Antimatter Spectroscopy



Similar documents
How To Test Antimatter

ASACUSA: Measuring the Antiproton Mass and Magnetic Moment

The ASACUSA (AD-3) experiment

How To Find The Higgs Boson

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

CryoEDM A Cryogenic Neutron-EDM Experiment. Collaboration: Sussex University, RAL, ILL, Kure University, Oxford University Hans Kraus

Masses in Atomic Units

REALIZING EINSTEIN S DREAM Exploring Our Mysterious Universe

KE A = PE MAX 1/2M v 2 = k q1 q2 /R

Objectives 404 CHAPTER 9 RADIATION

AEGIS at CERN: measuring Antihydrogen fall

The accurate calibration of all detectors is crucial for the subsequent data

Towards large dynamic range beam diagnostics and beam dynamics studies. Pavel Evtushenko

Searching for the Building Blocks of Matter

Modeling Galaxy Formation

hij Teacher Resource Bank GCE Physics A Other Guidance: Particle Physics By J Breithaupt

Relativistic kinematics basic energy, mass and momentum units, Lorents force, track bending, sagitta. First accelerator: cathode ray tube

Theory of electrons and positrons

Interstellar Cosmic-Ray Spectrum from Gamma Rays and Synchrotron

Nuclear Physics. Nuclear Physics comprises the study of:

Theoretical Particle Physics FYTN04: Oral Exam Questions, version ht15

Does Quantum Mechanics Make Sense? Size

Selected Topics in Elementary Particle Physics ( Haupt-Seminar )

Pearson Physics Level 30 Unit VIII Atomic Physics: Chapter 17 Solutions

The Birth of the Universe Newcomer Academy High School Visualization One

The Mainz LXe TPC MC simulations for a Compton scattering experiment

Nuclear Physics and Radioactivity

Medical Applications of radiation physics. Riccardo Faccini Universita di Roma La Sapienza

How To Understand The Physics Of Electromagnetic Radiation

How To Understand Light And Color

Cathode Ray Tube. Introduction. Functional principle

Solar Energy Production

Basic Nuclear Concepts

Concepts in Theoretical Physics

Calorimetry in particle physics experiments

Radiation Detection and Measurement

Heating & Cooling in Molecular Clouds

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

Build Your Own Universe

Topic 3. Evidence for the Big Bang

1 Introduction. 1 There may, of course, in principle, exist other universes, but they are not accessible to our

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier

Single photon detection with H8500 MAPMTs for the CBM RICH detector*

Short overview of TEUFEL-project

Boardworks AS Physics

ACCELERATORS AND MEDICAL PHYSICS 2

Beam Dynamics Studies and Design Optimisation of New Low Energy Antiproton Facilities arxiv: v1 [physics.acc-ph] 21 Jun 2016

Status of the Free Electron Laser

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

Lecture 14. Introduction to the Sun

Physics 30 Worksheet # 14: Michelson Experiment

Wave Function, ψ. Chapter 28 Atomic Physics. The Heisenberg Uncertainty Principle. Line Spectrum

Chemistry 102 Summary June 24 th. Properties of Light

Homework #10 (749508)

High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions

23. The Beginning of Time. Agenda. Agenda. ESA s Venus Express. Conditions in the Early Universe Running the Expansion Backward


World-first Proton Pencil Beam Scanning System with FDA Clearance

Tracking systems in HEP:

Information about the T9 beam line and experimental facilities

WELCOME to Aurorae In the Solar System. J.E. Klemaszewski

Nuclear Magnetic Resonance

Chapter 23 The Beginning of Time

Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE

ULTRAFAST LASERS: Free electron lasers thrive from synergy with ultrafast laser systems

Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (III-INCONTRO) RISONANZA MAGNETICA NUCLEARE

MCQ - ENERGY and CLIMATE

Solar Ast ro p h y s ics

Scuola Raimondo Anni Electro-weak probes in Nuclear Physics. Electron scattering. (a general introduction) Antonio M. Lallena. Universidad de Granada

ASTROPARTICLE PHYSICS WITH AMS-02: THE QUEST OF ANTIMATTER

Curriculum for Excellence. Higher Physics. Success Guide

A SUSY SO(10) GUT with 2 Intermediate Scales

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS

Les Accélérateurs Laser Plasma

Chapter 18: The Structure of the Atom

Overview of Proton Beam Cancer Therapy with Basic Economic Considerations

Atomic Structure: Chapter Problems

Quantum control of individual electron and nuclear spins in diamond lattice

Experiment 5. Lasers and laser mode structure

Top rediscovery at ATLAS and CMS

DEMONSTRATION ACCELERATOR DRIVEN COMPLEX FOR EFFECTIVE INCINERATION OF 99 Tc AND 129 I

Beam Instrumentation Group, CERN ACAS, Australian Collaboration for Accelerator Science 3. School of Physics, University of Melbourne 4

Concept 2. A. Description of light-matter interaction B. Quantitatities in spectroscopy

This - rather famous - image is a visualization of the data collected by NASA s WMAP mission. It shows the cosmic microwave background radiation

Name Class Date. true

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.

Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies

Cancer Therapy with Particle Beams

Measurement of the gravitational constant G by atom interferometry

Quantum Phenomena and the Theory of Quantum Mechanics

Forms of Energy. Freshman Seminar

Testing thermo-acoustic sound generation in water with proton and laser beams

Gamma Ray Detection at RIA

Experiment #5: Qualitative Absorption Spectroscopy

Pretest Ch 20: Origins of the Universe

Origins of the Cosmos Summer Pre-course assessment

FCC JGU WBS_v0034.xlsm

Nara Women s University, Nara, Japan B.A. Honors in physics 2002 March 31 Thesis: Particle Production in Relativistic Heavy Ion Collisions

Transcription:

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 1 Antimatter Spectroscopy Balaton Summer School, 25 August 2015, Balatonalmádi, Hungary Dezső Horváth horvath.dezso@wigner.mta.hu Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, Budapest, Hungary & ATOMKI, Debrecen, Hungary

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 2 Outline Antimatter and its lack in the Universe CPT invariance: matter antimatter symmetry The Antiproton Decelerator at CERN Antimatter experiments at CERN Charge and mass of the antiproton Magnetic moment of the antiproton Outlook: ELENA Use of antimatter in life Dreams and ridiculous tales

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 3 Birth of antimatter Paul Dirac, 1928: Linear equation for the hydrogen atom. Square root of a quadratic equation two solutions for electrons (x 2 = 4 x = ±2). Two kinds of electrons: + mass and charge (ordinary electron); mass and+charge (anti-electron = positron). Negative mass non-physical. Dirac thought particle holes. Carl Anderson (1932): e + in cosmic rays! real, existing particle: positron. Nobel prizes (in 4 years): Dirac: 1933; Anderson: 1936

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 4 Antiparticles Every matter particle has an antiparticle Proton (hydrogen nucleus) antiproton. Particles and antiparticles must have the same properties apart from the signs of charges. When particle meets its own antiparticle they annihilate to photons or to lighter particles (energy conservation). e γ A slow positron in matter annihilates with an atomic electron by emitting two (or three) gamma photons. e + γ Converse reaction: radiation in the field of atomic nucleus can produce particle + antiparticle pairs. Low energy: e +e +, higher energy (E > 2M p ): p+p. γ e + e

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 5 Antimatter mysteries Why there is practically no antimatter in our Universe? At the Big Bang particles and antiparticles should have been produced together. Where did antimatter go? Could they be hiding in parts of the Universe inaccessible for us? Could there be a tiny difference between particle and antiparticle to cause this asymmetry? Are there particles which are their own antiparticles (Majorana particles)? Could the dark matter of the Universe consist of such particles? Can antimatter be used for something in everyday life or is it just an expensive curiosity?

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 6 Matter antimatter symmetry This symmetry is called CPT invariance Charge conjugation: C p(r, t)> = p(r, t)> Space reflection: P p(r, t)> = p( r, t)> Time reversal: T p(r, t)> = p(r, t)> Basic assumption of field theory: CPT p(r,t)> = p( r, t)> p(r,t)> meaning free antiparticle particle going backwards in space and time. Giving up CPT one has to give up: locality of interactions causality, or unitarity conservation of matter, information,... or Lorentz invariance e e + γ γ

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 7 CPT-violating theories Weak interaction violates P and CP symmetry Theoreticians in general: CP T cannot be violated Standard Model valid up to Planck scale ( 10 19 GeV). Above Planck scale new physics Lorentz violation possible Quantum gravity: fluctuations Lorentz violation loss of information in black holes unitarity violation Motivation for testing CPT at low energy Quantitative expression of Lorentz and CPT invariance needs violating theory low-energy tests can limit possible high energy violation (Alan Kostelecký, F.R. Klinkhamer, N.E. Mavromatos et al)

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 8 How to test CPT? Particle = antiparticle? [m(k 0 ) m(k 0 )]/m(average) < 10 18 proton antiproton? (compare m, q, µ) hydrogen antihydrogen? (2S 1S, HFS)

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 9 CERN: 22 member states Israel 2013 Romania 2015 Serbia Cyprus, Ukrainia, Turkey, Pakistan accepted member candidates Brasil, Russia, Slovenia applied for membership

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 10 Researchers (users) of CERN 2800 employees + 10500 users + 440 students (Italian > German > American > Russian > French)

CERN: aerial view Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 11

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 12 Accelerators at CERN 1989 2000 2009 2025??

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 13 The Antiproton Decelerator at CERN has been built to test CPT invariance hree experiments test CPT: TRAP: q(p)/m(p) q(p)/m(p) H(2S 1S) H(2S 1S) LPHA: H(2S 1S) H(2S 1S) SACUSA: q(p) 2 m(p) q(p) 2 m(p) µ l (p) µ l (p) H H HF structure ED: done, GREEN: planned c Ryugo S. Hayano

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 14 The Antiproton Decelerator: cooling Momentum p[gev/c] 3.57 2.0 pbar injection Bunch rotation Stochastic cooling 17 s. Stochastic cooling 6.6 s. Electron cooling 16s. Electron cooling 8 s. Rebunching Fast Extraction 0.3 0.1 RF ON: 12 35 54 71 85 time [s] 4 10 7 100 MeV/c antiprotons every 85 s Pavel Belochitskii: AIP Conf. Proc. 821 (2006) 48

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 15 Antihydrogen, e + p atom 2S 1S transition with 2-photons Long lifetime, narrow transition, Doppler-free spectroscopy M. Charlton, J. Eades, D. Horváth, R. J. Hughes, C. Zimmermann: Antihydrogen physics, Physics Reports 241 (1994) 65. M.H. Holzscheiter, M. Charlton, M.M. Nieto: The route to ultra-low energy antihydrogen, Physics Reports 402 (2004) 1.

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 16 Steps toward H spectroscopy Putting antiprotons (p) in electromagnetic trap Trapping and cooling antiprotons Cooling slow positrons (e + from 22 Na) in trap Mixing p and e + recombination Trapping antihydrogen, waiting for deexcitation Cooling antihydrogen 2014 Laser spectroscopy on antihydrogen In progress

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 17 ALPHA ALPHA: Antimatter Laser PHysics Apparatus H trapped for 1000 s; resonant HF transition induced; limit on H charge; proposal for gravity measurement.

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 18 ATRAP: Antimatter trap Continuous H production

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 19 AEGIS: antimatter gravity Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy (in preparation) Moiré deflectometry: gravitational falling of collimated H as compared to light

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 20 ACE: Antimatter Cell Experiment Cancer therapy research (USA) at AD of CERN Advantage: Antiprotons lose energy in very small volume, choosing the right energy concentrates damage in tumor. Disadvantage: Antiprotons are very expensive and annihilation radiation damages as well.

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 21 GBAR Gravitational Behaviour of Antihydrogen at Rest (in preparation) p + Ps H; H + Ps H + (cooling); back to H: drop it

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 22 BASE: Baryon Antibaryon Symmetry Experiment Direct high-precision measurement of the magnetic moment of a single antiproton stored in a cryogenic Penning trap with a relative precision of 10 9 or better (in preparation).

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 23 Antihydrogen beam ASACUSA: MUSASHI Monoenergetic Ultra Slow Antiproton Source for High precision Investigations Musashi Miyamoto self-portrait 1640 5.8 MeV p injected into RFQ 100 kev p injected into trap 10 6 p trapped and cooled (2002) 350000 slow p extracted (2004) Cold p compressed in trap (2008) (5 10 5 p, E = 0.3 ev, R = 0.25 mm) H-beam: N. Kuroda et al., Nature Commun. 5 (2014) 3089.

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 24 Spectroscopy withh-beam p antiproton and positron Trap / Recombination + e Sextupole I Microwave Cavity Sextupole II Antihydrogen Detector H-beam path: polariser, resonator, analyser Analogy to polarised light R.S. Hayano, M. Hori, D. Horváth, E. Widmann, Rep. Progr. Phys. 70 (2007) 1995.

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 25 xtra Low ENergy Antiprotons (ELENA) Physics Motivation Test the Standard Model and General Relativity for antimatter Test SM extensions for antimatter (Lorentz-violation, black holes, new interactions,...) Stringent CPT tests with antihydrogen Antimatter gravity measurement (weak equivalence) Added precision for physical constants (CODATA) assuming CPT invariance All existing AD experiments profit, new ones made possible (gravity, X-rays, nuclear studies)

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 26 ELENA at the AD: plan M.-E.Angoletta et al: ELENA: A Preliminary Cost And Feasibility Study, CERN-AB-2007-079.

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 27 Antimatter in Space AMS-2: Alpha Magnetic Spectrometer to discover antimatter (anti-helium!) and dark matter Mass: 8500 kg, 1200 kg perm. magnet Father: Sam Ting, cost: 2 G$ Construction: CERN Launch: May 2011, USA Control room: CERN

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 28 AMS-2: Alpha Magnetic Spectrometer First results (2013-14): No antihelium observed. High energy positrons everywhere. Could come from dark matter or pulsars. AMS2 will collect data for 10 15 years.

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 29 ASACUSA: Mass of the antiproton Proton s well (?) known: m(p)/m(e) = 1836.15267245(75) q(e) = 1.602176565(35) 10 19 C Precision: 4 10 10 and 2 10 8 Relative measurements: proton vs. antiproton Cyclotron frequency in trap q/m TRAP ATRAP collaboration Harvard, Bonn, München, Seoul p and H together 10 10 precision Atomic transitions: E n m red c 2 (Zα) 2 /(2n) m q 2 PS-205 ASACUSA collaboration Tokyo, Brescia, Budapest, Debrecen, Munich, Vienna Atomic Spectroscopy And Collisions Using Slow Antiprotons Asakusa, Tokyo

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 30 Metastable hadronic atoms In matter (gas, liquid, solid) τ(hadron) τ 1 ps except 3% of X He: K, π : decay lifetime; p: 3 4 µs Metastable 3-body system Auger suppressed, slow radiative transitions only Electron cloud protects p against collisions Electron tightly bound: 1S phe: n 40, l n 1, Rydberg state

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 31 p-he + : spectroscopy motivation Vladimir Korobov calculates p transition frequencies in p-he + with the precision of 10 9 Determination of antiproton-to-electron mass ratio to 1.3 10 9. Dimensionless fundamental constant of nature. Determination of electron mass in a.u. to 1.3 10 9 One of the data points for CODATA2010 average. When combined with cyclotron frequency of antiprotons in a Penning trap measured by the TRAP collaboration, comparison of antiproton and proton mass and charge to 7 10 10 Particle Data Group: CPT consistency test.

Induce transition between long-lived and short-lived states Force prompt annihilation Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 32

ASACUSA: Phase-1 spectroscopy setup Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 33

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 34 aser spectroscopy of antiprotonic helium N. Morita et al, Phys. Rev. Lett. 72 (1994) 1180 1183.

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 35 Laser spectroscopy: LEAR vs AD counts / 10 ns analog amplitude (arb. units) 4000 3500 3000 2500 2000 1500 1000 500 0 0-2.5-5 -7.5-10 -12.5-15 -17.5-20 event-by-event λ = 470.724 nm 0 0.5 1 1.5 2 2.5 3 3.5 4 Annihilation time (µs) analog method λ = 470.724 nm 0 0.5 1 1.5 2 2.5 3 3.5 4 Annihilation time (µs) LEAR: slow extraction 10 6 laser shots, 50 min AD: fast extraction 1 laser shot, 2 min Gated phototube: prompt annihilation (97% p) off (Hamamatsu)

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 36 Transition frequencies in isolatedphe + atoms Exp. precision limited by: collisions, Doppler broadening, laser bandwidth 1996-2002: measured density dependence, extrapolated to zero 2003-2004: reduced collisional effects by stopping slow p from RFQ post-decelerator in low-pressure (< 1 mbar), cryogenic target 2005-2007: reduce laser bandwidth using frequency comb 2008: start 2-photon spectroscopy M. Hori et al., Phys. Rev. Lett. 87 (2001) 093401. Last published CPT-violation limit by 1-photon spectroscopy: 2 ppb (2 10 9 ) at CL 90%. M. Hori et al., Phys. Rev. Lett. 96 (2006) 243401.

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 37 Resolution and stability 2000 2002 2004 2010 Dramatic improvement of resolution and stability Resonance profile of the (n,l) = (37,35) (38,34) transition at λ = 726.1 nm 2010: He at T = 1.5K, Ti:Sapphire pulsed laser

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 38 Determination of m(p),q(p) 8 Antiprotonic Helium 6 4 TRAP 6 4 2 2-6 -4-2 2 4 6 8-6 -4-2 2 4 6-2 -2-4 -6-4 -6 Determination of antiproton mass and charge: possible deviation from those of the proton TRAP: m/q; ASACUSA: m Q 2

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 39 Two-photon spectroscopy In low density gas main precision limitation: thermal Doppler broadening even at T < 10 K Excite l = 2 transition with 2 photons Two counterpropagating photons with ν 1 ν 2 eliminate 1st order Doppler effect Laser linewidth should not overlap with resonance M. Hori, A. Sótér, D. Barna, A. Dax, R.S. Hayano, S. Friedreich, B. Juhász, T. Pask, E. Widmann, D. Horváth, L. Venturelli, N. Zurlo: Two-photon laser spectroscopy of pbar-he + and the antiproton-to-electron mass ratio, Nature 475 (2011) 484-488, Few Body Syst. 54 (2013) 917-922.

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 40 1-photon vs 2-photon spectroscopy 417 nm 372 nm (36,34) 417 nm Virtual state E 372 nm (35,33) (34,32)

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 41 Near-resonant two-photon spectroscopy (n,l) = (36,34) (34,32) Doppler suppression: 417 nm 372 nm (36,34) ν γ1 γ 2 = ν 1 ν 2 ν 1 +ν 2 ν Doppler Gain: 20 Limitation: residual Doppler, frequency chirp systematics Expected f few MhZ Virtual state 372 nm 417 nm E (35,33) (34,32)

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 42 Two-photon spectroscopy: setup M. Hori et al., Nature 475 (2011) 484-488

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 43 Two-photon spectroscopy: uncertainties Source error (MHz) Statistics 3 Collisional shift 1 A.c. Stark shift 0.5 Zeeman shift <0.5 Frequency chirp 0.8 Laser freq. cal. <0.1 Hyperfine structure <0.5 Line profile sim. 1 Total systematic 1.8 Total experimental 3.5 Theory 2.1

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 44 Two-photon spectroscopy: results M p /m e = 1836.1526736(23) Uncertainties: 1.8 10 6 (stat), 1.2 10 6 (syst), 1.0 10 6 (theor) Good agreement with proton results, similar (slightly higher) uncertainty. Assuming CPT invariance our result can be included in the determination of M p and m e. Using the TRAP limit for difference of Q/M for the proton and the antiproton and averaging our three values we can establish an upper limit for the charge and mass difference (i.e. possible CPT violation) at 7 10 10 on a 90% confidence level. M. Hori et al., Nature 475 (2011) 484-488

Measuring the magnetic moment of p Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 45

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 46 Level splitting inphe + atoms F =L 1/2 F =L 1/2 (n,l ) F =L 1/2 J + =L F =L 1/2 J + =L (n,l ) F =L 1/2 J + =L J =L 1 J =L 1 J =L 1 F + =L +1/2 (n,l) (n,l) ν HF + F + =L +1/2 (n,l) f + J ++ = L+1 ν HF J ++ = L+1 f + J ++ = L+1 F + =L+1/2 J + =L F + =L+1/2 J + =L F + =L+1/2 J + =L Step 1: depopulation of F + doublet with f + laser pulse Step 2: equalization of populations of F + and F - by microwave Magnetic moments µ(p) µ(p) CPT invariance OK E. Widmann, R.S. Hayano, T. Ishikawa, J. Sakaguchi, H. Yamaguchi, J. Eades, M. Hori, H.A. Torii, B. Juhász, D. Horváth, T. Yamazaki: Phys. Rev. Lett. 89 (2002) 243402. R ++ /R ++ off Step 3: probing of population of F + doublet with 2nd f + laser pulse 1.15 1.10 1.05 1.00 0.95 + ν HF ν HF 12.86 12.88 12.90 12.92 12.94 12.96 ν MW (GHz) Microwave frequency scan

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 47 p 3 He HF structure & expt. setup S. Friedreich, D. Barna, F. Caspers, A. Dax, R. S. Hayano, M. Hori, D. Horváth, B. Juhász, T. Kobayashi, O. Massiczek, A. Sótér, K. Todoroki, E. Widmann, J. Zmeskal, J.Phys. B 46 (2013) 125003

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 48 p 3 He HF structure: expt vs. theory E10, E10/11: S. Friedreich et al., J.Phys. B 46 (2013) 125003. Kor: V. Korobov, Phys. Rev. A 73 (2006) 022509; 73 (2006) 049902(E) Ki: Y. Kino et al., Hyp. Int. 146-147 (2003) 331.

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 49 ASACUSA at AD Conclusion (science-wise) Two-photon spectroscopy of antiprotonic helium: results agree with 3-body calculations. Determined M p /m e ratio to 1.3 ppb. Result agrees with CODATA proton value (0.4 ppb). Further improvement partially hindered by theoretical uncertainty. Future prospects Colder atoms, better lasers, better detectors. ELENA (colder antiproton beams at 100 kev of higher luminosity). Spectroscopy with trapped antihydrogen and with antihydrogen beam. AMS2 delivers more and more data on antimatter in space.

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 50 Practical applications Nice (and expensive) physics, can it be used? Positron Emission Tomography (PET): yes! AD: Antiproton Cell Experiment (ACE): cancer therapy with p? Rocket fuel??? Antimatter bomb... Reality dream phantasy stupidity

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 51 Positron Emission Tomography (PET) Diagnostics: metabolism In Hungary pioneer: Debrecen

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 52 Rocket Fuel??? Star Trek Positronics Research LLC (NASA!) Antimatter storage: solved (??) 2001: Mars rocket with antiprotons (??) 2009: Mars rocket with positron reactor (??) (less radiation dose for astronauts) http://www.nasa.gov/exploration/home/antimatter_spaceship.html

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 53 Dan Brown: Angels and Demons (2000) Story: A terrorist steals a bottle of antimatter from a secret laboratory of CERN to destroy Vatican with it. The hero stops it just in time. CERN created a web page for the book: CERN indeed exists, it has the largest particle accelerator, the Large Hadron Collider, a 27 km ring 100 m underground. It is an open facility, has neither secret laboratories, nor any problem with Vatican. CERN produces antihydrogen atoms (cannot make anything heavier) at the Antiproton Decelerator (not at LHC) in microscopic quantities, for pure scientific aims: it cannot be transported and cannot make bombs.

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 54 Angels and Demons: the film, 2009 CERN invited the fim makers and offered CERN for shooting the beginning. They made photos and reconstructed LHC for the film (quite well). We joked that they may find the Higgs boson before us. Tom Hanks at the ATLAS detector

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 55 Angels and Demons: exhibition Tom Hanks, Ayelet Zurer and Ron Howard before the exhibition center of CERN, when the Angels & Demons exhibition was opened CERN: The Globe of Science and Innovation EXPO 2002: Swiss wood construction, donated to CERN

Angels and Demons: exhibition in Globe Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 56

Making antimatter atoms at AD Dezso Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 57

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 58 Antimatter storage in the film and in reality 3-ton antiproton trap at AD

Thanks for your attention Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 59

Spare slides for discussion Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 60

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 61 Energy levels of phe 4 Level energies in ev, transition wavelengths in nm

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 62 MUSASHI: slow antiproton beam Monoenergetic Ultra Slow Antiproton Source for High precision Investigations Musashi Miyamoto self-portrait 1640 5.8 MeV p injected into RFQ 100 kev p injected into trap 10 6 p trapped and cooled (2002) 350000 slow p extracted (2004) Cold p compressed in trap (2008) (5 10 5 p, E = 0.3 ev, R = 0.25 mm) N. Kuroda,...D. Barna, D. Horváth, Y. Yamazaki: Phys. Rev. Lett. 100 (2008) 203402.

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 63 Two-photon spectroscopy: parameters Precision of lasers: < 1.4 10 9. 7 10 6 p/pulse, E 70 kev, 200 ns long, Ø20 mm. Target: He gas, T 15 K, p = 0.8 3 mbar Laser beams: λ 1 = 417 nm, λ 2 = 372 nm, P 1 mj/cm 2 Transition: (n=36, l=34) (n=34, l=32); ν = 6 GHz Measured linewidth: 200 MHz Width: Residual Doppler broadening, hyperfine structure, Auger lifetime, power broadening. M. Hori, A. Sótér, D. Barna, A. Dax, R.S. Hayano, S. Friedreich, B. Juhász, T. Pask, E. Widmann, D. Horváth, L. Venturelli, N. Zurlo: Two-photon laser spectroscopy of pbar-he + and the antiproton-to-electron mass ratio Nature 475 (2011) 484-488

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 64 Two-photon spectroscopy: spectra M. Hori et al., Nature 475 (2011) 484-488 Arrows: hyperfine transitions

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 65 p 4 He HF structure: expt vs. theory Th. Pask et al., Phys. Lett. B 678 (2009) 55.

Dezső Horváth: Antimatter Spectroscopy BSS-2015, Balatonalmádi, Hungary p. 66 p 3 He HF structure: laser scan S. Friedreich et al., Physics Letters B 700 (2011) 1.