Theoretical Particle Physics FYTN04: Oral Exam Questions, version ht15
|
|
|
- Stanley Barnett
- 9 years ago
- Views:
Transcription
1 Theoretical Particle Physics FYTN04: Oral Exam Questions, version ht15 Examples of The questions are roughly ordered by chapter but are often connected across the different chapters. Ordering is as in the lectures (Chapters refer to the old textbook). You should be able to show the main lines and principles behind the derivations. Chapter 1 What are the different interactions? Which are the particles in the standard model? What are the magnitudes of the various masses in the Standard Model (roughly)? What is the main difference between quarks and leptons? What are generations/families? Chapter 2 This chapter is an extremely short introduction to field theory. It is meant to give a flavour rather than full understanding of field theory. What is a field? What is Noether s theorem and why is it so important? What are creation/annihilation operators and anti-particles? Can you explain the Feynman rules qualitatively? Which type of terms in the Lagrangian lead to propagators and which to interactions? How does a typical Lagrangian look for a real scalar, complex scalar, fermion, vector or gauge boson? Chapter 3 Can you give some arguments why we want gauge invariance? What is a covariant derivative and why do we like it so much? What is the main physical consequence of introducing local gauge invariance? Explain how the covariant derivative works, i.e. how it allows gaugeinvariant Lagrangians to be constructed and how the difference with the normal partial derivative achieves this. Chapter 4 and extra part about group theory What is a group and what does it have to do with gauge invariance? What is a representation of a group? Can you give some examples of groups, Lie groups and representations? What is a field strength? 1
2 Can you sketch the argument for the form of the nonabelian field strength? What consequences do the extra terms in the nonabelian field strength have? Chapter 5 What are γ matrices? What is left/right-handed? What forms of bilinears can we have, can you split them in left/right handed parts? Chapter 6 Why does the Standard Model violate parity? What is the gauge group of the standard model? How do the various fermions fit in representations of the standard model group? What is the covariant derivative of the Standard Model? Are all terms present for all particles? Chapter 7 How do you determine Y L and Y R? Explain the relation between B µ, W 0 µ and A µ, Z µ? Why is the Z µ precisely the combination (7.10) in the book? What is the neutral/charged current interaction? Which processes are contained in the term q λ a G a µγ µ q? Chapter 8 Explain spontaneous symmetry breaking? What is a Goldstone Boson? What do you know about the Higgs mechanism? (Abelian, Non-abelian) How do you obtain masses for the leptons/quarks in the standard model? Explain the relation between masses and the couplings to the Higgs boson. How do the W and Z boson get mass, why does the photon not get a mass, how do you know m W /m Z? Chapter 9 Describe scattering through a resonance. What is a Breit-Wigner? Describe the form of a Breit-Wigner distribution. How do you calculate the W decay width? Can you deduce the number of colours (N c ) from this? How do you calculate the Z decay width? Can you determine the number of generations from this? 2
3 Chapter 10 What is a parton density? Describe the calculation of the W production rate at hadron colliders. Discuss the W mass measurement at a hadron collider. Chapter 11 and 25 How would you measure the gauge coupling constants in the Standard Model? Describe the calculation of the muon decay rate? How were the top quark and tau neutrino found? How did we know beforehand that these particles must exist? Chapter 12 and 13 Which are the main high energy accelerators? What is luminosity and how would you estimate it in a collider? How does a generic high energy physics detector look like? Chapter 21 Describe the main decay modes of the Higgs and why do these change so much with the mass of the Higgs? Describe possible production channels for a Higgs in e + e and in pp collisions. Can you give some search strategies for the Higgs at the LHC? Chapter 15 What is confinement? What is a jet? How does a jet get produced? Chapter 16 What are mesons and baryons? Why do we only see these combinations? Describe the quantum numbers of mesons and baryons? Can you explain the rough order of hadron masses? Which types of decays can hadrons have? Chapter 17 What is charmonium? What are the equivalent states of J/ψ and D-mesons for light quarks? How do heavy quarks decay? Can you give some examples of B or D decays? 3
4 Chapter 18 What is deeply inelastic scattering? The ratio Q 2 /(2P q) is often defined for deeply inelastic scattering. What is it called and what meaning does it have? Derive. What is a structure function, a parton density and what is the relation between both? How do you measure the parton densities? What are scaling violations in parton densities, and how do they arise? Chapter 19 What is R and how does its measurement prove the quark model and determine the number of colours? How would you describe τ decays? How can you see a gluon in e + e collisions? Which tests exist that show that SU(3) is the right group for QCD? Chapter 20 Explain the physics of a running coupling constant? How is it different for an abelian versus a nonabelian gauge theory? Chapter 14 Can you give some examples of low-energy and non-accelerator experiments? Chapter 22 Explain the idea behind mixing between the generations? What are quark or lepton mixing angles? Can you explain their origin in the Lagrangian of the standard model? Chapter 24 What is CP and what is CP violation? Where has CP violation been observed? How does CP violation fit in the Lagrangian of the Standard Model? Chapter 29 What do you know about neutrino masses? Describe the phenomenon of neutrino oscillations. How can matter induce neutrino oscillations? 4
5 Chapter 26 Give some open problems in the standard model. How many (and which) free parameters are there in the Standard Model? Chapter 27 What is the main idea behind Grand Unification? How does Grand Unification solve charge quantization? What are the main predictions of Grand Unification? At what scale is Grand Unification expected to occur and how does one know that? Discuss how Grand Unification allows proton decay and how the proton lifetime can be estimated. Recent developments These chapters are intended to show you the possibilities more than being fully part of the course. Chapter 28 and string theory What is supersymmetry? Give some examples of extra particles needed in a supersymmetric version of the standard model. Give examples of supersymmetric vertices and their coupling strengths. What are strings? Particle Physics and the Universe Describe some connections between astrophysics and particle physics, i.e. does it give limits on particle properties? What is the cosmic microwave background? Give some problems of standard cosmology. What is inflation and how does it solve the above problems, how can particle physics help here? 5
Concepts in Theoretical Physics
Concepts in Theoretical Physics Lecture 6: Particle Physics David Tong e 2 The Structure of Things 4πc 1 137 e d ν u Four fundamental particles Repeated twice! va, 9608085, 9902033 Four fundamental forces
Gauge theories and the standard model of elementary particle physics
Gauge theories and the standard model of elementary particle physics Mark Hamilton 21st July 2014 1 / 35 Table of contents 1 The standard model 2 3 2 / 35 The standard model The standard model is the most
1 Introduction. 1 There may, of course, in principle, exist other universes, but they are not accessible to our
1 1 Introduction Cosmology is the study of the universe as a whole, its structure, its origin, and its evolution. Cosmology is soundly based on observations, mostly astronomical, and laws of physics. These
STRING THEORY: Past, Present, and Future
STRING THEORY: Past, Present, and Future John H. Schwarz Simons Center March 25, 2014 1 OUTLINE I) Early History and Basic Concepts II) String Theory for Unification III) Superstring Revolutions IV) Remaining
Particle Physics. The Standard Model. A New Periodic Table
5 Particle Physics This lecture is about particle physics, the study of the fundamental building blocks of Nature and the forces between them. We call our best theory of particle physics the Standard Model
High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions
High Energy Physics Lecture 4 More kinematics and a picture show of particle collisions 1 Recall from the previous lecture: the momentum of the scattered Particle in an elastic collision is given by p
Selected Topics in Elementary Particle Physics ( Haupt-Seminar )
Selected Topics in Elementary Particle Physics ( Haupt-Seminar ) Paola Avella, Veronika Chobanova, Luigi Li Gioi, Christian Kiesling, Hans-Günther Moser, Martin Ritter, Pit Vanhoefer Time: Do, 12 ct -14
How To Find The Higgs Boson
Dezső Horváth: Search for Higgs bosons Balaton Summer School, Balatongyörök, 07.07.2009 p. 1/25 Search for Higgs bosons Balaton Summer School, Balatongyörök, 07.07.2009 Dezső Horváth MTA KFKI Research
How To Teach Physics At The Lhc
LHC discoveries and Particle Physics Concepts for Education Farid Ould- Saada, University of Oslo On behalf of IPPOG EPS- HEP, Vienna, 25.07.2015 A successful program LHC data are successfully deployed
REALIZING EINSTEIN S DREAM Exploring Our Mysterious Universe
REALIZING EINSTEIN S DREAM Exploring Our Mysterious Universe The End of Physics Albert A. Michelson, at the dedication of Ryerson Physics Lab, U. of Chicago, 1894 The Miracle Year - 1905 Relativity Quantum
Weak Interactions: towards the Standard Model of Physics
Weak Interactions: towards the Standard Model of Physics Weak interactions From β-decay to Neutral currents Weak interactions: are very different world CP-violation: power of logics and audacity Some experimental
UN PICCOLO BIG BANG IN LABORATORIO: L'ESPERIMENTO ALICE AD LHC
UN PICCOLO BIG BANG IN LABORATORIO: L'ESPERIMENTO ALICE AD LHC Parte 1: Carlos A. Salgado Universidade de Santiago de Compostela [email protected] http://cern.ch/csalgado LHC physics program Fundamental
Standard Model of Particle Physics
Standard Model of Particle Physics Chris Sachrajda School of Physics and Astronomy University of Southampton Southampton SO17 1BJ UK SUSSP61, St Andrews August 8th 3rd 006 Contents 1. Spontaneous Symmetry
Spontaneous symmetry breaking in particle physics: a case of cross fertilization
Spontaneous symmetry breaking in particle physics: a case of cross fertilization Yoichiro Nambu lecture presented by Giovanni Jona-Lasinio Nobel Lecture December 8, 2008 1 / 25 History repeats itself 1960
Beyond the Standard Model. A.N. Schellekens
Beyond the Standard Model A.N. Schellekens [Word cloud by www.worldle.net] Last modified 22 February 2016 1 Contents 1 Introduction 8 1.1 A Complete Theory?.............................. 8 1.2 Gravity
Unification - The Standard Model
Unification - The Standard Model Information on Physics level 4 Undergraduate Course PT.4.6 K.S. Stelle, Office Huxley 519 November 9, 2015 Rapid Feedback to be handed in to the UG office Level 3 (day
The Standard Model of Particle Physics - II
The Standard Model of Particle Physics II Lecture 4 Gauge Theory and Symmetries Quantum Chromodynamics Neutrinos Eram Rizvi Royal Institution London 6 th March 2012 Outline A Century of Particle Scattering
Extensions of the Standard Model (part 2)
Extensions of the Standard Model (part 2) Prof. Jorgen D Hondt Vrije Universiteit Brussel Inter-university Institute for High Energies Content: The Higgs sector of the Standard Model and extensions Theoretical
variables to investigate Monte Carlo methods of t t production
Using the M 2 and variables to investigate Monte Carlo methods of t t production Caitlin Jones September 8, 25 Abstract In this project the behaviour of Monte Carlo simulations for the event t t! ` `+b
0.33 d down 1 1. 0.33 c charm + 2 3. 0 0 1.5 s strange 1 3. 0 0 0.5 t top + 2 3. 0 0 172 b bottom 1 3
Chapter 16 Constituent Quark Model Quarks are fundamental spin- 1 particles from which all hadrons are made up. Baryons consist of three quarks, whereas mesons consist of a quark and an anti-quark. There
Middle East Technical University. Studying Selected Tools for HEP: CalcHEP
Middle East Technical University Department of Physics Advanced Selected Problems in Physics Studying Selected Tools for HEP: CalcHEP Author: Jack Yakup Araz Supervisor: Assoc. Prof Ismail Turan December
The Standard Model and the LHC! in the Higgs Boson Era Juan Rojo!
The Standard Model and the LHC in the Higgs Boson Era Juan Rojo Saturday Mornings of Theoretical Physics Rudolf Peierls Center for Theoretical Physics Oxford, 07/02/2015 1 The Standard Model of Particle
Masses in Atomic Units
Nuclear Composition - the forces binding protons and neutrons in the nucleus are much stronger (binding energy of MeV) than the forces binding electrons to the atom (binding energy of ev) - the constituents
Directed by: Prof. Yuanning Gao, IHEP, Tsinghua University Prof. Aurelio Bay, LPHE, EPFL
Masters Thesis in High Energy Physics Directed by: Prof. Yuanning Gao, IHEP, Tsinghua University Prof. Aurelio Bay, LPHE, EPFL 1 Study for CP-violation in the ψ π + π J/ψ transition Vincent Fave July 18,
A Study of the Top Quark Production Threshold at a Future Electron-Positron Linear Collider
A Study of the Top Quark Production Threshold at a Future Electron-Positron Linear Collider Filimon Gournaris Department of Physics and Astronomy University College London A thesis submitted for the degree
Introduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A.
June 2012 Introduction to SME and Scattering Theory Don Colladay New College of Florida Sarasota, FL, 34243, U.S.A. This lecture was given at the IUCSS summer school during June of 2012. It contains a
arxiv:hep-ph/0310021v2 4 Oct 2003
Physics in Collision - Zeuthen, Germany, June 6-8, 003 arxiv:hep-ph/0300v 4 Oct 003 SEARCHES FOR NEW PARTICLES AT THE ENERGY FRONTIER AT THE TEVATRON Patrice VERDIER LAL, Université Paris-Sud, 9898 Orsay
Mathematicians look at particle physics. Matilde Marcolli
Mathematicians look at particle physics Matilde Marcolli Year of Mathematics talk July 2008 We do not do these things because they are easy. We do them because they are hard. (J.F.Kennedy Sept. 12, 1962)
Feynman diagrams. 1 Aim of the game 2
Feynman diagrams Contents 1 Aim of the game 2 2 Rules 2 2.1 Vertices................................ 3 2.2 Anti-particles............................. 3 2.3 Distinct diagrams...........................
Curriculum for Excellence. Higher Physics. Success Guide
Curriculum for Excellence Higher Physics Success Guide Electricity Our Dynamic Universe Particles and Waves Electricity Key Area Monitoring and Measuring A.C. Monitoring alternating current signals with
Calorimetry in particle physics experiments
Calorimetry in particle physics experiments Unit n. 8 Calibration techniques Roberta Arcidiacono Lecture overview Introduction Hardware Calibration Test Beam Calibration In-situ Calibration (EM calorimeters)
Introduction to Elementary Particle Physics. Note 01 Page 1 of 8. Natural Units
Introduction to Elementary Particle Physics. Note 01 Page 1 of 8 Natural Units There are 4 primary SI units: three kinematical (meter, second, kilogram) and one electrical (Ampere 1 ) It is common in the
Phase Transitions in the Early Universe
Trick Phase Transitions in the Early Universe Electroweak and QCD Phase Transitions Master Program of Theoretical Physics Student Seminar in Cosmology Author: Doru STICLET Supervisors: Prof. Dr. Tomislav
Extraction of Polarised Quark Distributions of the Nucleon from Deep Inelastic Scattering at the HERMES Experiment
Extraction of Polarised Quark Distributions of the Nucleon from Deep Inelastic Scattering at the HERMES Experiment Marc Beckmann FAKULTÄT FÜR PHYSIK ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG Extraction of Polarised
FCC 1309180800 JGU WBS_v0034.xlsm
1 Accelerators 1.1 Hadron injectors 1.1.1 Overall design parameters 1.1.1.1 Performance and gap of existing injector chain 1.1.1.2 Performance and gap of existing injector chain 1.1.1.3 Baseline parameters
Quark Model. Quark Model
Quark odel Outline Hadrons Isosin Strangeness Quark odel Flavours u d s esons Pseudoscalar and vector mesons Baryons Deculet octet Hadron asses Sin-sin couling Heavy Quarks Charm bottom Heavy quark esons
3. Open Strings and D-Branes
3. Open Strings and D-Branes In this section we discuss the dynamics of open strings. Clearly their distinguishing feature is the existence of two end points. Our goal is to understand the effect of these
Measurement of low p T D 0 meson production cross section at CDF II
Alma Mater Studiorum - Università di Bologna DOTTORATO DI RICERCA IN FISICA Ciclo XXII Settore scientifico-disciplinare di afferenza: FIS/04 Measurement of low p T D 0 meson production cross section at
Pearson Physics Level 30 Unit VIII Atomic Physics: Chapter 17 Solutions
Pearson Physics Level 30 Unit VIII Atomic Physics: Chapter 17 Solutions Student Book page 831 Concept Check Since neutrons have no charge, they do not create ions when passing through the liquid in a bubble
A SUSY SO(10) GUT with 2 Intermediate Scales
A SUSY SO(10) GUT with 2 Intermediate Scales Manuel Drees Bonn University & Bethe Center for Theoretical Physics SUSY SO(10) p. 1/25 Contents 1 Motivation: SO(10), intermediate scales SUSY SO(10) p. 2/25
Channels & Challenges New Physics at LHC
Channels & Challenges New Physics at LHC Jürgen Reuter Carleton University, Ottawa Southampton, 15. January 2007 The success of the Standard Model Standard Model describes microcosm gauge interactions:
FINDING SUPERSYMMETRY AT THE LHC
FINDING SUPERSYMMETRY AT THE LHC Tilman Plehn MPI München & University of Edinburgh TeV scale supersymmetry Signals at Tevatron and LHC Measurements at LHC SUSY parameters at LHC (and ILC) Tilman Plehn:
About the Author. journals as Physics Letters, Nuclear Physics and The Physical Review.
About the Author Dr. John Hagelin is Professor of Physics and Director of the Doctoral Program in Physics at Maharishi International University. Dr. Hagelin received his A.B. Summa Cum Laude from Dartmouth
Outline. book content motivations storyline
Outline book content motivations storyline Content history from 1968 (Veneziano amplitude) to 1984 (first string revolution) 7 parts with introductions, 35 contributors and 5 appendices: I. Overview (Veneziano,
Periodic Table of Particles/Forces in the Standard Model. Three Generations of Fermions: Pattern of Masses
Introduction to Elementary Particle Physics. Note 01 Page 1 of 8 Periodic Table of Particles/Forces in the Standard Model Three Generations of Fermions: Pattern of Masses 1.0E+06 1.0E+05 1.0E+04 1.0E+03
Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 7 : Symmetries and the Quark Model. Introduction/Aims
Particle Physics Michaelmas Term 2011 Prof Mark Thomson Handout 7 : Symmetries and the Quark Model Prof. M.A. Thomson Michaelmas 2011 206 Introduction/Aims Symmetries play a central role in particle physics;
Search for supersymmetric Dark Matter with GLAST!!
Search for supersymmetric Dark Matter with GLAST!! Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata ICCRC2003 The 28th International Cosmic Ray Conference Tsukuba, Japan, July 31-
Bounding the Higgs width at the LHC
Bounding the Higgs width at the LHC Higgs XSWG workshop, June 2014 John Campbell, Fermilab with K. Ellis, C. Williams 1107.5569, 1311.3589, 1312.1628 Reminder of the method This is the essence of the original
Highlights of Recent CMS Results. Dmytro Kovalskyi (UCSB)
Highlights of Recent CMS Results Dmytro Kovalskyi (UCSB) Introduction Number of CMS publication is over 0 already It is very hard to review all the recent results in one talk This talk concentrates on
Search for a heavy gauge boson W in the final state with electron and large ET. s = 7 TeV
UNIVERSITÀ DEGLI STUDI MILANO BICOCCA Facoltà di Scienze MM. FF. NN. Scuola di Dottorato di Scienze Corso di Dottorato di Ricerca in Fisica ed Astronomia Search for a heavy gauge boson W in the final state
The Higgs Boson. Linac08 Victoria BC, Canada CANADA S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS
CANADA S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada
Axion/Saxion Cosmology Revisited
Axion/Saxion Cosmology Revisited Masahiro Yamaguchi (Tohoku University) Based on Nakamura, Okumura, MY, PRD77 ( 08) and Work in Progress 1. Introduction Fine Tuning Problems of Particle Physics Smallness
Investigation of a dark matter particle in the Higgs Portal model. Alicia Wongel 1314727
Investigation of a dark matter particle in the Higgs Portal model Alicia Wongel 1314727 Bachelor Thesis (BSc) Supervisor: Axel Maas Karl-Franzens-Universität Graz 2016 Abstract The Higgs-Portal Theory
Boardworks AS Physics
Boardworks AS Physics Vectors 24 slides 11 Flash activities Prefixes, scalars and vectors Guide to the SI unit prefixes of orders of magnitude Matching powers of ten to their SI unit prefixes Guide to
Search for solar axions with the CCD detector at CAST (CERN Axion Solar Telescope)
Search for solar axions with the CCD detector at CAST (CERN Axion Solar Telescope) Donghwa Kang FAKULTÄT FÜR MATHEMATIK UND PHYSIK ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG Search for solar axions with the
Search for Dark Matter at the LHC
Search for Dark Matter at the LHC Steven Lowette Vrije Universiteit Brussel - IIHE 19 November 2014 3rd CosPa Meeting Université de Liège Content Introduction Generic DM searches at the LHC Explicit DM
arxiv:hep-ph/9310295v1 17 Oct 1993
HU-TFT-93-51 Signatures of left-right symmetry at high energies 1 arxiv:hep-ph/9310295v1 17 Oct 1993 J. Maalampi 2 Department of Theoretical Physics, University of Helsinki Helsinki, Finland Abstract We
Particle Physics. Bryan Webber University of Cambridge. IMPRS, Munich. 19-23 November 2007
Monte Carlo Methods in Particle Physics University of Cambridge IMPRS, Munich 19-23 November 2007 See also ESW: QCD and Collider Physics, C.U.P. 1996 http://www.hep.phy.cam.ac.uk/theory/webber/qcdupdates.html
Evolution of the Universe from 13 to 4 Billion Years Ago
Evolution of the Universe from 13 to 4 Billion Years Ago Prof. Dr. Harold Geller [email protected] http://physics.gmu.edu/~hgeller/ Department of Physics and Astronomy George Mason University Unity in the
SUSY Breaking and Axino Cosmology
SUSY Breaking and Axino Cosmology Masahiro Yamaguchi Tohoku University Nov. 10, 2010 ExDiP2010@KEK, Japan 1. Introduction Fine Tuning Problems of Particle Physics Smallness of electroweak scale Smallness
Grid Computing for LHC and Methods for W Boson Mass Measurement at CMS
Grid Computing for LHC and Methods for W Boson Mass Measurement at CMS Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN von der Fakultät für Physik der Universität Karlsruhe
THREE QUARKS: u, d, s. Precursor 2: Eightfold Way, Discovery of Ω - Quark Model: first three quarks and three colors
Introduction to Elementary Particle Physics. Note 20 Page 1 of 17 THREE QUARKS: u, d, s Precursor 1: Sakata Model Precursor 2: Eightfold Way, Discovery of Ω - Quark Model: first three quarks and three
Top rediscovery at ATLAS and CMS
Top rediscovery at ATLAS and CMS on behalf of ATLAS and CMS collaborations CNRS/IN2P3 & UJF/ENSPG, LPSC, Grenoble, France E-mail: [email protected] We describe the plans and strategies of the
University of Cambridge Part III Mathematical Tripos
Preprint typeset in JHEP style - HYPER VERSION Michaelmas Term, 2006 and 2007 Quantum Field Theory University of Cambridge Part III Mathematical Tripos Dr David Tong Department of Applied Mathematics and
Measurement of the Mass of the Top Quark in the l+ Jets Channel Using the Matrix Element Method
Measurement of the Mass of the Top Quark in the l+ Jets Channel Using the Matrix Element Method Carlos Garcia University of Rochester For the DØ Collaboration APS Meeting 2007 Outline Introduction Top
Physics Department Phone: (541)357-9284 Center of High Energy Physics Fax: (541)346-5217
Spencer Chang Curriculum Vitae Contact Information Research Positions Education Awards Teaching Physics Department Phone: (541)357-9284 Center of High Energy Physics Fax: (541)346-5217 University of Oregon
Vector-like quarks t and partners
Vector-like quarks t and partners Luca Panizzi University of Southampton, UK Outline Motivations and Current Status 2 Couplings and constraints 3 Signatures at LHC Outline Motivations and Current Status
Cross section, Flux, Luminosity, Scattering Rates
Cross section, Flux, Luminosity, Scattering Rates Table of Contents Paul Avery (Andrey Korytov) Sep. 9, 013 1 Introduction... 1 Cross section, flux and scattering... 1 3 Scattering length λ and λ ρ...
Nuclear Physics and Radioactivity
Nuclear Physics and Radioactivity 1. The number of electrons in an atom of atomic number Z and mass number A is 1) A 2) Z 3) A+Z 4) A-Z 2. The repulsive force between the positively charged protons does
The Standard Model of Particle Physics. Tom W.B. Kibble Blackett Laboratory, Imperial College London
The Standard Model of Particle Physics Tom W.B. Kibble Blackett Laboratory, Imperial College London Abstract This is a historical account from my personal perspective of the development over the last few
Topic 3. Evidence for the Big Bang
Topic 3 Primordial nucleosynthesis Evidence for the Big Bang! Back in the 1920s it was generally thought that the Universe was infinite! However a number of experimental observations started to question
A Guide to Detectors Particle Physics Masterclass. M. van Dijk
A Guide to Particle Physics Masterclass M. van Dijk 16/04/2013 How detectors work Scintillation Ionization Particle identification Tracking Calorimetry Data Analysis W & Z bosons 2 Reconstructing collisions
Prospects for t t resonance searches at ATLAS
FACHBEREICH MATHEMATIK UND NATURWISSENSCHAFTEN FACHGRUPPE PHYSIK BERGISCHE UNIVERSITÄT WUPPERTAL Prospects for t t resonance searches at ATLAS Tatjana Lenz November 2010 Diese Dissertation kann wie folgt
Contents. Goldstone Bosons in 3He-A Soft Modes Dynamics and Lie Algebra of Group G:
... Vlll Contents 3. Textures and Supercurrents in Superfluid Phases of 3He 3.1. Textures, Gradient Energy and Rigidity 3.2. Why Superfuids are Superfluid 3.3. Superfluidity and Response to a Transverse
QCD MADE SIMPLE Quantum chromodynamics,
QCD MADE SIMPLE Quantum chromodynamics, familiarly called QCD, is the modern theory of the strong interaction. 1 Historically its roots are in nuclear physics and the description of ordinary matter understanding
PHYSICS WITH LHC EARLY DATA
PHYSICS WITH LHC EARLY DATA ONE OF THE LAST PROPHETIC TALKS ON THIS SUBJECT HOPEFULLY We may have some two month of the Machine operation in 2008 LONG HISTORY... I will extensively use: Fabiola GIANOTTI
