ionic and covalent bonding.notebook October 16, 2014 Hardness Ionic

### The particulate nature of matter

The particulate nature of matter Solids, liquids and gases The kinetic theory of matter Explaining the states of matter Changes of state An unusual state of matter An unusual change of state Heating and

### 1/7/2013. Chapter 12. Chemistry: Atoms First Julia Burdge & Jason Overby. Intermolecular Forces and the Physical properties of Liquids and Solids

/7/203 Chemistry: Atoms First Julia Burdge & Jason Overby Chapter 2 Intermolecular Forces and the Physical Properties of Liquids and Solids Kent L. McCorkle Cosumnes River College Sacramento, CA Copyright

### 2C Intermolecular forces, structure and properties:

Electronegativity and polarity Polar and non-polar bonds: 1) Non-Polar bonds: 2C Intermolecular forces, structure and properties: A covalent bond shares an electron pair: In a hydrogen molecule, the electrons

### GRADE 11 PHYSICAL SCIENCES SESSION 3: CHEMICAL BONDING. Key Concepts. X-planation

GRADE 11 PHYSICAL SCIENCES SESSION 3: CHEMICAL BONDING Key Concepts In this session we will focus on summarising what you need to know about: Bonding Covalent bonding Electronegativity in covalent bonding

### 2/15/2013. Chapter 13

Chapter 13 The skunk releases its spray! Within seconds you smell that all-too-familiar foul odor. You will discover some general characteristics of gases that help explain how odors travel through the

### Assignment 9 Solutions. Chapter 8, #8.32, 36, 38, 42, 54, 56, 72, 100, 102, Chapter 10, #10.24, 40, 55, 63. Number of e in Valence Shell

Assignment 9 Solutions Chapter 8, #8.32, 36, 38, 42, 54, 56, 72, 100, 102, Chapter 10, #10.24, 40, 55, 63. 8.32. Collect and Organize Of B 3+, I, Ca 2+, and Pb 2+ we are to identify which have a complete

### Bonding Practice Problems

NAME 1. When compared to H 2 S, H 2 O has a higher 8. Given the Lewis electron-dot diagram: boiling point because H 2 O contains stronger metallic bonds covalent bonds ionic bonds hydrogen bonds 2. Which

### Energy Changes in Chemical Reactions. System loses heat (negative); gains heat (positive) Describe the difference between the two.

Energy Changes in Chemical Reactions Most reactions give off or absorb energy Energy is the capacity to do work or supply heat. Heat: transfer of thermal (kinetic) energy between two systems at different

### Chemistry Final Exam Review

Name: Date: Block: Chemistry Final Exam Review 2012-2013 Unit 1: Measurement, Numbers, Scientific Notation, Conversions, Dimensional Analysis 1. Write 0.000008732 in scientific notation 8.732x10-6 2. Write

### 1. Which graph shows the pressure-temperature relationship expected for an ideal gas? 1) 3)

1. Which graph shows the pressure-temperature relationship expected for an ideal gas? 2. Under which conditions does a real gas behave most like an ideal gas? 1) at low temperatures and high pressures

### CHEMISTRY. Matter and Change. Section 13.1 Section 13.2 Section 13.3. The Gas Laws The Ideal Gas Law Gas Stoichiometry

CHEMISTRY Matter and Change 13 Table Of Contents Chapter 13: Gases Section 13.1 Section 13.2 Section 13.3 The Gas Laws The Ideal Gas Law Gas Stoichiometry State the relationships among pressure, temperature,

### CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

### Test Review # 9. Chemistry R: Form TR9.13A

Chemistry R: Form TR9.13A TEST 9 REVIEW Name Date Period Test Review # 9 Collision theory. In order for a reaction to occur, particles of the reactant must collide. Not all collisions cause reactions.

### When it comes to Chemical Bonding, I can ANSWERS

When it comes to Chemical Bonding, I can ANSWERS 1. The 3 types of chemical bonds are IONIC, COVALENT, and METALLIC bonds. 2. When atoms have 8 valence electrons they are most stable. (exception 2 for

### Bonding Web Practice. Trupia

1. If the electronegativity difference between the elements in compound NaX is 2.1, what is element X? bromine fluorine chlorine oxygen 2. Which bond has the greatest degree of ionic character? H Cl Cl

### Solutions. Occur in all phases. Ways of Measuring. Ways of Measuring. Energy of Making Solutions. 1. Break apart Solvent. Page 1

s Occur in all phases The solvent does the dissolving. The solute is dissolved. There are examples of all types of solvents dissolving all types of solvent. We will focus on aqueous solutions. Ways of

### Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)

BONDING MIDTERM REVIEW 7546-1 - Page 1 1) Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) 2) The bond between hydrogen and oxygen in

### Chemistry 110 Lecture Unit 5 Chapter 11-GASES

Chemistry 110 Lecture Unit 5 Chapter 11-GASES I. PROPERITIES OF GASES A. Gases have an indefinite shape. B. Gases have a low density C. Gases are very compressible D. Gases exert pressure equally in all

### In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges.

Name: 1) Which molecule is nonpolar and has a symmetrical shape? A) NH3 B) H2O C) HCl D) CH4 7222-1 - Page 1 2) When ammonium chloride crystals are dissolved in water, the temperature of the water decreases.

### 12.1 How do sub-atomic particles help us to understand the structure of substances?

12.1 How do sub-atomic particles help us to understand the structure of substances? Simple particle theory is developed in this unit to include atomic structure and bonding. The arrangement of electrons

### Solutions. Occur in all phases. Ways of Measuring. Ways of Measuring. Page 1

Solutions Occur in all phases The solvent does the dissolving. The solute is dissolved. There are examples of all types of solvents dissolving all types of solvent. We will focus on aqueous solutions.

### 10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory

Week lectures--tentative 0.7 Kinetic-Molecular Theory 40 Application to the Gas Laws 0.8 Molecular Effusion and Diffusion 43 Graham's Law of Effusion Diffusion and Mean Free Path 0.9 Real Gases: Deviations

### Introduction to Ionic Bonds

Introduction to Ionic Bonds The forces that hold matter together are called chemical bonds. There are four major types of bonds. We need to learn in detail about these bonds and how they influence the

### THERMOCHEMISTRY & DEFINITIONS

THERMOCHEMISTRY & DEFINITIONS Thermochemistry is the study of the study of relationships between chemistry and energy. All chemical changes and many physical changes involve exchange of energy with the

### KINETIC THEORY OF MATTER - molecules in matter are always in motion - speed of molecules is proportional to the temperature

1 KINETIC TERY F MATTER - molecules in matter are always in motion - speed of molecules is proportional to the temperature TE STATES F MATTER 1. Gas a) ideal gas - molecules move freely - molecules have

### POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s):

POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s): Sometimes when atoms of two different elements form a bond by sharing an

### The Gas, Liquid, and Solid Phase

The Gas, Liquid, and Solid Phase When are interparticle forces important? Ron Robertson Kinetic Theory A. Principles Matter is composed of particles in constant, random, motion Particles collide elastically

### Intermolecular forces, acids, bases, electrolytes, net ionic equations, solubility, and molarity of Ions in solution:

Intermolecular forces, acids, bases, electrolytes, net ionic equations, solubility, and molarity of Ions in solution: 1. What are the different types of Intermolecular forces? Define the following terms:

### VAPORIZATION IN MORE DETAIL. Energy needed to escape into gas phase GAS LIQUID. Kinetic energy. Average kinetic energy

30 VAPORIZATION IN MORE DETAIL GAS Energy needed to escape into gas phase LIQUID Kinetic energy Average kinetic energy - For a molecule to move from the liquid phase to the gas phase, it must acquire enough

### Chemistry Guide

551534 - Chemistry Guide 1- Contents Question Item Objective Type Skill 1 0102 M03.02.04 Multiple-choice answer Mastery of Problem Solving 2 0099 M03.03.02 Multiple-choice answer Mastery of Concepts 3

### CHEMISTRY 113 EXAM 4(A)

Summer 2003 1. The molecular geometry of PF 4 + ion is: A. bent B. trigonal planar C. tetrahedral D. octahedral CHEMISTRY 113 EXAM 4(A) 2. The Cl-C-Cl bond angle in CCl 2 O molecule (C is the central atom)

### R = J/mol K R = L atm/mol K

version: master Exam 1 - VDB/LaB/Spk This MC portion of the exam should have 19 questions. The point values are given with each question. Bubble in your answer choices on the bubblehseet provided. Your

### Name Matter Questions Date:

Name Matter Questions Date: 1. Which substance has a definite shape and a definite volume at STP? 1) NaCl(aq) 2) Cl2(g) 3) CCl4( ) 4) AlCl3(s) 2. Which two particle diagrams represent mixtures of diatornic

### CHEMISTRY NOTES: Structures, Shapes, Polarity and IMF s

CHEMISTRY NOTES: Structures, Shapes, Polarity and IMF s DRAWING LEWIS STRUCTURES: RULES 1) Draw the skeleton structure for the molecule. The central atom will generally be the least electronegative element

### Intermolecular and Ionic Forces

Intermolecular and Ionic Forces Introduction: Molecules are attracted to each other in the liquid and solid states by intermolecular, or attractive, forces. These are the attractions that must be overcome

### Test Bank - Chapter 5 Multiple Choice

Test Bank - Chapter 5 The questions in the test bank cover the concepts from the lessons in Chapter 5. Select questions from any of the categories that match the content you covered with students. The

### 5 Answers and Solutions to Text Problems

Energy and States of Matter 5 Answers and Solutions to Text Problems 5.1 At the top of the hill, all of the energy of the car is in the form of potential energy. As it descends down the hill, potential

### 1. Balance the following equation. What is the sum of the coefficients of the reactants and products?

1. Balance the following equation. What is the sum of the coefficients of the reactants and products? 1 Fe 2 O 3 (s) + _3 C(s) 2 Fe(s) + _3 CO(g) a) 5 b) 6 c) 7 d) 8 e) 9 2. Which of the following equations

### Chapter 8 Basic Concepts of Chemical Bonding

Chapter 8 Basic Concepts of Chemical Bonding Why do TiCl 4 and TiCl 3 have different colors?... different chemical properties?... different physical states? Chemical Bonding and Properties Difference in

### Drawing Lewis Structures

Drawing Lewis Structures 1. Add up all of the valence electrons for the atoms involved in bonding 2. Write the symbols for the elements and show connectivity with single bonds (2 electrons shared). a.

### UNIT 1 THERMOCHEMISTRY

UNIT 1 THERMOCHEMISTRY THERMOCHEMISTRY LEARNING OUTCOMES Students will be expected to: THERMOCHEMISTRY STSE analyse why scientific and technological activities take place in a variety individual and group

### 3. Of energy, work, enthalpy, and heat, how many are state functions? a) 0 b) 1 c) 2 d) 3 e) 4 ANS: c) 2 PAGE: 6.1, 6.2

1. A gas absorbs 0.0 J of heat and then performs 15.2 J of work. The change in internal energy of the gas is a) 24.8 J b) 14.8 J c) 55.2 J d) 15.2 J ANS: d) 15.2 J PAGE: 6.1 2. Calculate the work for the

### CHAPTER 4: MATTER & ENERGY

CHAPTER 4: MATTER & ENERGY Problems to try at the end of the chapter. Answers in Appendix I: 1,3,5,7,13,17,19,21,23,25,27,29,31,33,37,39, 41,43,45,47,49,51,53,55,57,59,63,65,67,87,89, 4.1 Physical States

### Chapter 4 Practice Quiz

Chapter 4 Practice Quiz 1. Label each box with the appropriate state of matter. A) I: Gas II: Liquid III: Solid B) I: Liquid II: Solid III: Gas C) I: Solid II: Liquid III: Gas D) I: Gas II: Solid III:

### 7. 2. KOH (you need an acid or a base, this is a base) 8. 1. 76. All gold atoms have 79 protons and electrons, this is a +3 cation.

IB/SL Chemistry Name ANSWERS Test; Past Chemistry Regents Exams Most Frequently Missed Questions 1. 1. A HIGH PROBABLITY OF FINDING AN ELECTRON 2. 3. +8 (every atom of oxygen in the universe) 3. 2. LOW

### Phase diagram of water. Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure.

Phase diagram of water Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure. WATER Covers ~ 70% of the earth s surface Life on earth

### Name Chemistry / / Melting/Freezing/Boiling & Condensing

Name Chemistry / / Melting/Freezing/Boiling & Condensing As a substance melts, freezes, boils or condenses, heat is either absorbed or released. But, as this change in state occurs, there is no change

### CHAPTER 4: MATTER & ENERGY

CHAPTER 4: MATTER & ENERGY Problems: 1,3,5,7,13,17,19,21,23,25,27,29,31,33,37,41,43,45,47,49,51,53,55,57,59,63,65,67,69,77,79,81,83 4.1 Physical States of Matter Matter: Anything that has mass and occupies

### Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.

Name Period Gas Laws Kinetic energy is the energy of motion of molecules. Gas state of matter made up of tiny particles (atoms or molecules). Each atom or molecule is very far from other atoms or molecules.

Chapter 5 Student Reading THE POLARITY OF THE WATER MOLECULE Wonderful water Water is an amazing substance. We drink it, cook and wash with it, swim and play in it, and use it for lots of other purposes.

### Packet 4: Bonding. Play song: (One of Mrs. Stampfel s favorite songs)

Most atoms are not Packet 4: Bonding Atoms will, or share electrons in order to achieve a stable. Octet means that the atom has in its level. If an atom achieves a stable octet it will have the same electron

### Problem # 2 Determine the kinds of intermolecular forces present in each element or compound:

Chapter 11 Homework solutions Problem # 2 Determine the kinds of intermolecular forces present in each element or compound: A. Kr B. NCl 3 C. SiH 4 D. HF SOLUTION: Kr is a single atom, hence it can have

### Bonding. Metallic Ionic Covalent. (Elements) (Compounds) (Elements and Compounds)

CfE Higher Chemistry Unit One Chemical Changes and Structure Chapter Four Bonding in Compounds Types Of Bonding In Compounds Bonding Metallic Ionic Covalent (Elements) (Compounds) (Elements and Compounds)

### Chapter 16 Review Packet

Chapter 16 Review Packet AP Chemistry Chapter 16 Practice Multiple Choice Portion 1. For which process is ΔS negative? Note: ΔS = S final S initial therefore, if ΔS is positive, S final > S initial if

### Lesmahagow High School CfE Higher Chemistry. Chemical Changes & Structure Structure and Bonding

Lesmahagow High School CfE Higher Chemistry Chemical Changes & Structure Structure and Bonding Page 1 of 26 No. Learning Outcome Understanding? 1 2 The bonding types of the first twenty elements; metallic

### Chemistry Scope & Sequence Student Outcomes (Objectives Skills/Verbs)

s 1 Measurement and Problem Solving 2-3 Weeks Measurements are subject to errors which need to be accounted for. 1. How do you accurately measure, using significant figures, in the metric system? Understand

### Chapter 5. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Class: Date: Chapter 5 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What is the pressure of the sample of gas trapped in the open-tube mercury manometer

### Chapter 10 Liquids & Solids

1 Chapter 10 Liquids & Solids * 10.1 Polar Covalent Bonds & Dipole Moments - van der Waals constant for water (a = 5.28 L 2 atm/mol 2 ) vs O 2 (a = 1.36 L 2 atm/mol 2 ) -- water is polar (draw diagram)