Heating & Cooling in Molecular Clouds
|
|
|
- Penelope McKinney
- 9 years ago
- Views:
Transcription
1 Lecture 8: Cloud Stability Heating & Cooling in Molecular Clouds Balance of heating and cooling processes helps to set the temperature in the gas. This then sets the minimum internal pressure in a core and thus the thermal energy term in the virial equation. It also sets the sound speed, the speed at which pressure waves are transmitted, and thus the strength of shocks created by supersonic motions. Overall we shall see the above features are important for setting minimum masses of gravitationally unstable cores that form stars.
2 Heating processes 1. Cosmic Rays: Relativistic particles (mostly protons). These can penetrate deeply into dense molecular cores and even protoplanetary disks. They create low levels of ionization (see Astrochemistry lecture). These ejected electrons transfer some of their kinetic energy into heating the gas.. Interstellar Radiation Field: a) Atomic Carbon (CI) Ionization by photons E>11.eV. b) Photoelectric Heating by UV photons ejecting e- from dust grains c) Irradiation of dust grains d) Stellar X-rays Cooling Processes 1. Cooling by Atoms: (consider -level system) For densities below the critical density, cooling rate per cm -3 is: Λ = nl nh!lu ΔEul n (most collisions that excite 1-> lead to radiative decay) For densities far above the critical density Λ n (most excitation from 1-> is followed by collisional deexcitation) OI and CII have fine structure energy levels with spacings that are small enough to be relevant in cool gas ~100K.
3 Cooling Processes. Cooling by Molecules: CO rotational line emission is the most important coolant in cold molecular clouds. However, in denser clouds the optical depth in the line can become large, thus trapping the photons and reducing the cooling efficiency. 3. Cooling by Dust: Dust grains emit IR and mm photons and thus cool down. If their temperature is lower than that of the gas, then they will help cool the gas down. Cloud Thermal Structure Temperature profile in outer, lowerdensity part of a molecular cloud.
4 Photo-Dissociation Region (PDR) Far UV photons destroy molecules (H, CO). These photons are absorbed by dust and by molecules as they try and penetrate into the cloud. Eventually destruction rates of the molecules become small enough that most H is in H, most C in CO and most O in O. Towards the cold center Relatively constant temperature in the center. The precise value will depend on the cosmic rate flux, radiative efficiency of the dust grains. Temperatures are ~10K at nh~ cm -3
5 Isothermal spheres and the Jeans mass S&P Ch. 9.1 Let s consider a cloud that maintains equilibrium only through the forces of selfgravity and thermal pressure: (1) () 1 ρ P φ g = 0 P = ρa T Hydrostatic equilibrium Equation of state for an ideal isothermal gas (3) φ g = 4πGρ (1) + () implies that: lnρ + φ g /a T Poisson s equation is a spatial constant! ρ(r) = ρ c exp( φ g /a T ) Substituting ρ(r) in Poisson s equation and defining: ψ = φ g /a T ( ξ 4πGρ + c * - ) a T, The isothermal Lane-Emden equation: 1 ξ " 1/ d $ dξ ξ dψ ' & ) = exp( ψ) % dξ ( r Boundary conditions: ψ(0) = 0; ψ'(0) = 0
6 By numerically integrating the LE equation, we obtain ψ(ξ): ρ(r) = ρ c exp( φ g /a T ) " ρ /ρ c = exp( ψ) 1. Density and pressure drop monotonically away from center (necessary to offset the inward pull of gravity). At large distances (ξ>>1): ρ/ρ c approaches /ξ. This implies ψ=ln(ξ /), which satisfies the LE equation, but not the boundary conditions at ξ=0 (singular isothermal sphere): ρ(r) = a T πgr In clouds, the pressure does not drop to zero, but to some value P 0 characterizing the external medium. Fixing P 0 and a T, we determine: (a) ρ 0 from the equation of state, (b) the density contrast ρ c /ρ 0, and (c) ξ 0 (and r 0 ) from the figure:! It describes an infinite sequence of models, parametrized by ρ c /ρ 0
7 For each model, we can measure the mass of pressure-bounded, isothermal spheres: r 0 M = 4π ρr dr 0 ρ /ρ c = exp( ψ) m P 1/ 0 G 3 / M 4 a T % = 4π ρ ( c ' * & ) ρ 0 1/ 1/ & ξ 4πGρ ) + c ( + r + boundary conditions ' a T * % dψ ( ' ξ * & dξ ) ξ 0 " nondimensional mass of the SIS 13 Gravitational stability All the physical characteristics of isothermal spheres follow from integration of the LE equation. However, only a limited subset of the full model sequence is gravitationally stable. In all other clouds, an arbitrary small initial perturbation in the structure grows rapidly with time, leading ultimately to collapse. For small values of ξ 0 (or ρ c /ρ 0 ) : r 0 3 3Ma T 4πP 0 stable For a stable cloud, any increase of P 0 creates both a global compression and a rise of the internal pressure, where the latter acts to re-expand the configuration. 14 Clouds of low density contrast are mainly confined by the external pressure, and not self-gravity.
8 The case of the Bok Globule B68 15 Lada et al. 003, ApJ, 586, 86; Bergin et al. 00, ApJ 570, L101 Moving to higher ρ c / ρ 0, it is more difficult for the central regions to expand after application of an enhanced P 0. All clouds with ρ c / ρ 0 > 14.1 are gravitationally unstable. The critical value of M is known as the Bonnor-Ebert mass: M BE = m a 4 1 T 1/ P 0 G 3 / unstable ρ c / ρ 0 = 14.1
9 Critical length scale In general, a certain size scale of isothermal gas is prone to collapse, regardless of the specific 3D configuration. Following Jeans classic analysis, let s consider a plane wave propagating through a uniform, isothermal gas of density ρ 0 : ρ(x,t) = ρ 0 + δρexp[i(kx wt)] where x is the direction of propagation and k π/λ is the wave number. By assumption, the small velocity induced by the perturbation is also in this direction. Substituting analogous traveling-wave forms for all variables into the: δρ δt = (ρu) P = ρa T φ g = 4πGρ ρ Du Dt = P ρ φ g " equation of mass continuity equation of state Poisson s equation momentum equation (non magnetic) Linearizing the amplitudes, canceling the exponentials, and after some algebra, we arrive at the dispersion relation, which governs the propagation of the waves: ω = k a T 4πGρ 0 ω 0 (4πGρ 0 ) 1/ For short λ (large k), ω ka T and the disturbance behaves like a sound wave, traveling at the phase velocity ω/k = a T, the isothermal sound speed. But both ω and the phase velocity pass through zero when k = k 0. The corresponding λ J π /k 0 : k 0 ω /a T ( λ J = πa + T * - ) Gρ 0, 1/ = 0.19 pc ( T + * - ) 10 K, 1/ ( n H + * - ) 10 4 cm 3, 1/ Jeans length Perturbations with λ>λ J have exponentially growing amplitudes. M J =1.0 M sun " T % $ ' # 10 K& 3 / " n H % $ # 10 4 cm 3 ' & 1/ Jeans mass Bonnor-Ebert mass
10 Considering typical parameters of clumps embedded in Giant Molecular Clouds: n(h ) = 10 3 cm -3 and T=10 K, we find M J =3 M #, two orders of magnitude below the actual masses!! Since the clumps are apparently not undergoing global collapse, an extra source of support is necessary. The most plausible source is the interstellar magnetic field.
Lesson 3: Isothermal Hydrostatic Spheres. B68: a self-gravitating stable cloud. Hydrostatic self-gravitating spheres. P = "kt 2.
Lesson 3: Isothermal Hydrostatic Spheres B68: a self-gravitating stable cloud Bok Globule Relatively isolated, hence not many external disturbances Though not main mode of star formation, their isolation
IV. Molecular Clouds. 1. Molecular Cloud Spectra
IV. Molecular Clouds Dark structures in the ISM emit molecular lines. Dense gas cools, Metals combine to form molecules, Molecular clouds form. 1. Molecular Cloud Spectra 1 Molecular Lines emerge in absorption:
8 Radiative Cooling and Heating
8 Radiative Cooling and Heating Reading: Katz et al. 1996, ApJ Supp, 105, 19, section 3 Thoul & Weinberg, 1995, ApJ, 442, 480 Optional reading: Thoul & Weinberg, 1996, ApJ, 465, 608 Weinberg et al., 1997,
Sound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8
References: Sound L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol., Gas Dynamics, Chapter 8 1 Speed of sound The phenomenon of sound waves is one that
Elliptical Galaxies. Houjun Mo. April 19, 2004. Basic properties of elliptical galaxies. Formation of elliptical galaxies
Elliptical Galaxies Houjun Mo April 19, 2004 Basic properties of elliptical galaxies Formation of elliptical galaxies Photometric Properties Isophotes of elliptical galaxies are usually fitted by ellipses:
Lecture 3 Properties and Evolution of Molecular Clouds. Spitzer space telescope image of Snake molecular cloud (IRDC G11.11-0.11
Lecture 3 Properties and Evolution of Molecular Clouds Spitzer space telescope image of Snake molecular cloud (IRDC G11.11-0.11 From slide from Annie Hughes Review CO t in clouds HI: Atomic Hydrogen http://www.atnf.csiro.au/research/lvmeeting/magsys_pres/
In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees.
In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees. A panoramic painting of the Milky Way as seen from Earth, done by Knut Lundmark in the 1940 s. The
8.1 Radio Emission from Solar System objects
8.1 Radio Emission from Solar System objects 8.1.1 Moon and Terrestrial planets At visible wavelengths all the emission seen from these objects is due to light reflected from the sun. However at radio
Nuclear fusion in stars. Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars
Nuclear fusion in stars Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars The origin of structure in the Universe Until the time of formation of protogalaxies,
7. In which part of the electromagnetic spectrum are molecules most easily detected? A. visible light B. radio waves C. X rays D.
1. Most interstellar matter is too cold to be observed optically. Its radiation can be detected in which part of the electromagnetic spectrum? A. gamma ray B. ultraviolet C. infrared D. X ray 2. The space
Heating & Cooling in the Interstellar Medium
Section 7 Heating & Cooling in the Interstellar Medium 7.1 Heating In general terms, we can imagine two categories of heating processes in the diuse ISM: 1 large-scale (mechanical, e.g., cloud-cloud collisions),
Lecture 7 Formation of the Solar System. Nebular Theory. Origin of the Solar System. Origin of the Solar System. The Solar Nebula
Origin of the Solar System Lecture 7 Formation of the Solar System Reading: Chapter 9 Quiz#2 Today: Lecture 60 minutes, then quiz 20 minutes. Homework#1 will be returned on Thursday. Our theory must explain
Fundamentals of Plasma Physics Waves in plasmas
Fundamentals of Plasma Physics Waves in plasmas APPLAuSE Instituto Superior Técnico Instituto de Plasmas e Fusão Nuclear Vasco Guerra 1 Waves in plasmas What can we study with the complete description
Summary: Four Major Features of our Solar System
Summary: Four Major Features of our Solar System How did the solar system form? According to the nebular theory, our solar system formed from the gravitational collapse of a giant cloud of interstellar
Lecture 10 Formation of the Solar System January 6c, 2014
1 Lecture 10 Formation of the Solar System January 6c, 2014 2 Orbits of the Planets 3 Clues for the Formation of the SS All planets orbit in roughly the same plane about the Sun. All planets orbit in the
Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
Lecture 14. Introduction to the Sun
Lecture 14 Introduction to the Sun ALMA discovers planets forming in a protoplanetary disc. Open Q: what physics do we learn about the Sun? 1. Energy - nuclear energy - magnetic energy 2. Radiation - continuum
Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.
.1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations
Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System
Solar System Fundamentals What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Properties of Planets What is a planet? Defined finally in August 2006!
L3: The formation of the Solar System
credit: NASA L3: The formation of the Solar System UCL Certificate of astronomy Dr. Ingo Waldmann A stable home The presence of life forms elsewhere in the Universe requires a stable environment where
Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation
Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics
Lecture 19: Planet Formation I. Clues from the Solar System
Lecture 19: Planet Formation I. Clues from the Solar System 1 Outline The Solar System:! Terrestrial planets! Jovian planets! Asteroid belt, Kuiper belt, Oort cloud Condensation and growth of solid bodies
White Dwarf Properties and the Degenerate Electron Gas
White Dwarf Properties and the Degenerate Electron Gas Nicholas Rowell April 10, 2008 Contents 1 Introduction 2 1.1 Discovery....................................... 2 1.2 Survey Techniques..................................
5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves
5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has
Solar Ast ro p h y s ics
Peter V. Foukal Solar Ast ro p h y s ics Second, Revised Edition WI LEY- VCH WILEY-VCH Verlag Co. KCaA Contents Preface 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.1.1 2.1.2 2.2 2.2.1 2.2.2 2.2.3 2.3
Modeling Galaxy Formation
Galaxy Evolution is the study of how galaxies form and how they change over time. As was the case with we can not observe an individual galaxy evolve but we can observe different galaxies at various stages
The Sun and Solar Energy
I The Sun and Solar Energy One of the most important forces behind global change on Earth is over 90 million miles distant from the planet. The Sun is the ultimate, original source of the energy that drives
Energy. Mechanical Energy
Principles of Imaging Science I (RAD119) Electromagnetic Radiation Energy Definition of energy Ability to do work Physicist s definition of work Work = force x distance Force acting upon object over distance
This paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00
Imperial College London BSc/MSci EXAMINATION June 2008 This paper is also taken for the relevant Examination for the Associateship SUN, STARS, PLANETS For Second Year Physics Students Wednesday, 4th June
Malcolm S. Longair. Galaxy Formation. With 141 Figures and 12 Tables. Springer
Malcolm S. Longair Galaxy Formation With 141 Figures and 12 Tables Springer Contents Part I Preliminaries 1. Introduction, History and Outline 3 1.1 Prehistory 3 1.2 The Theory of the Expanding Universe
Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation
The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered
Three-dimensional Simulation of Magnetized Cloud Fragmentation Induced by Nonlinear Flows and Ambipolar Diffusion
accepted by Astrophysical Journal Letters Three-dimensional Simulation of Magnetized Cloud Fragmentation Induced by Nonlinear Flows and Ambipolar Diffusion Takahiro Kudoh 1 and Shantanu Basu 2 ABSTRACT
The Layout of the Solar System
The Layout of the Solar System Planets fall into two main categories Terrestrial (i.e. Earth-like) Jovian (i.e. Jupiter-like or gaseous) [~5000 kg/m 3 ] [~1300 kg/m 3 ] What is density? Average density
Science Standard Articulated by Grade Level Strand 5: Physical Science
Concept 1: Properties of Objects and Materials Classify objects and materials by their observable properties. Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 PO 1. Identify the following observable properties
Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows
Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3.- 1 Basics: equations of continuum mechanics - balance equations for mass and momentum - balance equations for the energy and the chemical
The rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time.
H2 PHYSICS DEFINITIONS LIST Scalar Vector Term Displacement, s Speed Velocity, v Acceleration, a Average speed/velocity Instantaneous Velocity Newton s First Law Newton s Second Law Newton s Third Law
thermal history of the universe and big bang nucleosynthesis
thermal history of the universe and big bang nucleosynthesis Kosmologie für Nichtphysiker Markus Pössel (vertreten durch Björn Malte Schäfer) Fakultät für Physik und Astronomie, Universität Heidelberg
Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004
Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein
1. Degenerate Pressure
. Degenerate Pressure We next consider a Fermion gas in quite a different context: the interior of a white dwarf star. Like other stars, white dwarfs have fully ionized plasma interiors. The positively
LECTURE 5: Fluid jets. We consider here the form and stability of fluid jets falling under the influence of gravity.
LECTURE 5: Fluid jets We consider here the form and stability of fluid jets falling under the influence of gravity. 5.1 The shape of a falling fluid jet Consider a circular orifice of radius a ejecting
Blackbody radiation derivation of Planck s radiation low
Blackbody radiation derivation of Planck s radiation low 1 Classical theories of Lorentz and Debye: Lorentz (oscillator model): Electrons and ions of matter were treated as a simple harmonic oscillators
Solar Nebula Theory. Basic properties of the Solar System that need to be explained:
Solar Nebula Theory Basic properties of the Solar System that need to be explained: 1. All planets orbit the Sun in the same direction as the Sun s rotation 2. All planetary orbits are confined to the
Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE
Data Provided: A formula sheet and table of physical constants is attached to this paper. DEPARTMENT OF PHYSICS AND ASTRONOMY Autumn Semester (2014-2015) DARK MATTER AND THE UNIVERSE 2 HOURS Answer question
The Phenomenon of Photoelectric Emission:
The Photoelectric Effect. The Wave particle duality of light Light, like any other E.M.R (electromagnetic radiation) has got a dual nature. That is there are experiments that prove that it is made up of
Numerical Analysis of the Jeans Instability
June 15, 2010 Background Goal Refine our understanding of Jeans Length and its relation to astrophysical simulations. Currently, it is widely accepted that one needs four cells per Jeans Length to get
Nuclear Physics. Nuclear Physics comprises the study of:
Nuclear Physics Nuclear Physics comprises the study of: The general properties of nuclei The particles contained in the nucleus The interaction between these particles Radioactivity and nuclear reactions
Chapter 8 Formation of the Solar System. What theory best explains the features of our solar system? Close Encounter Hypothesis
Chapter 8 Formation of the Solar System What properties of our solar system must a formation theory explain? 1. Patterns of motion of the large bodies Orbit in same direction and plane 2. Existence of
The Universe Inside of You: Where do the atoms in your body come from?
The Universe Inside of You: Where do the atoms in your body come from? Matthew Mumpower University of Notre Dame Thursday June 27th 2013 Nucleosynthesis nu cle o syn the sis The formation of new atomic
Main properties of atoms and nucleus
Main properties of atoms and nucleus. Atom Structure.... Structure of Nuclei... 3. Definition of Isotopes... 4. Energy Characteristics of Nuclei... 5. Laws of Radioactive Nuclei Transformation... 3. Atom
9 th Grade Physical Science Springfield Local Schools Common Course Syllabi. Course Description
9 th Grade Physical Science Springfield Local Schools Common Course Syllabi Course Description The purpose of the Physical Science course is to satisfy the Ohio Core science graduation requirement. The
Chapter 8 Formation of the Solar System Agenda
Chapter 8 Formation of the Solar System Agenda Announce: Mercury Transit Part 2 of Projects due next Thursday Ch. 8 Formation of the Solar System Philip on The Physics of Star Trek Radiometric Dating Lab
Wave Function, ψ. Chapter 28 Atomic Physics. The Heisenberg Uncertainty Principle. Line Spectrum
Wave Function, ψ Chapter 28 Atomic Physics The Hydrogen Atom The Bohr Model Electron Waves in the Atom The value of Ψ 2 for a particular object at a certain place and time is proportional to the probability
Chapter 15.3 Galaxy Evolution
Chapter 15.3 Galaxy Evolution Elliptical Galaxies Spiral Galaxies Irregular Galaxies Are there any connections between the three types of galaxies? How do galaxies form? How do galaxies evolve? P.S. You
............... [2] At the time of purchase of a Strontium-90 source, the activity is 3.7 10 6 Bq.
1 Strontium-90 decays with the emission of a β-particle to form Yttrium-90. The reaction is represented by the equation 90 38 The decay constant is 0.025 year 1. 90 39 0 1 Sr Y + e + 0.55 MeV. (a) Suggest,
CHANGES IN APPARENT SIZE OF GIANT STARS WITH WAVELENGTH DUE TO ELECTRON-HYDROGEN COLLISIONS
The Astrophysical Journal, 644:1145 1150, 2006 June 20 # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. CHANGES IN APPARENT SIZE OF GIANT STARS WITH WAVELENGTH DUE TO ELECTRON-HYDROGEN
165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars
Name Date Period 30 GALAXIES AND THE UNIVERSE SECTION 30.1 The Milky Way Galaxy In your textbook, read about discovering the Milky Way. (20 points) For each item in Column A, write the letter of the matching
How To Understand The Physics Of Electromagnetic Radiation
Ay 122 - Fall 2004 Electromagnetic Radiation And Its Interactions With Matter (This version has many of the figures missing, in order to keep the pdf file reasonably small) Radiation Processes: An Overview
Name Class Date. true
Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized
WJP, PHY381 (2015) Wabash Journal of Physics v4.3, p.1. Cloud Chamber. R.C. Dennis, Tuan Le, M.J. Madsen, and J. Brown
WJP, PHY381 (2015) Wabash Journal of Physics v4.3, p.1 Cloud Chamber R.C. Dennis, Tuan Le, M.J. Madsen, and J. Brown Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated: May 7, 2015)
Monday 11 June 2012 Afternoon
Monday 11 June 2012 Afternoon A2 GCE PHYSICS B (ADVANCING PHYSICS) G495 Field and Particle Pictures *G412090612* Candidates answer on the Question Paper. OCR supplied materials: Data, Formulae and Relationships
LECTURE 6: Fluid Sheets
LECTURE 6: Fluid Sheets The dynamics of high-speed fluid sheets was first considered by Savart after his early work on electromagnetism with Biot, and was subsequently examined in a series of papers by
Semester 2. Final Exam Review
Semester 2 Final Exam Review Motion and Force Vocab Motion object changes position relative to a reference point. Speed distance traveled in a period of time. Velocity speed in a direction. Acceleration
Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:
ConcepTest 27.1 Photons Which has more energy, a photon of: 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy 400 nm 500 nm 600 nm 700 nm ConcepTest 27.1 Photons Which
- thus, the total number of atoms per second that absorb a photon is
Stimulated Emission of Radiation - stimulated emission is referring to the emission of radiation (a photon) from one quantum system at its transition frequency induced by the presence of other photons
Chemistry 102 Summary June 24 th. Properties of Light
Chemistry 102 Summary June 24 th Properties of Light - Energy travels through space in the form of electromagnetic radiation (EMR). - Examples of types of EMR: radio waves, x-rays, microwaves, visible
Problem #1 [Sound Waves and Jeans Length]
Roger Griffith Astro 161 hw. # 8 Proffesor Chung-Pei Ma Problem #1 [Sound Waves and Jeans Length] At typical sea-level conditions, the density of air is 1.23 1 3 gcm 3 and the speed of sound is 3.4 1 4
Carol and Charles see their pencils fall exactly straight down.
Section 24-1 1. Carol is in a railroad car on a train moving west along a straight stretch of track at a constant speed of 120 km/h, and Charles is in a railroad car on a train at rest on a siding along
Widths of spectral lines
Widths of spectral lines Real spectral lines are broadened because: Energy levels are not infinitely sharp. Atoms are moving relative to observer. 3 mechanisms determine profile φ(ν) Quantum mechanical
Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)
Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) In this lecture How does turbulence affect the ensemble-mean equations of fluid motion/transport? Force balance in a quasi-steady turbulent boundary
1 A Solar System Is Born
CHAPTER 3 1 A Solar System Is Born SECTION Formation of the Solar System BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a nebula? How did our solar system
The Ideal Gas Law. Gas Constant. Applications of the Gas law. P = ρ R T. Lecture 2: Atmospheric Thermodynamics
Lecture 2: Atmospheric Thermodynamics Ideal Gas Law (Equation of State) Hydrostatic Balance Heat and Temperature Conduction, Convection, Radiation Latent Heating Adiabatic Process Lapse Rate and Stability
State Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
AS COMPETITION PAPER 2008
AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question
Orbits of the Lennard-Jones Potential
Orbits of the Lennard-Jones Potential Prashanth S. Venkataram July 28, 2012 1 Introduction The Lennard-Jones potential describes weak interactions between neutral atoms and molecules. Unlike the potentials
- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier
Tunnel Effect: - particle with kinetic energy E strikes a barrier with height U 0 > E and width L - classically the particle cannot overcome the barrier - quantum mechanically the particle can penetrated
Chem 1A Exam 2 Review Problems
Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?
Concept 2. A. Description of light-matter interaction B. Quantitatities in spectroscopy
Concept 2 A. Description of light-matter interaction B. Quantitatities in spectroscopy Dipole approximation Rabi oscillations Einstein kinetics in two-level system B. Absorption: quantitative description
ENERGY TRANSPORT WITHIN A STAR
M. Pettini: Structure and Evolution of Stars Lecture 8 ENERGY TRANSPORT WITHIN A STAR 8.1 Introduction Up to now, we have considered how energy is generated within the interior of stars by the processes
Basic Nuclear Concepts
Section 7: In this section, we present a basic description of atomic nuclei, the stored energy contained within them, their occurrence and stability Basic Nuclear Concepts EARLY DISCOVERIES [see also Section
Solar Wind: Theory. Parker s solar wind theory
Solar Wind: Theory The supersonic outflow of electrically charged particles, mainly electrons and protons from the solar CORONA, is called the SOLAR WIND. The solar wind was described theoretically by
ENERGY CONSERVATION The First Law of Thermodynamics and the Work/Kinetic-Energy Theorem
PH-211 A. La Rosa ENERGY CONSERVATION The irst Law of Thermodynamics and the Work/Kinetic-Energy Theorem ENERGY TRANSER of ENERGY Heat-transfer Q Macroscopic external Work W done on a system ENERGY CONSERVATION
Science Standard 4 Earth in Space Grade Level Expectations
Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal
39th International Physics Olympiad - Hanoi - Vietnam - 2008. Theoretical Problem No. 3
CHANGE OF AIR TEMPERATURE WITH ALTITUDE, ATMOSPHERIC STABILITY AND AIR POLLUTION Vertical motion of air governs many atmospheric processes, such as the formation of clouds and precipitation and the dispersal
Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.
Chapter 5. Gravitation Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13. 5.1 Newton s Law of Gravitation We have already studied the effects of gravity through the
Plasma science and technology Basic concepts
Plasma science and technology Basic concepts ATHENS 2015 Instituto Superior Técnico Instituto de Plasmas e Fusão Nuclear Vasco Guerra Since the dawn of Mankind men has tried to understand plasma physics...
State Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
Topic 3. Evidence for the Big Bang
Topic 3 Primordial nucleosynthesis Evidence for the Big Bang! Back in the 1920s it was generally thought that the Universe was infinite! However a number of experimental observations started to question
(1) The size of a gas particle is negligible as compared to the volume of the container in which the gas is placed.
Gas Laws and Kinetic Molecular Theory The Gas Laws are based on experiments, and they describe how a gas behaves under certain conditions. However, Gas Laws do not attempt to explain the behavior of gases.
Assessment Plan for Learning Outcomes for BA/BS in Physics
Department of Physics and Astronomy Goals and Learning Outcomes 1. Students know basic physics principles [BS, BA, MS] 1.1 Students can demonstrate an understanding of Newton s laws 1.2 Students can demonstrate
Curriculum for Excellence. Higher Physics. Success Guide
Curriculum for Excellence Higher Physics Success Guide Electricity Our Dynamic Universe Particles and Waves Electricity Key Area Monitoring and Measuring A.C. Monitoring alternating current signals with
Specific Intensity. I ν =
Specific Intensity Initial question: A number of active galactic nuclei display jets, that is, long, nearly linear, structures that can extend for hundreds of kiloparsecs. Many have two oppositely-directed
Gamma Rays from Molecular Clouds and the Origin of Galactic Cosmic Rays. Stefano Gabici APC, Paris
Gamma Rays from Molecular Clouds and the Origin of Galactic Cosmic Rays Stefano Gabici APC, Paris The Origin of galactic Cosmic Rays Facts: the spectrum is (ALMOST) a single power law -> CR knee at few
