KE A = PE MAX 1/2M v 2 = k q1 q2 /R

Size: px
Start display at page:

Download "KE A = PE MAX 1/2M v 2 = k q1 q2 /R"

Transcription

1 CHAPTER 13 NUCLEAR STRUCTURE NUCLEAR FORCE The nucleus is help firmly together by the nuclear or strong force, We can estimate the nuclear force by observing that protons residing about 1fm = 10-15m apart are held in place by a binding potential of BE~ V = k e 2 / R = V = k e 2 / R =( 8.9 x 10 9 N-m 2 /C 2 ) (1.6 c C ) 2 / (10-15 m) = 2.3 x J = 2.3 x J / 1.6 x J/eV = 1.4 MeV per pair NUCLEAR SIZE From Alpha Rutherford determined that the nucleus was very small in comparisom to the atom. The alpha particles scattering from a Au foils indicated that they deflected from a point-like positive charge at the atom s center. KE A = PE MAX 1/2M v 2 = k q1 q2 /R The radial distribution R depended on the atomic number A. Since the mass of the nucleus M N A = r [4/3 p R 3 ] (r is the nuclear density) we can conclude that R = [(3/4 p) (1/r)M N ] 1/3 A 1/3 = 1.2 A 1/3 fm More detailed studies showed resulted in a model in which the nucleus can be described by a radius R and surface thickness a~1/2fm. r R DR NUCLEAR MODEL r(r) = ro /1+ exp[(r-r)/a] R = ~ 1.07 A 1/3 fm r o = N/fm 3 DR = 4.4 a a = = 0.55 fm (surface thickness) R(fm)

2 LINE OF NUCLEAR STABILITY Z = N The nuclear force requires a balance between the number of protons and neutrons to a large extent. Some of this is due to the large binding energy of the alpha particle block p-p-n-n. As the atomic number increases more neutrons are needed to keep protons apart, thus reducing the Coulomb repulsion. 120 N N= Z 0 90 Z MAGNETIC MOMENT and NUCLEAR SPIN The magnetic moment m of a sample is defined as the magnetization M per unit volume, m = M / V. The external magnetic field at the is B = m o c M, where c is the magnetic susceptibility of the material. S M N B S N Prot The proton and neutron have an inrinsic magnetic moment m which is related to a quantity which elementary particle process called spin S.= ±1/ 2 and g = 2 for e,p,and n s. m = g m N S The quantity m N = e h/2m = 5.05 x J/T is called the nuclear magneton.

3 The energy of a magnetic dipole is given by U = -m B In and external magnetic field B along the z-axis the magnetic moment m orients along the z-axis up or down. Is a second RF field is applied with energy DE = hf = 2m N B the magnetic moment will absorb this energy and begin to oscillate. The excitation frequency must be exactly given by hf = 2m N B. B B (RF) q m Eo Eo + m N B Eo - m N B Example- What frequency do the oscillating magnetic dipoles emit? If B = 4.4 T find the resonant frequency. and hf = (5 x J/T) (4.4T) = 22 x J f = 20 x J / x J-s = 33.2 MHz MRI E&M waves from the 33.2 MHz oscillations are detected by pick up coils. An x-y image can be formed The B(z) field is set with a constant field Bo + trim coil fied db. Thus the B(z) varies for each x-y slices of the patient s body. The RF frequency f is modulated to look at slices such that the resonance condition hf = 2m N B. is strictly satisfied. Only tissue in the 4.4T x-y slice is detected. B(z) = 3.7T 3.8T 3.9T 4T 4.1T 4.2T 4.3T 4.4T 4.5 T 4.6T 4.7T Main Field Bo B(z) = Bo + (db/dz) Trim Coil db

4 BINDING ENERGY Binding energy is defined as the energy necessary to separate all the nucleons in the atom from each other. Earlier we defined this as the mass excess. BE = Z M(H) + N M(n) M( A X Z ) HYDROGEN P DEUTERIUM P-N BE = 2.2 MeV BE/A =1.1 MeV/N TRITIUM P-N-N BE = 8.5 MeV BE/A = 2.7 MeV/N HELIUM P-P-N-N BE = 27.5 MeV BE/A = 6.9 MeV/N IRON BE/A = 7.5 MeV/N Notice in the decay A -> B + C EXCHANGE FORCE MODEL One model for the nuclear force is that the proton and neutron are exchanging a A field of p mesons. This is called theyukawa model. n 1.5 fm p p p Virtual Particles QM existing for a short time, DE Dt h/2 p Some problems arise just as in the Bohr Model! m How can conservation of energy by applied. After many exchanges the nucleons would gain enough energy to fly apart. Under the QM uncertainty principle energy conservation can be violates if it happens quickly enough! DE Dt ~ h/2 Dt ~ h/2m p c 2 d max = c Dt = hc/m p c 2 = 1.2 A 1/3 fm = 1.5 fm We can estimate the pi meson mass as M p c 2 = hc/1fm = MeV/ 1.5 fm = 131 MeV/c 2

5 SEMI-EMPIRICAL MASS FORMULA BE = c1 A + c2 A 2/3 - c3 Z(Z-1)/ A 1/3 - c4 (N-Z) 2 /A MeV/A 9 7 BINDING ENERGY vs A Fe 56 c1 = 15.7 MeV c2 = 17.8 MeV c3 = 0.71 MeV c4 = 23.6 MeV + Nuclear Volume - Surface Energy Term - Coulomb Repulsion Term - (N-Z) asymmetry term A INDEPENDENT PARTILCE MODEL SHELL MODEL In this model the nucleons sit in a square well whose depth and width depends N and Z of the nucleus. Proton levels are slightly elevated with respect to neutrons due to the Coulomb replulsion term. In solving this problem the energy levels of a single nucleon is written with the PE term corresponding to the mean potential due to all other nucleons- Mean Field Approach. The magic numbers correspond to filled shells just as in the atom s periodic table. neutrons protons Magic Numbers Z = N = N=Z=28 N=Z=20 N=Z=8 N=Z=2 Alpha Block. Blocks. Very Stable. Alpha particles p-p-n-n are particularly stable in the nuclei and often stick together, eg. alpha decay.

6 RADIOACTIVE DECAY In the creation of the Universe Atomic Nuclei were under constant bombardment from other particles as p, n, b, a, g s. We say the nuclei are activated or excited. Upon activation some radioactive nuclei decay promptly within milliseconds or can remain radioactive for millions of years. Excitation p, n, b, g, a s. Nuclei Prompt De-exitation p, n, b, g, a s t~1 s Slow De-exitation p, n, b, g, a s t ~[1s -1Myrs] MEAN LIFE - t and DECAY RATE l =1/t The radioactive decay of a nuclei follows an exponential decay law with mean lifetime t. Thenumber of surviving nuclei in a sample after a time t is given by N(t) = N(0) exp(- l t). The number decaying is then N D (t) = N(0) N(t) = N(0) [1 - exp(- l t) ] The decay rate R (t) = dn/dt = ( N(0) l ) exp(- l t )

7 HALF LIFE We can ask at what time will the decay rate drop by a factor of 2. Or when will the number of decaying nuclei drop by a factor of 2? This time t = T 1/2 (HALFLIFE) is given by N(0)/2 = N(0) exp(- l t ) or exp(- l t ) = 1/2 - l t = ln(1/2) = -ln(2) T 1/2 = 0.693/l = t N(t) = N(0) (1/2) t / T1/2 UNIT OF ACTIVITY The unit of radioactive decay is given by the number of decays per second coming from 1 gram of radium and called the curie (Ci): 1 Ci = 3.7 x decays/s A more convenient unit the Becquerel (Bq) is commonly used 1 Bq = 1 decay/s and 1 Ci = 3.7 x Bq. QUIZ on Thursday- Example 13.6!! 35 mg of pure 11 C 6 has a half life of 20.4 min. Determine the number of nuclei in the sample t =0. a, b, g DECAYS n p a e- g n a Decay A X Z A-4 Y Z a 2 b Decay A X Z A Y Z e n 0 g Decay A X Z * A X Z + 0 g 0

8 DECAY PROCESSES Y X a Alpha Decay An alpha particle tunnels through the nuclear barrier with decay rate l = R = 1/t The Parent X decays to Daughter Y plus an alpha particle. The available kinetic energy is A X Z A-4 Y Z a 2 Q = ( M X M Y -M a ) c 2 N a The alpha particle receives most of this Q in terms of kinetic energy. KE a = M Y / (M Y + M a ) Q KE a Beta Decay Beta decay is a 3-body decay process in which a neutron in the nucleus decays to a proton, electron, and anti-neutrino. (n p + e + n ). M n = 0!! A X Z A Y Z e n 0 Q = ( M X M Y M e ) c 2 <KE e > = Q / 3 KE MAX ~ Q 2-body alpha decay spectrum. Monoenergetic! N b 3-body decay spectrum of electrons. <KE e > ~ Q / 3 KE MAX = Q e Y e n Y n Neutrino at rest! Inverse beta decay p n + e + v (positron emission) Electron capture p + e - n + v

9 Gamma Decay An excited nucleus decays to a more stable form through emission of a gamma ray. Very similar to transititions in the hydrogen atom! A X Z * A X Z + 0 g 0 Eg = E* - E Excitation Processes Collisional Excitation A + B A + B* Post Alpha A -> B* + a Post Beta Decay A -> B* + e + n 12 B 5 12 C 6 * b- 12 C 6 g b- 15.4MeV 4.4MeV 0.0MeV CARBON DATING. Cosmic Rays create neutrons in the upper atmosphere for billions of years creating a constant fraction f(0) = N( 14 C)/N( 12 C) = 1.3 x The C forms in to molecules including CO 2 which plants breath. n + 14 N 7 -> 14 C 6 + p All living plants and animals acquire 14 C in their bodies. Upon death 14 C is not replenished and beta decays with a lifetme of t = 8270 yrs. 14 C 6 14 N b 1 + n T1/2 = 5730 yrs By measuring the ratio of 14 C/ 12 C in a present day we can estimate the age of the sample. f(t) = f(0) x e - t / T1/2

10 C14 atoms C14 atoms per gram RADIOCARBON DATING Example 13-11: YEARS A 25g of charcoal is found in an ancient city. 250 C14 decays per minute are measured. How old is the charcoal? l = 1/t = (1/8270) yrs =3.8 x s -1 N(C 12 ) = (25/12)mol N A = 1.26 x nuclei N O (C 14 ) = 1.3 x N(C 12 ) = 1.6 x nuclei R O (C 14 ) =l N O (C 14 ) = 6.13 decays/s = 370 decays/min (250/370) = e -l t t = 3200 yrs

11 NATURAL RADIOACTIVE SERIES The four naturally occuring radioactive series are: 238 U 92 -> -> -> 206 Pb 82 Uranium 235 U 92 -> -> -> 207 Pb 82 Actinium 232 Th 90 -> -> -> 208 Pb 82 Thorium 237 Np 93 -> -> -> 209 Bi 83 Neptunium These decay sequences occur through multiple a and b emissions down to Pb and Bi. ALPHA DECAY KINEMATICS A B + a B A a P B = P a = P E A = E B + E a M A c 2 = (KE B + M B c 2 ) + ( KE a + M a c 2 ) Q = (M A - M B -M a )c 2 = KE B + KE a Q = P B 2 / 2M B + P a 2 /2M a nonrelativistic approximation = 1/2 P 2 (M B +M a )/M B M a KE a = P 2 /2M a = [M B / (M B +M a )] Q

12

Nuclear Physics. Nuclear Physics comprises the study of:

Nuclear Physics. Nuclear Physics comprises the study of: Nuclear Physics Nuclear Physics comprises the study of: The general properties of nuclei The particles contained in the nucleus The interaction between these particles Radioactivity and nuclear reactions

More information

Masses in Atomic Units

Masses in Atomic Units Nuclear Composition - the forces binding protons and neutrons in the nucleus are much stronger (binding energy of MeV) than the forces binding electrons to the atom (binding energy of ev) - the constituents

More information

Main properties of atoms and nucleus

Main properties of atoms and nucleus Main properties of atoms and nucleus. Atom Structure.... Structure of Nuclei... 3. Definition of Isotopes... 4. Energy Characteristics of Nuclei... 5. Laws of Radioactive Nuclei Transformation... 3. Atom

More information

(b) find the force of repulsion between a proton at the surface of a 12. 6 C nucleus and the remaining five protons.

(b) find the force of repulsion between a proton at the surface of a 12. 6 C nucleus and the remaining five protons. Chapter 13 Nuclear Structure. Home Work s 13.1 Problem 13.10 (a) find the radius of the 12 6 C nucleus. (b) find the force of repulsion between a proton at the surface of a 12 6 C nucleus and the remaining

More information

Basic Nuclear Concepts

Basic Nuclear Concepts Section 7: In this section, we present a basic description of atomic nuclei, the stored energy contained within them, their occurrence and stability Basic Nuclear Concepts EARLY DISCOVERIES [see also Section

More information

............... [2] At the time of purchase of a Strontium-90 source, the activity is 3.7 10 6 Bq.

............... [2] At the time of purchase of a Strontium-90 source, the activity is 3.7 10 6 Bq. 1 Strontium-90 decays with the emission of a β-particle to form Yttrium-90. The reaction is represented by the equation 90 38 The decay constant is 0.025 year 1. 90 39 0 1 Sr Y + e + 0.55 MeV. (a) Suggest,

More information

1. In the general symbol cleus, which of the three letters. 2. What is the mass number of an alpha particle?

1. In the general symbol cleus, which of the three letters. 2. What is the mass number of an alpha particle? 1. In the general symbol cleus, which of the three letters Z A X for a nu represents the atomic number? 2. What is the mass number of an alpha particle? 3. What is the mass number of a beta particle? 4.

More information

Nuclear Physics and Radioactivity

Nuclear Physics and Radioactivity Nuclear Physics and Radioactivity 1. The number of electrons in an atom of atomic number Z and mass number A is 1) A 2) Z 3) A+Z 4) A-Z 2. The repulsive force between the positively charged protons does

More information

Introduction to Nuclear Physics

Introduction to Nuclear Physics Introduction to Nuclear Physics 1. Atomic Structure and the Periodic Table According to the Bohr-Rutherford model of the atom, also called the solar system model, the atom consists of a central nucleus

More information

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered

More information

Nuclear Fusion and Radiation

Nuclear Fusion and Radiation Nuclear Fusion and Radiation Lecture 8 (Meetings 19, 20, 21 & 22) Eugenio Schuster [email protected] Mechanical Engineering and Mechanics Lehigh University Nuclear Fusion and Radiation p. 1/66 The discovery

More information

Objectives 404 CHAPTER 9 RADIATION

Objectives 404 CHAPTER 9 RADIATION Objectives Explain the difference between isotopes of the same element. Describe the force that holds nucleons together. Explain the relationship between mass and energy according to Einstein s theory

More information

Chapter 18: The Structure of the Atom

Chapter 18: The Structure of the Atom Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.

More information

Basics of Nuclear Physics and Fission

Basics of Nuclear Physics and Fission Basics of Nuclear Physics and Fission A basic background in nuclear physics for those who want to start at the beginning. Some of the terms used in this factsheet can be found in IEER s on-line glossary.

More information

Physics 1104 Midterm 2 Review: Solutions

Physics 1104 Midterm 2 Review: Solutions Physics 114 Midterm 2 Review: Solutions These review sheets cover only selected topics from the chemical and nuclear energy chapters and are not meant to be a comprehensive review. Topics covered in these

More information

Basic Concepts in Nuclear Physics

Basic Concepts in Nuclear Physics Basic Concepts in Nuclear Physics Paolo Finelli Corso di Teoria delle Forze Nucleari 2011 Literature/Bibliography Some useful texts are available at the Library: Wong, Nuclear Physics Krane, Introductory

More information

Experiment 10. Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado

Experiment 10. Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado 1 Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado Introduction Some radioactive isotopes formed billions of years ago have half- lives so long that they are

More information

Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number

Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number 2.1 Composition of the Atom Atomic Calculations number of protons + number of neutrons = mass number number of neutrons = mass number - number of protons number of protons = number of electrons IF positive

More information

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS Chapter NP-5 Nuclear Physics Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 2.0 NEUTRON INTERACTIONS 2.1 ELASTIC SCATTERING 2.2 INELASTIC SCATTERING 2.3 RADIATIVE CAPTURE 2.4 PARTICLE

More information

Solar Energy Production

Solar Energy Production Solar Energy Production We re now ready to address the very important question: What makes the Sun shine? Why is this such an important topic in astronomy? As humans, we see in the visible part of the

More information

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance. .1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

More information

Woods Chem-1 Lec-02 10-1 Atoms, Ions, Mole (std) Page 1 ATOMIC THEORY, MOLECULES, & IONS

Woods Chem-1 Lec-02 10-1 Atoms, Ions, Mole (std) Page 1 ATOMIC THEORY, MOLECULES, & IONS Woods Chem-1 Lec-02 10-1 Atoms, Ions, Mole (std) Page 1 ATOMIC THEORY, MOLECULES, & IONS Proton: A positively charged particle in the nucleus Atomic Number: We differentiate all elements by their number

More information

Cross section, Flux, Luminosity, Scattering Rates

Cross section, Flux, Luminosity, Scattering Rates Cross section, Flux, Luminosity, Scattering Rates Table of Contents Paul Avery (Andrey Korytov) Sep. 9, 013 1 Introduction... 1 Cross section, flux and scattering... 1 3 Scattering length λ and λ ρ...

More information

Atomic Structure: Chapter Problems

Atomic Structure: Chapter Problems Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand

More information

Radioactivity III: Measurement of Half Life.

Radioactivity III: Measurement of Half Life. PHY 192 Half Life 1 Radioactivity III: Measurement of Half Life. Introduction This experiment will once again use the apparatus of the first experiment, this time to measure radiation intensity as a function

More information

Chemistry 1000 Lecture 2: Nuclear reactions and radiation. Marc R. Roussel

Chemistry 1000 Lecture 2: Nuclear reactions and radiation. Marc R. Roussel Chemistry 1000 Lecture 2: Nuclear reactions and radiation Marc R. Roussel Nuclear reactions Ordinary chemical reactions do not involve the nuclei, so we can balance these reactions by making sure that

More information

Lesson 43: Alpha, Beta, & Gamma Decay

Lesson 43: Alpha, Beta, & Gamma Decay Lesson 43: Alpha, Beta, & Gamma Decay The late 18s and early 19s were a period of intense research into the new nuclear realm of physics. In 1896 Henri Becquerel found that a sample of uranium he was doing

More information

Antoine Henri Becquerel was born in Paris on December 15, 1852

Antoine Henri Becquerel was born in Paris on December 15, 1852 Discovery Antoine Henri Becquerel was born in Paris on December 15, 1852 Summit Environmental Technologies, Inc. Analytical Laboratories 3310 Win Street Cuyahoga Falls, Ohio 44223 Fax: 1-330-253-4489 Call

More information

Chapter 21. = 26 10 6 C and point charge

Chapter 21. = 26 10 6 C and point charge Chapter 21 21.1 What must the distance between point charge 1 26 10 6 C and point charge 2 47 10 6 C for the electrostatic force between them to be 5.70N? The magnitude of the force of attraction is given

More information

Unit 1 Practice Test. Matching

Unit 1 Practice Test. Matching Unit 1 Practice Test Matching Match each item with the correct statement below. a. proton d. electron b. nucleus e. neutron c. atom 1. the smallest particle of an element that retains the properties of

More information

2 ATOMIC SYSTEMATICS AND NUCLEAR STRUCTURE

2 ATOMIC SYSTEMATICS AND NUCLEAR STRUCTURE 2 ATOMIC SYSTEMATICS AND NUCLEAR STRUCTURE In this chapter the principles and systematics of atomic and nuclear physics are summarised briefly, in order to introduce the existence and characteristics of

More information

History of the Atom & Atomic Theory

History of the Atom & Atomic Theory Chapter 5 History of the Atom & Atomic Theory You re invited to a Thinking Inside the Box Conference Each group should nominate a: o Leader o Writer o Presenter You have 5 minutes to come up with observations

More information

Chapter 17: Radioactivity and Nuclear Chemistry

Chapter 17: Radioactivity and Nuclear Chemistry Chapter 7: Radioactivity and Nuclear Chemistry Problems: -20, 24-30, 32-46, 49-70, 74-88, 99-0 7.2 THE DISCOVERY OF RADIOACTIVITY In 896, a French physicist named Henri Becquerel discovered that uranium-containing

More information

A n = 2 to n = 1. B n = 3 to n = 1. C n = 4 to n = 2. D n = 5 to n = 2

A n = 2 to n = 1. B n = 3 to n = 1. C n = 4 to n = 2. D n = 5 to n = 2 North arolina Testing Program EO hemistry Sample Items Goal 4 1. onsider the spectrum for the hydrogen atom. In which situation will light be produced? 3. Which color of light would a hydrogen atom emit

More information

HW7 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.

HW7 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. HW7 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 24.P.021 (a) Find the energy stored in a 20.00 nf capacitor

More information

PHYA5/1. General Certificate of Education Advanced Level Examination June 2012. Unit 5 Nuclear and Thermal Physics Section A

PHYA5/1. General Certificate of Education Advanced Level Examination June 2012. Unit 5 Nuclear and Thermal Physics Section A Centre Number Surname Candidate Number For Examinerʼs Use Other Names Candidate Signature Examinerʼs Initials General Certificate of Education Advanced Level Examination June 2012 Question 1 2 Mark Physics

More information

Main sequence stars. Haris Ðapo. Antalya Lecture 3. 1 Akdeniz University, Antalya

Main sequence stars. Haris Ðapo. Antalya Lecture 3. 1 Akdeniz University, Antalya Main sequence stars Haris Ðapo 1 Akdeniz University, Antalya Antalya Lecture 3. Haris Ðapo (Akdeniz University) Main sequence stars Main sequence stars 1 / 22 Outline 1 Introduction 2 Hydrogen burning

More information

Chapter 16. 16.1 The Nucleus and Radioactivity. 16.2 Uses of Radioactive Substances. 16.3 Nuclear Energy

Chapter 16. 16.1 The Nucleus and Radioactivity. 16.2 Uses of Radioactive Substances. 16.3 Nuclear Energy Chapter 16 Nuclear Chemistry tan is going to visit his son Fred at the radiology department of a local research hospital, where Fred has been recording the brain activity of kids with learning differences

More information

Gamma Ray Detection at RIA

Gamma Ray Detection at RIA Gamma Ray Detection at RIA Summary Report: Physics & Functional Requirements Cyrus Baktash Physics goals Experimental tools: Techniques & Reactions Functional Requirements Physics Questions (Discussed

More information

22.1 Nuclear Reactions

22.1 Nuclear Reactions In the Middle Ages, individuals called alchemists spent a lot of time trying to make gold. Often, they fooled people into believing that they had made gold. Although alchemists never succeeded in making

More information

Chapter NP-1. Nuclear Physics. Atomic Nature of Matter TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 PROPERTIES OF SUBSTANCES

Chapter NP-1. Nuclear Physics. Atomic Nature of Matter TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 PROPERTIES OF SUBSTANCES Chapter NP-1 Nuclear Physics Atomic Nature of Matter TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 PROPERTIES OF SUBSTANCES 1.1 CHEMICAL AND PHYSICAL PROPERTIES 2.0 COMPOSITION OF ATOMS 2.1 ATOMIC STRUCTURE

More information

For convenience, we may consider an atom in two parts: the nucleus and the electrons.

For convenience, we may consider an atom in two parts: the nucleus and the electrons. Atomic structure A. Introduction: In 1808, an English scientist called John Dalton proposed an atomic theory based on experimental findings. (1) Elements are made of extremely small particles called atoms.

More information

Review for Test 3. Polarized light. Action of a Polarizer. Polarized light. Light Intensity after a Polarizer. Review for Test 3.

Review for Test 3. Polarized light. Action of a Polarizer. Polarized light. Light Intensity after a Polarizer. Review for Test 3. Review for Test 3 Polarized light No equation provided! Polarized light In linearly polarized light, the electric field vectors all lie in one single direction. Action of a Polarizer Transmission axis

More information

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics

More information

The Sun and Solar Energy

The Sun and Solar Energy I The Sun and Solar Energy One of the most important forces behind global change on Earth is over 90 million miles distant from the planet. The Sun is the ultimate, original source of the energy that drives

More information

2, 8, 20, 28, 50, 82, 126.

2, 8, 20, 28, 50, 82, 126. Chapter 5 Nuclear Shell Model 5.1 Magic Numbers The binding energies predicted by the Liquid Drop Model underestimate the actual binding energies of magic nuclei for which either the number of neutrons

More information

The rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time.

The rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time. H2 PHYSICS DEFINITIONS LIST Scalar Vector Term Displacement, s Speed Velocity, v Acceleration, a Average speed/velocity Instantaneous Velocity Newton s First Law Newton s Second Law Newton s Third Law

More information

1.3 Radioactivity and the age of the solar system

1.3 Radioactivity and the age of the solar system 1.3. RADIOACTIVITY AND THE AGE OF THE SOLAR SYSTEM 57 1.3 Radioactivity and the age of the solar system Most of you are familiar with the phenomenon of radioactive decay: Certain elements have isotopes

More information

Matter. Atomic weight, Molecular weight and Mole

Matter. Atomic weight, Molecular weight and Mole Matter Atomic weight, Molecular weight and Mole Atomic Mass Unit Chemists of the nineteenth century realized that, in order to measure the mass of an atomic particle, it was useless to use the standard

More information

SCH 3UI Unit 2 Outline Up to Quiz #1 Atomic Theory and the Periodic Table

SCH 3UI Unit 2 Outline Up to Quiz #1 Atomic Theory and the Periodic Table Lesson Topics Covered SCH 3UI Unit 2 Outline Up to Quiz #1 Atomic Theory and the Periodic Table 1 Note: History of Atomic Theory progression of understanding of composition of matter; ancient Greeks and

More information

Build Your Own Universe

Build Your Own Universe Build Your Own Universe You will need: At least 10,000,000,000,000,00 0,000,000,000,000,000,000,00 0,000,000,000,000,000,000,00 0,000,000,000,000,000,000,00 0,000 x Down quarks At least 10,000,000,000,000,000,

More information

Modern Physics 9p ECTS

Modern Physics 9p ECTS Modern physics 1 Modern Physics 9p ECTS Contents 1. Introduction 2. The special relativity 3. The original quantum theory 4. The photon 5. Statistical physics 6. The Schrödinger equation 7. Atoms 8. Molecules

More information

CHEM 1411 Chapter 5 Homework Answers

CHEM 1411 Chapter 5 Homework Answers 1 CHEM 1411 Chapter 5 Homework Answers 1. Which statement regarding the gold foil experiment is false? (a) It was performed by Rutherford and his research group early in the 20 th century. (b) Most of

More information

RADON - 1 73- Although radon is agas, its decay products are not, and they occur either as unattached

RADON - 1 73- Although radon is agas, its decay products are not, and they occur either as unattached RADON 1. ehemical and Physical Data 1.1 Introduction Radon is a noble gas that occurs in several isotopic forms. Only two of these are found in significant concentrations in the human environment: radon-222,

More information

ACCELERATORS AND MEDICAL PHYSICS 2

ACCELERATORS AND MEDICAL PHYSICS 2 ACCELERATORS AND MEDICAL PHYSICS 2 Ugo Amaldi University of Milano Bicocca and TERA Foundation EPFL 2-28.10.10 - U. Amaldi 1 The icone of radiation therapy Radiation beam in matter EPFL 2-28.10.10 - U.

More information

Name period AP chemistry Unit 2 worksheet Practice problems

Name period AP chemistry Unit 2 worksheet Practice problems Name period AP chemistry Unit 2 worksheet Practice problems 1. What are the SI units for a. Wavelength of light b. frequency of light c. speed of light Meter hertz (s -1 ) m s -1 (m/s) 2. T/F (correct

More information

The Existence of a Neutron

The Existence of a Neutron J. Chadwick, PRSL, A136, 692 1932 The Existence of a Neutron J. Chadwick (Received 1932) It was shown by bothe and becker that some light elements when bombarded by α particles of polonium emit radiations

More information

Radioactivity & Particles

Radioactivity & Particles Radioactivity & Particles Introduction... 2 Atomic structure... 2 How are these particles arranged?... 2 Atomic notation... 4 Isotopes... 4 What is radioactivity?... 5 Types of Radiation: alpha, beta and

More information

NUCLEI. Chapter Thirteen. Physics 13.1 INTRODUCTION 13.2 ATOMIC MASSES AND COMPOSITION OF NUCLEUS

NUCLEI. Chapter Thirteen. Physics 13.1 INTRODUCTION 13.2 ATOMIC MASSES AND COMPOSITION OF NUCLEUS Chapter Thirteen NUCLEI 13.1 INTRODUCTION In the previous chapter, we have learnt that in every atom, the positive charge and mass are densely concentrated at the centre of the atom forming its nucleus.

More information

CORSO DI FISICA NUCLEARE - PAOLO FINELLI DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA

CORSO DI FISICA NUCLEARE - PAOLO FINELLI DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA Fission 1 DIP FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA Nuclear Fission 2 DIP FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA 3 DIP FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA Fission timeline - I 4 DIP

More information

Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:

Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of: ConcepTest 27.1 Photons Which has more energy, a photon of: 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy 400 nm 500 nm 600 nm 700 nm ConcepTest 27.1 Photons Which

More information

A new energy source from nuclear fusion

A new energy source from nuclear fusion A new energy source from nuclear fusion S. Focardi (1) and A. Rossi (2) (1) Physics Department Bologna University and INFN Bologna Section (2) Leonardo Corp. (USA) - Inventor of the Patent April 22, 2010

More information

Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory

Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory PAM1014 Introduction to Radiation Physics Basic Atomic Theory Objectives Introduce and Molecules The periodic Table Electronic Energy Levels Atomic excitation & de-excitation Ionisation Molecules Constituents

More information

The Universe Inside of You: Where do the atoms in your body come from?

The Universe Inside of You: Where do the atoms in your body come from? The Universe Inside of You: Where do the atoms in your body come from? Matthew Mumpower University of Notre Dame Thursday June 27th 2013 Nucleosynthesis nu cle o syn the sis The formation of new atomic

More information

Noble Gases. Outline Nobel Gas Elements Radon and Health Chemistry Homework

Noble Gases. Outline Nobel Gas Elements Radon and Health Chemistry Homework Radon and Other Noble Gases The elements in the last column of the periodic table are all very stable, mono-atomic gases. Until 1962, they were called inert gases because they did not react with other

More information

Chem 1A Exam 2 Review Problems

Chem 1A Exam 2 Review Problems Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?

More information

NOTES ON The Structure of the Atom

NOTES ON The Structure of the Atom NOTES ON The Structure of the Atom Chemistry is the study of matter and its properties. Those properties can be explained by examining the atoms that compose the matter. An atom is the smallest particle

More information

Homework #10 (749508)

Homework #10 (749508) Homework #10 (749508) Current Score: 0 out of 100 Description Homework on quantum physics and radioactivity Instructions Answer all the questions as best you can. 1. Hewitt10 32.E.001. [481697] 0/5 points

More information

Basic Concepts in Nuclear Physics. Paolo Finelli

Basic Concepts in Nuclear Physics. Paolo Finelli Basic Concepts in Nuclear Physics Paolo Finelli Literature/Bibliography Some useful texts are available at the Library: Wong, Nuclear Physics Krane, Introductory Nuclear Physics Basdevant, Rich and Spiro,

More information

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004 PHY464 Introduction to Quantum Mechanics Fall 4 Practice Test 3 November, 4 These problems are similar but not identical to the actual test. One or two parts will actually show up.. Short answer. (a) Recall

More information

2 The Structure of Atoms

2 The Structure of Atoms CHAPTER 4 2 The Structure of Atoms SECTION Atoms KEY IDEAS As you read this section, keep these questions in mind: What do atoms of the same element have in common? What are isotopes? How is an element

More information

22.02 INTRODUCTION to APPLIED NUCLEAR PHYSICS

22.02 INTRODUCTION to APPLIED NUCLEAR PHYSICS Massachusetts Institute of Technology.0 INTRODUCTION to APPLIED NUCLEAR PHYSICS Spring 01 Prof. Paola Cappellaro Nuclear Science and Engineering Department [This page intentionally blank.] Contents 1 Introduction

More information

ABSORPTION OF BETA AND GAMMA RADIATION

ABSORPTION OF BETA AND GAMMA RADIATION ABSORPTION OF BETA AND GAMMA RADIATION The purpose of this experiment is to understand the interaction of radiation and matter, and the application to radiation detection and shielding Apparatus: 137 Cs

More information

Topic 3. Evidence for the Big Bang

Topic 3. Evidence for the Big Bang Topic 3 Primordial nucleosynthesis Evidence for the Big Bang! Back in the 1920s it was generally thought that the Universe was infinite! However a number of experimental observations started to question

More information

The Physics of Energy sources Nuclear Fusion

The Physics of Energy sources Nuclear Fusion The Physics of Energy sources Nuclear Fusion B. Maffei [email protected] www.jb.man.ac.uk/~bm Nuclear Fusion 1 What is nuclear fusion? We have seen that fission is the fragmentation of a heavy

More information

Atomic and Nuclear Physics Laboratory (Physics 4780)

Atomic and Nuclear Physics Laboratory (Physics 4780) Gamma Ray Spectroscopy Week of September 27, 2010 Atomic and Nuclear Physics Laboratory (Physics 4780) The University of Toledo Instructor: Randy Ellingson Gamma Ray Production: Co 60 60 60 27Co28Ni *

More information

MCQ - ENERGY and CLIMATE

MCQ - ENERGY and CLIMATE 1 MCQ - ENERGY and CLIMATE 1. The volume of a given mass of water at a temperature of T 1 is V 1. The volume increases to V 2 at temperature T 2. The coefficient of volume expansion of water may be calculated

More information

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Introduction to Chemistry Exam 2 Practice Problems 1 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1.Atoms consist principally of what three

More information

Particle Soup: Big Bang Nucleosynthesis

Particle Soup: Big Bang Nucleosynthesis Name: Partner(s): Lab #7 Particle Soup: Big Bang Nucleosynthesis Purpose The student explores how helium was made in the Big Bang. Introduction Very little helium is made in stars. Yet the universe is

More information

Pearson Physics Level 30 Unit VIII Atomic Physics: Chapter 17 Solutions

Pearson Physics Level 30 Unit VIII Atomic Physics: Chapter 17 Solutions Pearson Physics Level 30 Unit VIII Atomic Physics: Chapter 17 Solutions Student Book page 831 Concept Check Since neutrons have no charge, they do not create ions when passing through the liquid in a bubble

More information

EPA Radionuclides Rule and the RadNet Program

EPA Radionuclides Rule and the RadNet Program EPA Radionuclides Rule and the RadNet Program Kelly Moran (215) 814-2331 [email protected] 7/20/2011 U.S. Environmental Protection Agency 1 What is a radionuclide (radioisotope)? element - any one of

More information

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England CHAPTER 3 1. Which combination of individual and contribution is not correct? a. Antoine Lavoisier - clarified confusion over cause of burning b. John Dalton - proposed atomic theory c. Marie Curie - discovered

More information

GE Medical Systems Training in Partnership. Module 8: IQ: Acquisition Time

GE Medical Systems Training in Partnership. Module 8: IQ: Acquisition Time Module 8: IQ: Acquisition Time IQ : Acquisition Time Objectives...Describe types of data acquisition modes....compute acquisition times for 2D and 3D scans. 2D Acquisitions The 2D mode acquires and reconstructs

More information

NMR Nuclear Magnetic Resonance

NMR Nuclear Magnetic Resonance NMR Nuclear Magnetic Resonance Nuclear magnetic resonance (NMR) is an effect whereby magnetic nuclei in a magnetic field absorb and re-emit electromagnetic (EM) energy. This energy is at a specific resonance

More information

Hjälpmedel: Physics Handbook samt räknedosa. Tabell över vissa kärndata bifogas.

Hjälpmedel: Physics Handbook samt räknedosa. Tabell över vissa kärndata bifogas. Tentamensskrivning i Kärnfysik (FK7010), 7,5hp Fredag den 28 mars 2008 kl 9-15 Hjälpmedel: Physics Handbook samt räknedosa. Tabell över vissa kärndata bifogas. Denna tentamen består av två delar. Den första

More information

13C NMR Spectroscopy

13C NMR Spectroscopy 13 C NMR Spectroscopy Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for structural determination. A nucleus with an odd number of protons, an odd number

More information

Decay of Radioactivity. Radioactive decay. The Math of Radioactive decay. Robert Miyaoka, PhD. Radioactive decay:

Decay of Radioactivity. Radioactive decay. The Math of Radioactive decay. Robert Miyaoka, PhD. Radioactive decay: Decay of Radioactivity Robert Miyaoka, PhD [email protected] Nuclear Medicine Basic Science Lectures https://www.rad.washington.edu/research/research/groups/irl/ed ucation/basic-science-resident-lectures/2011-12-basic-scienceresident-lectures

More information

Chapter Five: Atomic Theory and Structure

Chapter Five: Atomic Theory and Structure Chapter Five: Atomic Theory and Structure Evolution of Atomic Theory The ancient Greek scientist Democritus is often credited with developing the idea of the atom Democritus proposed that matter was, on

More information

Nuclear ZPE Tapping. Horace Heffner May 2007

Nuclear ZPE Tapping. Horace Heffner May 2007 ENERGY FROM UNCERTAINTY The uncertainty of momentum for a particle constrained by distance Δx is given, according to Heisenberg, by: Δmv = h/(2 π Δx) but since KE = (1/2) m v 2 = (1/(2 m) ) (Δmv) 2 ΔKE

More information

Environmental Health and Safety Radiation Safety. Module 1. Radiation Safety Fundamentals

Environmental Health and Safety Radiation Safety. Module 1. Radiation Safety Fundamentals Environmental Health and Safety Radiation Safety Module 1 Radiation Safety Fundamentals Atomic Structure Atoms are composed of a variety of subatomic particles. The three of interest to Health Physics

More information

GCE Physics A. Mark Scheme for June 2014. Unit G485: Fields, Particles and Frontiers of Physics. Advanced GCE. Oxford Cambridge and RSA Examinations

GCE Physics A. Mark Scheme for June 2014. Unit G485: Fields, Particles and Frontiers of Physics. Advanced GCE. Oxford Cambridge and RSA Examinations GCE Physics A Unit G485: Fields, Particles and Frontiers of Physics Advanced GCE Mark Scheme for June 014 Oxford Cambridge and RSA Examinations OCR (Oxford Cambridge and RSA) is a leading UK awarding body,

More information

3 Atomic Structure 15

3 Atomic Structure 15 3 Atomic Structure 15 3.1 Atoms You need to be familiar with the terms in italics The diameter of the nucleus is approximately 10-15 m and an atom 10-10 m. All matter consists of atoms. An atom can be

More information

The Hydrogen Atom Is a Magnet. http://www.seed.slb.com/en/scictr/watch/gashydrates/detecting.htm

The Hydrogen Atom Is a Magnet. http://www.seed.slb.com/en/scictr/watch/gashydrates/detecting.htm The Hydrogen Atom Is a Magnet Nuclear Magnetic Resonance Spectroscopy (NMR) Proton NMR A hydrogen nucleus can be viewed as a proton, which can be viewed as a spinning charge. As with any spinning charge,

More information

About the course GENERAL CHEMISTRY. Recommended literature: Chemistry: science of the matter. Responsible for the course: Dr.

About the course GENERAL CHEMISTRY. Recommended literature: Chemistry: science of the matter. Responsible for the course: Dr. About the course GENERAL CHEMISTRY University of Pécs Medical School Academic year 2009-2010. Responsible for the course: Dr. Attila AGÓCS Optional course for 2 credit points. To have grade at the and

More information

hij Teacher Resource Bank GCE Physics A Other Guidance: Particle Physics By J Breithaupt

hij Teacher Resource Bank GCE Physics A Other Guidance: Particle Physics By J Breithaupt hij Teacher Resource Bank GCE Physics A Other Guidance: Particle Physics By J Breithaupt Copyright 2008 AQA and its licensors. All rights reserved. The Assessment and Qualifications Alliance (AQA) is a

More information

Lecture 3 September 14, 2009 Atomic Models: Rutherford & Bohr

Lecture 3 September 14, 2009 Atomic Models: Rutherford & Bohr Welcome to 3.091 Lecture 3 September 14, 2009 Atomic Models: Rutherford & Bohr 1 Periodic Table Quiz 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

More information

The Models of the Atom

The Models of the Atom The Models of the Atom All life, whether in the form of trees, whales, mushrooms, bacteria or amoebas, consists of cells. Similarly, all matter, whether in the form of aspirin, gold, vitamins, air or minerals,

More information

Instructors Guide: Atoms and Their Isotopes

Instructors Guide: Atoms and Their Isotopes Instructors Guide: Atoms and Their Isotopes Standards Connections Connections to NSTA Standards for Science Teacher Preparation C.3.a.1 Fundamental structures of atoms and molecules. C.3.b.27 Applications

More information