Measurement of the gravitational constant G by atom interferometry
|
|
|
- Gervase Fisher
- 10 years ago
- Views:
Transcription
1 Measurement of the gravitational constant G by atom interferometry Fiodor Sorrentino Dipartimento di Fisica & LENS, Università di Firenze & INFN
2 MAGIA Misura Accurata di G mediante Interferometria Atomica
3 MAGIA Misura Accurata di G mediante Interferometria Atomica Measure g by atom interferometry g
4 MAGIA Misura Accurata di G mediante Interferometria Atomica Measure g by atom interferometry Add source masses Measure change of g a M g
5 Motivation Cavendish 1798 Atomic probes F. Sorrentino Zang 2009 point-like test masses in free fall virtually insensitive to stray fields well know and reproducible properties different states, isotopes Measurement of the gravitational...
6 Raman interferometry in a 87 Rb atomic fountain z(t) 2 R2k R2k R2k T T 2 R1k R1k R1k Phase di erence between the paths: = k c [z(0)]2z(t )] + e k e = k 1 k 2 with z(t) = gt 2 /2+v 0 t + z 0 & e =0 = k e gt 2 t Final population: N a = N/2(1 + cos[ ]) T = 150 ms 2 = 10 6 g S/N=1000 Sensitivity 10 9 g/shot A. Peters et al., Nature 400, 849 (1999)
7 Atom gravimeter + source masses Sensitivity 10 9 g/shot one shot G/G Kg tungsten mass Peak mass acceleration a g 10 7 g shots G/G 10 4
8 Experimental sequence MOT + launch via moving molasses juggling the two clouds for larger n. of atoms
9 Experimental sequence MOT + launch via moving molasses juggling the two clouds for larger n. of atoms selection of internal state & velocity class from unpolarized to m F =0, from 3.5 v rec to 0.3 v rec via Raman pulses + resonant blow-away pulses Blow-away F=1 Raman π-pulse Blow-away F=2 F=2 F=2 F=2 F=2 F=1 F=1 F=1 F=1
10 Experimental sequence MOT + launch via moving molasses juggling the two clouds for larger n. of atoms selection of internal state & velocity class from unpolarized to m F =0, from 3.5 v rec to 0.3 v rec via Raman pulses + resonant blow-away pulses Raman interferometry sequence around apogee
11 Experimental sequence MOT + launch via moving molasses juggling the two clouds for larger n. of atoms selection of internal state & velocity class from unpolarized to m F =0, from 3.5 v rec to 0.3 v rec via Raman pulses + resonant blow-away pulses Raman interferometry sequence around apogee fluorescence detection of F=1 and F=2 populations
12 Raman gravity gradiometer = k e gt 2
13 Raman gravity gradiometer T=5 ms resol. = g/shot = k e gt 2
14 Raman gravity gradiometer T=5 ms resol. = g/shot T=50 ms resol. = g/shot = k e gt 2
15 Raman gravity gradiometer T=5 ms resol. = g/shot T=50 ms resol. = g/shot T=150 ms resol. = g/shot = k e gt 2
16 Raman gravity gradiometer T=5 ms resol. = g/shot T=50 ms resol. = g/shot T=150 ms resol. = g/shot = k e gt 2 F. Sorrentino G. T. Foster et al., Opt. Lett 27, 951 (2002) Measurement of the gravitational...
17 : proof-of-principle MAGIA G= (11) (3) m3 kg-1 s-2 G. Lamporesi et al., Phys. Rev. Lett 100, (2008) Stanford G = (27) (21) x m3 kg-1 s-2 J. B. Fixler et al., Science 315, 74 (2007) F. Sorrentino Measurement of the gravitational...
18 From proof-of-principle to G measure Sensitivity 15-fold improvement of the instrument sensitivity from 2008 to 2013 integration time for the target 100 ppm reduced by more than a factor 200 Accuracy systematic uncertainty had been reduced by a factor ~10 since 2008, mostly due to better characterization of source masses control & mitigation of Coriolis acceleration excellent control of atomic trajectories Data analysis we developed a reliable model accounting for all of the relevant effects gravitational potential from source masses quantum mechanical phase shift of atomic probes detection efficiency measurement are compared with a Montecarlo simulation EGAS EGAS 41 (2009): F. Sorrentino EGAS 43 (2011): M. Prevedelli EGAS 44 (2012): G. Rosi normalized F=1 population in lower interferometer normalized F=1 population in upper interferometer
19 Improving the sensitivity Current sensitivity to differential acceleration: 3x10-9 1s (=QPN for 4x10 5 atoms) [1] G. Lamporesi et al., Phys. Rev. Lett 100, (2008) [2] F. Sorrentino et al., New J. Phys. 12, (2010) F. Sorrentino[3] F. Sorrentino et al., Phys. Rev. A 89, (2014) Measurement of the gravitational...
20 Pursuing the accuracy limits Precise characterization of source masses (weight, density homogeneity, shape, position) Precise characterization of atomic trajectories Calibration of relative detection efficiency in the two interferometer outputs Removal of k-independent biases (Zeeman shift) Removal of k-dependent biases (Coriolis acceleration)
21 Pursuing the accuracy limits Precise characterization of source masses (weight, density homogeneity, shape, position) Precise characterization of atomic trajectories Calibration of relative detection efficiency in the two interferometer outputs Removal of k-independent biases (Zeeman shift) Removal of k-dependent biases (Coriolis acceleration)
22 Effect of atomic trajectories Finite size of atomic clouds yields a bias on G due to the curvature of gravitational potential curvature has opposite sign on horizontal plane and vertical direction partial compensation of bias on G for finite cloud size Correcting for the bias requires: a precise knowledge of atomic clouds density distribution along the atom interferometry sequence a precise knowledge of the spatial distribution of detection efficiency a Montecarlo simulation to calculate the corresponding phase shift
23 Measurement of atomic trajectories Vertical coordinates measured within 0.1 mm from TOF + double diffraction corresponding error on G: 57 ppm Transverse density distribution measured by different methods: 2D scanning of a thin portion of Raman laser beams fluorescence imaging of clouds at the two passages in the detection chamber Raman velocimetry barycenter and width measured within 1 mm corresponding error on G: 38 ppm T = 0 ms T = 62.5 ms T = 125 ms
24 Bias on G from Coriolis acceleration Transverse velocities are found in the range of a few mm/s These are due to small tilt (~1 mrad) of the atomic fountain Corresponding AI phase shift due to Coriolis acceleration ~40 mrad, i. e g For a Coriolis shift below 10-4 on G, launching direction should change less than 2 µrad on average when moving the sources masses
25 Coriolis compensation We reduce the frame rotation by at least a factor 10 with a tip-tilt Raman retro-reflecting mirror [M. Hogan et al., Proc. intern. school of physics Enrico Fermi CLXVIII, 411 (2007)] Still we would need to control the C/F launching direction changes to better than 20 µrad Double stage compensation: ellipse phase shift vs. rotation rate is proportional to the transverse atomic velocity difference When comparing for the two configurations of source masses, we determine C/F transverse velocity changes to be lower than 20 µm/s Under the conservative assumption of Earth rotation compensation at 10%, corresponding uncertainty on G is 36 ppm!" = ( /- 0.2) mrad (comp.)# # #!" = ( /- 0.2) mrad (non comp) difference < 0.28 mrad =>!v E-O < 20 µm/s
26 G measurement From our data we deduce G= (77)(65)m 3 kg -1 s -2 Statistical error 116 ppm Systematic error 92 ppm G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli and G. M. Tino, Precision Measurement of the Newtonian Gravitational Constant Using Cold Atoms, Nature 510, 518 (2014)
27 MAGIA error budget Uncertainty Relative correction Relative uncertainty on parameter on G (ppm) on G (ppm) Air density 10 % 60 6 Apogee time 30 µs 6 Atomic clouds horizontal size 0.5 mm 24 Atomic clouds vertical size 0.1 mm 56 Atomic clouds horizontal position 1 mm 37 Atomic clouds vertical position 0.1 mm 5 Atoms launch direction change C/F 8 µrad 36 Cylinders density homogeneity Cylinders radial position 10 µm 38 Ellipse fit Size of detection region 1 mm 13 Support platforms mass 10 g 5 Translation stages position 0.5 mm 6 Other e ects <2 1 Systematic uncertainty 92 Statistical uncertainty 116 Total
28 G measurements: current status NIST-82 TR&D-96 LANL-97 UWash-00 BIPM-01 UWup-02 torsion balance torsion balance torsion balance torsion balance torsion balance simple pendulum CODATA 2002 MSL-03 HUST-05 UZur-06 torsion balance torsion balance beam balance CODATA 2006 HUST-09 JILA-10 torsion balance simple pendulum CODATA 2010 BIPM-13 torsion balance THIS WORK atom interferometry F. Sorrentino G (10-11 m 3 kg -1 s -2 ) Measurement of the gravitational...
29 From proof of principle to G measure
30 Atom interferometry WEP test with Sr M. G. Tarallo, T. Mazzoni, N. Poli, D. V. Sutyrin, X. Zhang, and G. M. Tino, Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: Search for spin-gravity coupling effects, Phys. Rev. Lett. Accepted 23 June Sr Boson Zero total spin 87 Sr Fermion Total spin I=9/2 First test to compare a single Boson and a single Fermion. Measured Eötvös parameter for violation due to difference between gravitational and inertial mass:!=(0.2±1.6) 10 7 First test to directly measure limits on EP violation for different orientations of the nuclear spin of cold atoms. Measured spin-gravity coupling parameter: k=(0.5±1.1) 10 7
31 The MAGIA team G. M. Tino G. Rosi L. Cacciapuoti Guglielmo M. Tino s group web page: M. Prevedelli F. Sorrentino
Gravity measurements with atom interferometry
Gravity measurements with atom interferometry Fiodor Sorrentino, 28/10/2010 Dipartimento di Fisica e Astronomia, Università di Firenze & INFN, Polo Scientifico di Sesto Fiorentino,via Sansone 1-50019 Sesto
Making Better Medical Devices with Multisensor Metrology
Making Better Medical Devices with Multisensor Metrology by Nate J. Rose, Chief Applications Engineer, Optical Gaging Products (OGP) Multisensor metrology is becoming a preferred quality control technology
Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa.
Newton s Laws Physics 1425 lecture 6 Michael Fowler, UVa. Newton Extended Galileo s Picture of Galileo said: Motion to Include Forces Natural horizontal motion is at constant velocity unless a force acts:
Lecture L22-2D Rigid Body Dynamics: Work and Energy
J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for
8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential
8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy
State Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
Orbital Mechanics. Angular Momentum
Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely
Rotation: Moment of Inertia and Torque
Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn
Orbits of the Lennard-Jones Potential
Orbits of the Lennard-Jones Potential Prashanth S. Venkataram July 28, 2012 1 Introduction The Lennard-Jones potential describes weak interactions between neutral atoms and molecules. Unlike the potentials
Dynamic Force Calibration Methods for Force Transducers. Yusaku FUJII Gunma University
Dynamic Force Calibration Methods for Force Transducers Yusaku FUJII Gunma University Dynamic Calibration Static Calibration Reference Force = Gravitational Force Dynamic Calibration M Mg [A] Impact Force:
State Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
Chapter 7 Newton s Laws of Motion
Chapter 7 Newton s Laws of Motion 7.1 Force and Quantity of Matter... 1 Example 7.1 Vector Decomposition Solution... 3 7.1.1 Mass Calibration... 4 7.2 Newton s First Law... 5 7.3 Momentum, Newton s Second
Does Quantum Mechanics Make Sense? Size
Does Quantum Mechanics Make Sense? Some relatively simple concepts show why the answer is yes. Size Classical Mechanics Quantum Mechanics Relative Absolute What does relative vs. absolute size mean? Why
E190Q Lecture 5 Autonomous Robot Navigation
E190Q Lecture 5 Autonomous Robot Navigation Instructor: Chris Clark Semester: Spring 2014 1 Figures courtesy of Siegwart & Nourbakhsh Control Structures Planning Based Control Prior Knowledge Operator
SAFE A HEAD. Structural analysis and Finite Element simulation of an innovative ski helmet. Prof. Petrone Nicola Eng.
SAFE A HEAD Structural analysis and Finite Element simulation of an innovative ski helmet Prof. Petrone Nicola Eng. Cherubina Enrico Goal Development of an innovative ski helmet on the basis of analyses
IN-FLIGHT CALIBRATION OF THE MICROSCOPE SPACE MISSION INSTRUMENT: DEVELOPMENT OF THE SIMULATOR
SF2A 2011 G. Alecian, K. Belkacem, R. Samadi and D. Valls-Gabaud (eds) IN-FLIGHT CALIBRATION OF THE MICROSCOPE SPACE MISSION INSTRUMENT: DEVELOPMENT OF THE SIMULATOR E. Hardy 1, A. Levy 1, G. Métris 2,
Physics 40 Lab 1: Tests of Newton s Second Law
Physics 40 Lab 1: Tests of Newton s Second Law January 28 th, 2008, Section 2 Lynda Williams Lab Partners: Madonna, Hilary Clinton & Angie Jolie Abstract Our primary objective was to test the validity
Natural Convection. Buoyancy force
Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient
Dynamics of Iain M. Banks Orbitals. Richard Kennaway. 12 October 2005
Dynamics of Iain M. Banks Orbitals Richard Kennaway 12 October 2005 Note This is a draft in progress, and as such may contain errors. Please do not cite this without permission. 1 The problem An Orbital
Precision Work on the Human Eye
WHITEPAPER Precision Work on the Human Eye PIEZO-BASED NANOPOSITIONING SYSTEMS FOR OPHTHALMOLOGY BIRGIT BAUER PIEZO-BASED NANOPOSITIONING SYSTEMS FOR OPHTHALMOLOGY PAGE 2 Content Introduction... 3 Precision
Wir schaffen Wissen heute für morgen
Diffractive optics for photon beam diagnostics at hard XFELs Wir schaffen Wissen heute für morgen PSI: SLAC: ESRF: SOLEIL: APS: SACLA: EuroXFEL C. David, S. Rutishauser, P. Karvinen, Y. Kayser, U. Flechsig,
STATICS. Introduction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.
Eighth E CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Introduction Lecture Notes: J. Walt Oler Texas Tech University Contents What is Mechanics? Fundamental
Data in seismology: networks, instruments, current problems
Data in seismology: networks, instruments, current problems Seismic networks, data centres, instruments Seismic Observables and their interrelations Seismic data acquisition parameters (sampling rates,
PHYSICS FOUNDATIONS SOCIETY THE DYNAMIC UNIVERSE TOWARD A UNIFIED PICTURE OF PHYSICAL REALITY TUOMO SUNTOLA
PHYSICS FOUNDATIONS SOCIETY THE DYNAMIC UNIVERSE TOWARD A UNIFIED PICTURE OF PHYSICAL REALITY TUOMO SUNTOLA Published by PHYSICS FOUNDATIONS SOCIETY Espoo, Finland www.physicsfoundations.org Printed by
circular motion & gravitation physics 111N
circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would
NANOFLAM. Projet ANR Blanc 2011 BS0401001. Aide allouée: 337 000, durée 36+8 mois (fin : Mai 2015) Laboratoire H. Curien
Laboratoire H. Curien Centre de Physique Théorique F. Courvoisier R. Stoian & T. Itina A. Couairon NANOFLAM Projet ANR Blanc 2011 BS0401001 Contrôle de la filamentation et de la génération de plasma avec
Section 4: The Basics of Satellite Orbits
Section 4: The Basics of Satellite Orbits MOTION IN SPACE VS. MOTION IN THE ATMOSPHERE The motion of objects in the atmosphere differs in three important ways from the motion of objects in space. First,
Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
Robot Sensors. Outline. The Robot Structure. Robots and Sensors. Henrik I Christensen
Robot Sensors Henrik I Christensen Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 30332-0760 [email protected] Henrik I Christensen (RIM@GT) Sensors 1 / 38 Outline 1
Chapter 18 Static Equilibrium
Chapter 8 Static Equilibrium 8. Introduction Static Equilibrium... 8. Lever Law... Example 8. Lever Law... 4 8.3 Generalized Lever Law... 5 8.4 Worked Examples... 7 Example 8. Suspended Rod... 7 Example
PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013
PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be
Chapter 3 Falling Objects and Projectile Motion
Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave
How Fundamental is the Curvature of Spacetime? A Solar System Test. Abstract
Submitted to the Gravity Research Foundation s 2006 Essay Contest How Fundamental is the Curvature of Spacetime? A Solar System Test Robert J. Nemiroff Abstract Are some paths and interactions immune to
Lab 8: Ballistic Pendulum
Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally
Columbia University Department of Physics QUALIFYING EXAMINATION
Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of
A METHOD OF PRECISE CALIBRATION FOR PIEZOELECTRICAL ACTUATORS
Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Cilt 9, Sayı, 24 A METHOD OF PRECISE CALIBRATION FOR PIEZOELECTRICAL ACTUATORS Timur CANEL * Yüksel BEKTÖRE ** Abstract: Piezoelectrical actuators
Unit 4 Practice Test: Rotational Motion
Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle
Examination Space Missions and Applications I (AE2103) Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM
Examination Space Missions and Applications I AE2103 Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM Please read these instructions first: This are a series of multiple-choice
Modeling Mechanical Systems
chp3 1 Modeling Mechanical Systems Dr. Nhut Ho ME584 chp3 2 Agenda Idealized Modeling Elements Modeling Method and Examples Lagrange s Equation Case study: Feasibility Study of a Mobile Robot Design Matlab
Online Courses for High School Students 1-888-972-6237
Online Courses for High School Students 1-888-972-6237 PHYSICS Course Description: This course provides a comprehensive survey of all key areas: physical systems, measurement, kinematics, dynamics, momentum,
MICROFOCUSING OF THE FERMI@ELETTRA FEL BEAM WITH A K-B ACTIVE OPTICS SYSTEM: SPOT SIZE PREDICTIONS. Lorenzo Raimondi
MICROFOCUSING OF THE FERMI@ELETTRA FEL BEAM WITH A K-B ACTIVE OPTICS SYSTEM: SPOT SIZE PREDICTIONS Lorenzo Raimondi PADReS Group Sincrotrone Trieste SCpA 1 FERMI@Elettra seeded FEL FEL 1 FEL 2 FEL 1 from
KINEMATICS OF PARTICLES RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES
KINEMTICS OF PRTICLES RELTIVE MOTION WITH RESPECT TO TRNSLTING XES In the previous articles, we have described particle motion using coordinates with respect to fixed reference axes. The displacements,
The Gravitational Field
The Gravitational Field The use of multimedia in teaching physics Texts to multimedia presentation Jan Hrnčíř [email protected] Martin Klejch [email protected] F. X. Šalda Grammar School, Liberec
AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s
AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s Answer the multiple choice questions (2 Points Each) on this sheet with capital
Penn State University Physics 211 ORBITAL MECHANICS 1
ORBITAL MECHANICS 1 PURPOSE The purpose of this laboratory project is to calculate, verify and then simulate various satellite orbit scenarios for an artificial satellite orbiting the earth. First, there
What Do You Think? For You To Do GOALS
Activity 2 Newton s Law of Universal Gravitation GOALS In this activity you will: Explore the relationship between distance of a light source and intensity of light. Graph and analyze the relationship
CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER
International Journal of Advancements in Research & Technology, Volume 1, Issue2, July-2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)
Precision Miniature Load Cell. Models 8431, 8432 with Overload Protection
w Technical Product Information Precision Miniature Load Cell with Overload Protection 1. Introduction The load cells in the model 8431 and 8432 series are primarily designed for the measurement of force
On a Flat Expanding Universe
Adv. Studies Theor. Phys., Vol. 7, 2013, no. 4, 191-197 HIKARI Ltd, www.m-hikari.com On a Flat Expanding Universe Bo Lehnert Alfvén Laboratory Royal Institute of Technology, SE-10044 Stockholm, Sweden
Understanding Laser Beam Parameters Leads to Better System Performance and Can Save Money
Understanding Laser Beam Parameters Leads to Better System Performance and Can Save Money Lasers became the first choice of energy source for a steadily increasing number of applications in science, medicine
1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D
Chapter 28: MAGNETIC FIELDS 1 Units of a magnetic field might be: A C m/s B C s/m C C/kg D kg/c s E N/C m 2 In the formula F = q v B: A F must be perpendicular to v but not necessarily to B B F must be
Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.
Chapter 11 11.7 A solid cylinder of radius 10cm and mass 1kg starts from rest and rolls without slipping a distance of 6m down a house roof that is inclined at 30 degrees (a) What is the angular speed
From Aristotle to Newton
From Aristotle to Newton The history of the Solar System (and the universe to some extent) from ancient Greek times through to the beginnings of modern physics. The Geocentric Model Ancient Greek astronomers
226 Chapter 15: OSCILLATIONS
Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion
Mechanical Principles
Unit 4: Mechanical Principles Unit code: F/601/1450 QCF level: 5 Credit value: 15 OUTCOME 4 POWER TRANSMISSION TUTORIAL 2 BALANCING 4. Dynamics of rotating systems Single and multi-link mechanisms: slider
Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)
Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in
Accuracy of SpotOptics wavefront sensors. June 2010 Version 4.0
Accuracy of SpotOptics wavefront sensors June Version 4.0 1 1 Basic concepts: accuracy, precision and repeatability Repeatability is not the same as accuracy You can have high repeatability but low accuracy
Grazing incidence wavefront sensing and verification of X-ray optics performance
Grazing incidence wavefront sensing and verification of X-ray optics performance Timo T. Saha, Scott Rohrbach, and William W. Zhang, NASA Goddard Space Flight Center, Greenbelt, Md 20771 Evaluation of
Orbital Dynamics in Terms of Spacetime Angular Momentum
Chapter 4 Orbital Dynamics in Terms of Spacetime Angular Momentum by Myron W. Evans 1 and H. Eckardt 2 Alpha Institute for Advanced Study (AIAS) (www.aias.us, www.atomicprecision.com) Abstract Planar orbital
Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.
Chapter 5. Gravitation Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13. 5.1 Newton s Law of Gravitation We have already studied the effects of gravity through the
An Introduction to the MTG-IRS Mission
An Introduction to the MTG-IRS Mission Stefano Gigli, EUMETSAT IRS-NWC Workshop, Eumetsat HQ, 25-0713 Summary 1. Products and Performance 2. Design Overview 3. L1 Data Organisation 2 Part 1 1. Products
PEDAGOGY: THE BUBBLE ANALOGY AND THE DIFFERENCE BETWEEN GRAVITATIONAL FORCES AND ROCKET THRUST IN SPATIAL FLOW THEORIES OF GRAVITY *
PEDAGOGY: THE BUBBLE ANALOGY AND THE DIFFERENCE BETWEEN GRAVITATIONAL FORCES AND ROCKET THRUST IN SPATIAL FLOW THEORIES OF GRAVITY * Tom Martin Gravity Research Institute Boulder, Colorado 80306-1258 [email protected]
Slice Emittance Measurements at the SLAC Gun Test Facility*
SLAC-PUB-954 September Slice Emittance Measurements at the SLAC Gun Test Facility* D. H. Dowell, P. R. Bolton, J.E. Clendenin, P. Emma, S.M. Gierman, C.G. Limborg, B.F. Murphy, J.F. Schmerge Stanford Linear
Pendulum Force and Centripetal Acceleration
Pendulum Force and Centripetal Acceleration 1 Objectives 1. To calibrate and use a force probe and motion detector. 2. To understand centripetal acceleration. 3. To solve force problems involving centripetal
Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications
Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications Saulius Marcinkevičius Optics, ICT, KTH 1 Outline Optical near field. Principle of scanning near field optical microscope
TOF FUNDAMENTALS TUTORIAL
TOF FUNDAMENTALS TUTORIAL Presented By: JORDAN TOF PRODUCTS, INC. 990 Golden Gate Terrace Grass Valley, CA 95945 530-272-4580 / 530-272-2955 [fax] www.rmjordan.com [web] [email protected] [e-mail] This
ELECTRON SPIN RESONANCE Last Revised: July 2007
QUESTION TO BE INVESTIGATED ELECTRON SPIN RESONANCE Last Revised: July 2007 How can we measure the Landé g factor for the free electron in DPPH as predicted by quantum mechanics? INTRODUCTION Electron
An optical readout configuration for advanced massive GW detectors
An optical readout configuration for advanced massive GW detectors Francesco Marin, Livia Conti, Maurizio De Rosa Dipartimento di Fisica, Università di Firenze,LENS and INFN, Sezione di Firenze Via Sansone,
Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion
S. Widnall 6.07 Dynamics Fall 009 Version.0 Lecture L - Degrees of Freedom and Constraints, Rectilinear Motion Degrees of Freedom Degrees of freedom refers to the number of independent spatial coordinates
NOVEL EXAMINATION OF GUN BORE RESISTANCE ANALYSIS AND EXPERIMENTAL VALIDATION
23 RD INTERNATIONAL SYMPOSIUM ON BALLISTICS TARRAGONA, SPAIN 16-2 APRIL 27 NOVEL EXAMINATION OF GUN BORE RESISTANCE ANALYSIS AND EXPERIMENTAL VALIDATION D. Carlucci 1, J. Vega 1, M. Pocock 2, S. Einstein
Université Lille 1 Sciences et Technologies, Lille, France Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique
Université Lille 1 Sciences et Technologies, Lille, France Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique 16 years of experiments on the atomic kicked rotor! Chaos, disorder
Electrostatic electron analyzer with 90 deflection angle
REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 73, NUMBER 11 NOVEMBER 2002 Electrostatic electron analyzer with 90 deflection angle L. Vattuone a) and M. Rocca Istituto Nazionale per la Fisica della Materia and
Mechanics. Determining the gravitational constant with the gravitation torsion balance after Cavendish. LD Physics Leaflets P1.1.3.1.
Mechanics Measuring methods Determining the gravitational constant LD Physics Leaflets P1.1.3.1 Determining the gravitational constant with the gravitation torsion balance after Cavendish Measuring the
Shape Measurement of a Sewer Pipe. Using a Mobile Robot with Computer Vision
International Journal of Advanced Robotic Systems ARTICLE Shape Measurement of a Sewer Pipe Using a Mobile Robot with Computer Vision Regular Paper Kikuhito Kawasue 1,* and Takayuki Komatsu 1 1 Department
PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.
PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the
Remote Sensing of Clouds from Polarization
Remote Sensing of Clouds from Polarization What polarization can tell us about clouds... and what not? J. Riedi Laboratoire d'optique Atmosphérique University of Science and Technology Lille / CNRS FRANCE
Interactive Animation: A new approach to simulate parametric studies
Interactive Animation: A new approach to simulate parametric studies Darwin Sebayang and Ignatius Agung Wibowo Kolej Universiti Teknologi Tun Hussein Onn (KUiTTHO) Abstract Animation is the one of novel
Work and Energy. Work = Force Distance. Work increases the energy of an object. Energy can be converted back to work.
Work and Energy Ch. 6 Work = Force Distance Work increases the energy of an object. Energy can be converted back to work. Therefore, energy and work have the same unit: Newton meter = Nm Energy per gram,
Collision of a small bubble with a large falling particle
EPJ Web of Conferences 67, 212 (214) DOI: 1.11/ epjconf/ 21467212 C Owned by the authors, published by EDP Sciences, 214 Collision of a small bubble with a large falling particle Jiri Vejrazka 1,a, Martin
STUDY OF THE TRANSVERSE BEAM EMITTANCE OF THE BERN MEDICAL CYCLOTRON
Proceedings of IBIC15, Melbourne, Australia - Pre-Release Snapshot 17-Sep-15 1:3 MOPB41 STUDY OF THE TRANSVERSE BEAM EMITTANCE OF THE BERN MEDICAL CYCLOTRON K. P. Nesteruka,, M. Augera, S. Braccinia, T.
Boardworks AS Physics
Boardworks AS Physics Vectors 24 slides 11 Flash activities Prefixes, scalars and vectors Guide to the SI unit prefixes of orders of magnitude Matching powers of ten to their SI unit prefixes Guide to
Robot Perception Continued
Robot Perception Continued 1 Visual Perception Visual Odometry Reconstruction Recognition CS 685 11 Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart
LOCATION DEPENDENCY OF POSITIONING ERROR IN A 3-AXES CNC MILLING MACHINE
th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 214) December 12 th 14 th, 214, IIT Guwahati, Assam, India LOCATION DEPENDENCY OF POSITIONING ERROR IN
Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory
Physics 41, Winter 1998 Lab 1 - The Current Balance Theory Consider a point at a perpendicular distance d from a long straight wire carrying a current I as shown in figure 1. If the wire is very long compared
COMPUTATIONAL ACCURACY ANALYSIS OF A COORDINATE MEASURING MACHINE UNDER STATIC LOAD
COMPUTATIONAL ACCURACY ANALYSIS OF A COORDINATE MEASURING MACHINE UNDER STATIC LOAD Andre R. Sousa 1 ; Daniela A. Bento 2 CEFET/SC Federal Center of Technological Education Santa Catarina Av. Mauro Ramos,
DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS
DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS Quantum Mechanics or wave mechanics is the best mathematical theory used today to describe and predict the behaviour of particles and waves.
Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe.
Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe. Brief Overview of STM Inventors of STM The Nobel Prize in Physics 1986 Nobel
GEOMETRIC, THERMODYNAMIC AND CFD ANALYSES OF A REAL SCROLL EXPANDER FOR MICRO ORC APPLICATIONS
2 nd International Seminar on ORC Power Systems October 7 th & 8 th, 213 De Doelen, Rotterdam, NL GEOMETRIC, THERMODYNAMIC AND CFD ANALYSES OF A REAL SCROLL EXPANDER FOR MICRO ORC APPLICATIONS M. Morini,
RIEGL VQ-480. Airborne Laser Scanning. Airborne Laser Scanner with Online Waveform Processing. visit our website www.riegl.com
Airborne Laser Scanner with Online Waveform Processing RIEGL VQ-48 high-accuracy ranging based on echo digitization and online waveform processing high laser repetition rate - fast data acquisition multiple
Vibration Suppression R&D at University of British Columbia. Tom Mattison UBC
Vibration Suppression R&D at University of British Columbia Tom Mattison UBC Overview Approaches to the final quad stability problem The Optical Anchor concept Results from the SLAC Optical Anchor program
SOLID MECHANICS BALANCING TUTORIAL BALANCING OF ROTATING BODIES
SOLID MECHANICS BALANCING TUTORIAL BALANCING OF ROTATING BODIES This work covers elements of the syllabus for the Edexcel module 21722P HNC/D Mechanical Principles OUTCOME 4. On completion of this tutorial
RAY TRACING UNIFIED FIELD TRACING
RAY TRACING Start to investigate the performance of your optical system using 3D ray distributions, dot diagrams of ray positions and directions, and optical path length. GEOMETRIC FIELD TRACING Switch
