Relativistic kinematics basic energy, mass and momentum units, Lorents force, track bending, sagitta. First accelerator: cathode ray tube

Size: px
Start display at page:

Download "Relativistic kinematics basic energy, mass and momentum units, Lorents force, track bending, sagitta. First accelerator: cathode ray tube"

Transcription

1 Accelerators Relativistic kinematics basic energy, mass and momentum units, Lorents force, track bending, sagitta Basic static acceleration: First accelerator: cathode ray tube Cathode C consist of a filament, heated by power from A. The energy of some electrons in the cathode will exceed the bounding energy at the cathode surface, and will evaporate as free electrons in the vacuum. The applied potential difference (source B) will create an electric field, accelerating the electron towards anode P. The local fluorescent material may emit due to the absorption of the fast electrons.

2 heated filament E field = V / D With electron charge q: F = q. E field distance D Potential diffence V electron kinetic energy: E e- = F dd = q.v E e- independent of: - distance D - particle mass Energy unit: ElectronVolt: ev 1000 ev = 1 kev 1000 MeV = 1 GeV 1000 GeV = 1 TeV 1 ev = q Joules = 1.6 x Joules Nota Bene: here, q is just a real value, and has NO unit like charge!! An ev is a convenient unit for energy, used for particles with elementary charge.

3 So the energy of the electrons in a (cathode ray) color TV with a screen HV of 25 kv is 25 kev. If protons would be used, their energy would also be 25 kev. Due to their higher mass, they would travel much slower. Example: an old-fashioned color TV has a cathode ray tube operating at 25 kv electron energy: 25 kev = 25 k x 1.6 x J = 4.0 x J electron speed: E kin = ½ m 0 v 2 Ł v = sqrt(2 E kin / m 0 ) = 94,000 km/s = 0.31 x c Relativistic effects! So v is smaller, and m is larger than m 0 Now assume very high-energetic particles with a speed close to c: the energy associated with their rest mass is small with respect to the kinematic part: E 2 = m o 2 c 4 + p 2 c 2 p 2 c 2 So E = p c, and p = E/c. So, a proton of 100 GeV has a momentum p of 100 GeV/c Note that this is also (stronger: always) true for photons (gammas, X-rays (rest mass = 0).

4 From Einstein s Special Theory on Relativity: E 2 = m o2 c 4 + p 2 c 2 With: β = v / c, and the Lorentz factor γ: relativistic mass m r = γ m 0 γ = 1 / sqrt(1- β 2 ), and β = sqrt(γ 2-1) / γ So: total energy E = m 0 c 2 sqrt(1+ β 2 γ 2 ) [= rest mass + kinetic energy] = γ m 0 c 2 = m r c 2 Another example of relativistic kinematics (exercise!) A positron and an electron annihilate. Just before the annihilation the electron had a kinetic energy of 12 ev and the positron was at rest. The two emitted photons were measured to have precisely an equal energy. - What is the energy of the photons? - What is the angle between the directions of the photons? Assume the rest mass of an electron to be exactly 511 kev. Solution: the total energy of the system equals 2 x 511 kev + 12 ev = kev. This is equally distributed ovet two photons, so their energy is kev.

5 Pγ α P e Pγ The energy of the gammas is equal, so the momentum of the electron is equally shared by the photons: see figure in which the momenta are shown. Total energy of the electron before annihilation: E 2 = m 2 c 4 + p 2 c 2 = ( ) 2 (kev) 2 p 2 c 2 = ( ) 2 (511) 2 => p = 3.5 kev/c Angle α follows from the ratio of Pe and Pγ: Α ~ Pe/(2 Pγ) = 3.4 mrad = 0.19 deg. The angle between the photons is x 0.19 = deg. First applied accelerator: the X-ray tube. Accelerate electrons from a heated filament. At the anode, they generate X-rays by means of Bremstrahlung. Note that the maximum energy of these X-rays in (kev) equals the voltage of the tube (in kv). Essential for a static accelerator is a large potential difference V. This could be made with a Wimshurst generator. See Wikipedia for a correct (and not trivial) explanation. Around 1910, rather high potentials could be made with transformers (Ruhmkorff Induction coil). These devices were limited in their maximum potential difference due to internal discharge: they were not large enough for the voltage that they created. This problem was solved in the Van de Graaff Generator (1931), in which charge, applied on an insulating running belt, is transported against the electric field onto a metal sphere. See Wikipedia for a correct explanation: essential is that the charge is brought into the centre of the sphere, in which there is no electric field due to the net charge on the sphere.

6 With Van de Graaff Genrators, potentials of several MVs are possible. Practical limit to transformers Cockcroft-Walton high-voltage generator Sir John Douglas Cockroft Ernest Walton Nobel Prize 1951 From: Principles of Charged Particle Acceleration Stanley Humphries, Jr., on-line edition, p The Cockcroft-Walton generator (1937) piles up the potential of (many) charged capacitors Cockcroft-Walton generator. As introduction to the Cyclotrons first the effect of a magnetic field on moving charges particles is analysed (Lorentz Force).

7 Motion of charged particle in magnetic field Lorentz force: dp dt = q v B The speed of a charged particle, and therefore its γ, does not change by a static magnetic field: γ m dv dt = q v B (1) If s is equal to the distance along the particle trajectory: ds = v dt and if x is the position vector of the particle: dx ds = 1 dx v dt = v d 2 x v dt 2 = v2 d 2 x d 2 x ds 2 ds 2 = q dx Then: and: and using (1): p ds B (2) (2) describes a helix in a uniform field Motion of charged particle in magnetic field If magnetic field direction perpendicular to the velocity: γ mv 2 ρ = q v B which can be written as : p = ρ q B p = B ρ radius of curvature (p in GeV/c, B in T, ρ in m, for 1 elementary charge unit = x10-19 C, and obtained using 1 ev/c 2 = x10-36 kg and c = m/s ) Color TV in Earth magnetic field B ~ 10 µt (varies with latitude!) E 2 = m o2 c 4 + p 2 c 2 = {511 kev + 25 kev) 2 = (536 kev) 2 p 2 c 2 = (536 kev) 2 - (511 kev) 2 p e = 162 kev/c (note: not E/c, not very relativistic!) ρ = p e / ( B ) = 53 m Shift Sh after D = 0.2 m: Sh = D 2 / (2 ρ) = 0.4 mm D ρ Sh

8 The cyclotron Top view "Dee": conducting, non-magnetic box Side view ~ r.f. voltage Constant magnetic field Ernest O.Lawrence at the controls of the 37" cyclotron in 1938, University of California at Berkeley Nobel prize for "the invention and development of the cyclotron, and for the results thereby attained, especially with regard to artificial radioelements." (the 37" cyclotron could accelerate deuterons to 8 MeV) Speed increase smaller if particles become relativistic: special field configuration or synchro-cyclotron (uses particle bunches, frequency reduced at end of acceleration cycle) The cyclotron consists of two Dee shaped vacuum chambers, mutually insulated. Preaccelerated articles are injected in the centre between the Dee s in a direction perpendicular to the plane between the Dee s. Due to the Lorentz force the particle will follow a half circle path. An AC voltage is applied between the Dee s, such that the particle is accelerated when crossing the gap between the Dee s. This process continues until the particle reaches the edge of the magnet field, and is extracted.

9 Linear Drift Tube accelerator, invented by R. Wideröe ~ r.f. voltage: frequency matched to velocity particles, so that these are accelerated for each gap crossed Particles move through hollow metal cylinders in evacuated tube In a linear accelerator the charged particles pass a number of tubes onto which an RF AC voltage is applied, common for the odd and even tubes. The particles are accelerated when crossing from one tube to the next. Linear Drift Tube accelerator, Alvarez type Metal tank ~ small antenna injects e.m. energy Particles move through into resonator, e.m. wave in tank hollow metal cylinders in accelerates particles when they cross evacuated tube gaps, particles are screened from e.m. wave when electric field would decelerate Luis Walter Alvarez Nobel prize 1968, but not for his work on accelerators: "for his decisive contributions to elementary particle physics, in particular the discovery of a large number of resonance states, made possible through his development of the technique of using hydrogen bubble chamber and data analysis"

10 Instead of an AC RF voltage, usually EM waves are applied in order to obtain a high energy increase per unit length of the accelerator. R.f. cavity with drift tubes as used in the SPS (Super Proton Synchrotron) at CERN NB: traveling e.m. waves are used Frequency = MHz Max. 790 kw 8MV accelerating voltage Synchrotron : circular accelerator with r.f. cavities for accelerating the particles and with separate magnets for keeping the particles on track. All large circular accelerators are of this type. Injection During acceleration the magnetic field needs to be "ramped up". r.f. cavity Focussing magnet Bending magnet Vacuum beam line Extracted beam

11 The Synchrotron consists of a number of bending magnets and one or more (linear) accelerators. The initial magnetic field is quite low, and pre-accelerated particles are injected. The particles are accelerated, and the magnetic field is increased synchronously. During this ramp up, the particles are accelerated to their final energy. Aereal view of accelerators at CERN, Geneva, Swiss. Note the scale: the airport is just visible at the right-hand side.

12 Typical view of the SPS accelerator: curved tunnel, bending magnets, focusing magnets, vacuum beam pipe, vacuum equipment. During acceleration the magnetic field needs to be "ramped up". Slow extraction Fast extraction of part of beam Fast extraction of remainder of beam At time of operation of LEP SPS used as injector for LEP For LHC related studies The cycle of the SPS magnets, typical for synchrotrons.

13 Collider: two beams are collided to obtain a high Centre of Mass (CM) energy. Colliders are usually synchrotrons (exception: SLAC). In a synchrotron particles and anti-particles can be accelerated and stored in the same machine (e.g. LEP (e + e - ), SppS and Tevatron (proton - anti-proton). This is not possible for e.g. a proton-proton collider or an electron-proton collider. Important parameter for colliders : Luminosity L number of events /s N = L σcross-section Unit L: barn -1 s -1 or cm -2 s -1

14 CERN accelerator complex to Gran-Sasso (730 km) The complex of acellerators at CERN. Note the neutrino beam, pointing to the target in GranSasso. The neutrinos travel 730 km through the earth crush

15 Charged particles inside accelerators and in external beamlines need to be steered by magnetic fields. A requirement is that small deviations from the design orbit should not grow without limit. Proper choice of the steering and focusing fields makes this possible. Consider first a charged particle moving in a uniform field and in a plane perpendicular to the field: design orbit displaced orbit In the plane a deviation from the design orbit does not grow beyond a certain limit: it exhibits oscillatory behavior. However, a deviation in the direction perpendicular to the plane grows in proportion to the number of revolutions made and leads to loss of the particle after some time. Synchrotron radiation. Synchrotron radiation Particles may radiate when changing direction in a magnetic field, the radiation is called synchrotron radiation and can be in the form of UV light or of soft X-rays, emitted at high energy in a cone with opening angle 1/γ around the direction of the particle. The energy loss per turn is: E = 4πe 2 β 3 γ 4 /(3ρ) = 4πe 2 p 4 / (3m 4 βρ), where ρ is the radius of the orbit The time per turn is 2πρ/(βc), so the loss per second is 2e 2 p 4 c/(3m 4 ρ 2 ) -> For the same energy and orbit radius electrons and positrons lose about more energy then protons -> reason for large radius of LEP For high-energy electrons (β=1): E = 4πe 2 β 3 γ 4 /(3ρ) =4πr e m e E 4 /(3ρm e 4 ) (r e = classical electron radius = 2.82 fm) E = E 4 /ρ MeV with E specified in GeV and ρ in m.

16 ESRF: European Synchrotron Radiation Facility, Grenoble, France 300 m circumference booster synchrotron, 6 GeV 16 m linac, 200 MeV When deflected by a magnetic field (vertical field lines), electrons emit synchrotron radiation in the form of X-rays. At ESRF, there are 32 channels providing X-ray facilities, mainly for material research.

17 The Large Hadron Collider (LHC) at CERN, which is due to start operation in July The four experiments (ATLAS, LHC-b, CMS and ALICE), are indicated. Large Hadron Collider LHC: proton-proton collider Interaction point Bunch size squeezed near interaction point Crossing angle to avoid long range beam beam interaction R ~4 km, E ~ 7 TeV (2x!) Ł B ~ 7 T! The bunch structure of the colliding beams. One of the aspects of this structure is that the timing of a collision is well known. This information is essential for operating detectors in experiments (drift chambers, calorimeters).

18 Superconducting magnets: no pole shoes Current distributions Superconducting coils: the magnetic field is determined by the coil configuration. Magnets waiting for installation at LHC.

19 2) heavy collisions: pp collisions A proton is a bag filled with quarks en gluonen Proton-proton collisions at LHC: a complicated affair. A proton is a complex particle with internal structure. Electron-positron colliders have much cleaner events, but a high CM energy can only be reached for a high price

Cathode Ray Tube. Introduction. Functional principle

Cathode Ray Tube. Introduction. Functional principle Introduction The Cathode Ray Tube or Braun s Tube was invented by the German physicist Karl Ferdinand Braun in 897 and is today used in computer monitors, TV sets and oscilloscope tubes. The path of the

More information

Charged Particle in a Magnetic Field

Charged Particle in a Magnetic Field Charged Particle in a Magnetic Field Consider a particle moving in an external magnetic field with its velocity perpendicular to the field The force is always directed toward the center of the circular

More information

1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D

1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D Chapter 28: MAGNETIC FIELDS 1 Units of a magnetic field might be: A C m/s B C s/m C C/kg D kg/c s E N/C m 2 In the formula F = q v B: A F must be perpendicular to v but not necessarily to B B F must be

More information

physics 112N magnetic fields and forces

physics 112N magnetic fields and forces physics 112N magnetic fields and forces bar magnet & iron filings physics 112N 2 bar magnets physics 112N 3 the Earth s magnetic field physics 112N 4 electro -magnetism! is there a connection between electricity

More information

hij Teacher Resource Bank GCE Physics A Other Guidance: Particle Physics By J Breithaupt

hij Teacher Resource Bank GCE Physics A Other Guidance: Particle Physics By J Breithaupt hij Teacher Resource Bank GCE Physics A Other Guidance: Particle Physics By J Breithaupt Copyright 2008 AQA and its licensors. All rights reserved. The Assessment and Qualifications Alliance (AQA) is a

More information

Magnetic Field and Magnetic Forces

Magnetic Field and Magnetic Forces Chapter 27 Magnetic Field and Magnetic Forces PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 27 Magnets

More information

Measurement of Charge-to-Mass (e/m) Ratio for the Electron

Measurement of Charge-to-Mass (e/m) Ratio for the Electron Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic

More information

Experimental Particle Physics PHYS6011 Southampton University Lecture 1

Experimental Particle Physics PHYS6011 Southampton University Lecture 1 Experimental Particle Physics PHYS6011 Southampton University Lecture 1 Fergus Wilson, Email: Fergus.Wilson at stfc.ac.uk 1st May 2014 Fergus Wilson, RAL 1 Administrative Points 5 lectures: Tuesday 10am:

More information

2. Orbits. FER-Zagreb, Satellite communication systems 2011/12

2. Orbits. FER-Zagreb, Satellite communication systems 2011/12 2. Orbits Topics Orbit types Kepler and Newton laws Coverage area Influence of Earth 1 Orbit types According to inclination angle Equatorial Polar Inclinational orbit According to shape Circular orbit

More information

Modern Physics Laboratory e/m with Teltron Deflection Tube

Modern Physics Laboratory e/m with Teltron Deflection Tube Modern Physics Laboratory e/m with Teltron Deflection Tube Josh Diamond & John Cummings Fall 2010 Abstract The deflection of an electron beam by electric and magnetic fields is observed, and the charge

More information

Accelerator Physics WS 2011/12

Accelerator Physics WS 2011/12 Lecture: Accelerator Physics Heidelberg WS 2011/12 Prof. A. Schöning Physikalisches Institut der Universität Heidelberg Introduction 1 Goal of this Lecture Introduction to Accelerator Physics: experimental

More information

Physics and Technology of Particle Accelerators Basics, Overview and Outlook Simone Di Mitri, Elettra Sincrotrone Trieste University of Trieste, Dept. of Engineering 1 Prologue This seminar samples the

More information

Physics 30 Worksheet #10 : Magnetism From Electricity

Physics 30 Worksheet #10 : Magnetism From Electricity Physics 30 Worksheet #10 : Magnetism From Electricity 1. Draw the magnetic field surrounding the wire showing electron current below. x 2. Draw the magnetic field surrounding the wire showing electron

More information

High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions

High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions High Energy Physics Lecture 4 More kinematics and a picture show of particle collisions 1 Recall from the previous lecture: the momentum of the scattered Particle in an elastic collision is given by p

More information

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise. Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.

More information

Cross section, Flux, Luminosity, Scattering Rates

Cross section, Flux, Luminosity, Scattering Rates Cross section, Flux, Luminosity, Scattering Rates Table of Contents Paul Avery (Andrey Korytov) Sep. 9, 013 1 Introduction... 1 Cross section, flux and scattering... 1 3 Scattering length λ and λ ρ...

More information

Motion of Charges in Combined Electric and Magnetic Fields; Measurement of the Ratio of the Electron Charge to the Electron Mass

Motion of Charges in Combined Electric and Magnetic Fields; Measurement of the Ratio of the Electron Charge to the Electron Mass Motion of Charges in Combined Electric and Magnetic Fields; Measurement of the Ratio of the Electron Charge to the Electron Mass Object: Understand the laws of force from electric and magnetic fields.

More information

Lab 4: Magnetic Force on Electrons

Lab 4: Magnetic Force on Electrons Lab 4: Magnetic Force on Electrons Introduction: Forces on particles are not limited to gravity and electricity. Magnetic forces also exist. This magnetic force is known as the Lorentz force and it is

More information

E/M Experiment: Electrons in a Magnetic Field.

E/M Experiment: Electrons in a Magnetic Field. E/M Experiment: Electrons in a Magnetic Field. PRE-LAB You will be doing this experiment before we cover the relevant material in class. But there are only two fundamental concepts that you need to understand.

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #4 March 15, 2007 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

Three-dimensional figure showing the operation of the CRT. The dotted line shows the path traversed by an example electron.

Three-dimensional figure showing the operation of the CRT. The dotted line shows the path traversed by an example electron. Physics 241 Lab: Cathode Ray Tube http://bohr.physics.arizona.edu/~leone/ua/ua_spring_2010/phys241lab.html NAME: Section 1: 1.1. A cathode ray tube works by boiling electrons off a cathode heating element

More information

Pearson Physics Level 30 Unit VIII Atomic Physics: Chapter 17 Solutions

Pearson Physics Level 30 Unit VIII Atomic Physics: Chapter 17 Solutions Pearson Physics Level 30 Unit VIII Atomic Physics: Chapter 17 Solutions Student Book page 831 Concept Check Since neutrons have no charge, they do not create ions when passing through the liquid in a bubble

More information

Zero Degree Extraction using an Electrostatic Separator

Zero Degree Extraction using an Electrostatic Separator Zero Degree Extraction using an Electrostatic Separator L. Keller Aug. 2005 Take another look at using an electrostatic separator and a weak dipole to allow a zero degree crossing angle a la the TESLA

More information

A Guide to Detectors Particle Physics Masterclass. M. van Dijk

A Guide to Detectors Particle Physics Masterclass. M. van Dijk A Guide to Particle Physics Masterclass M. van Dijk 16/04/2013 How detectors work Scintillation Ionization Particle identification Tracking Calorimetry Data Analysis W & Z bosons 2 Reconstructing collisions

More information

Vacuum Evaporation Recap

Vacuum Evaporation Recap Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

More information

How To Understand Light And Color

How To Understand Light And Color PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order

More information

Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc.

Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc. Chapter 23 Electric Potential 23-1 Electrostatic Potential Energy and Potential Difference The electrostatic force is conservative potential energy can be defined. Change in electric potential energy is

More information

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator. PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

More information

HIGH-ENERGY COLLIDER PARAMETERS: e + e Colliders (I)

HIGH-ENERGY COLLIDER PARAMETERS: e + e Colliders (I) 28. High-energy collider parameters 1 HIGH-ENERGY COLLIDER PARAMETERS: e + e Colliders (I) Updated in early 2012 with numbers received from representatives of the colliders (contact J. Beringer, LBNL).

More information

FCC 1309180800 JGU WBS_v0034.xlsm

FCC 1309180800 JGU WBS_v0034.xlsm 1 Accelerators 1.1 Hadron injectors 1.1.1 Overall design parameters 1.1.1.1 Performance and gap of existing injector chain 1.1.1.2 Performance and gap of existing injector chain 1.1.1.3 Baseline parameters

More information

Copyright. Ryoichi Miyamoto

Copyright. Ryoichi Miyamoto Copyright by Ryoichi Miyamoto 2008 The Dissertation Committee for Ryoichi Miyamoto certifies that this is the approved version of the following dissertation: Diagnostics of the Fermilab Tevatron Using

More information

Information about the T9 beam line and experimental facilities

Information about the T9 beam line and experimental facilities Information about the T9 beam line and experimental facilities The incoming proton beam from the PS accelerator impinges on the North target and thus produces the particles for the T9 beam line. The collisions

More information

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions Conceptual: 1, 3, 5, 6, 8, 16, 18, 19 Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65 Conceptual Questions 1. The magnetic field cannot be described as the magnetic force per unit charge

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2012

Candidate Number. General Certificate of Education Advanced Level Examination June 2012 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 212 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Monday

More information

The Sun and Solar Energy

The Sun and Solar Energy I The Sun and Solar Energy One of the most important forces behind global change on Earth is over 90 million miles distant from the planet. The Sun is the ultimate, original source of the energy that drives

More information

ATOMS: ATOMIC STRUCTURE QUESTIONS AND ANSWERS

ATOMS: ATOMIC STRUCTURE QUESTIONS AND ANSWERS ATOMS: ATOMIC STRUCTURE QUESTIONS AND ANSWERS QUESTION ONE: MODELS OF THE ATOM (2011;1) At different times scientists have proposed various descriptions or models of the atom to match experimental evidence

More information

Results: Low current (2 10 12 ) Worst case: 800 MHz, 12 50 GeV, 4 turns Energy oscillation amplitude 154 MeV, where

Results: Low current (2 10 12 ) Worst case: 800 MHz, 12 50 GeV, 4 turns Energy oscillation amplitude 154 MeV, where Status Focus has shifted to a neutrino factory Two comprehensive designs of acceleration (liancs, arcs) Jefferson Lab, for Fermilab Study CERN (Keil et al.) Jefferson Lab study Low (2 10 12 ) charge per

More information

Calorimetry in particle physics experiments

Calorimetry in particle physics experiments Calorimetry in particle physics experiments Unit n. 8 Calibration techniques Roberta Arcidiacono Lecture overview Introduction Hardware Calibration Test Beam Calibration In-situ Calibration (EM calorimeters)

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2010

Candidate Number. General Certificate of Education Advanced Level Examination June 2010 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 1 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Friday 18

More information

OVERVIEW OF PROTON DRIVERS FOR NEUTRINO SUPER BEAMS AND NEUTRINO FACTORIES*

OVERVIEW OF PROTON DRIVERS FOR NEUTRINO SUPER BEAMS AND NEUTRINO FACTORIES* FERMILAB-CONF-06-213-AD OVERVIEW OF PROTON DRIVERS FOR NEUTRINO SUPER BEAMS AND NEUTRINO FACTORIES* W. Chou #, Fermilab, Batavia, IL 60510, U.S.A. Abstract There has been a world-wide interest in Proton

More information

Physics 30 Worksheet # 14: Michelson Experiment

Physics 30 Worksheet # 14: Michelson Experiment Physics 30 Worksheet # 14: Michelson Experiment 1. The speed of light found by a Michelson experiment was found to be 2.90 x 10 8 m/s. If the two hills were 20.0 km apart, what was the frequency of the

More information

Examples of magnetic field calculations and applications. 1 Example of a magnetic moment calculation

Examples of magnetic field calculations and applications. 1 Example of a magnetic moment calculation Examples of magnetic field calculations and applications Lecture 12 1 Example of a magnetic moment calculation We consider the vector potential and magnetic field due to the magnetic moment created by

More information

The accurate calibration of all detectors is crucial for the subsequent data

The accurate calibration of all detectors is crucial for the subsequent data Chapter 4 Calibration The accurate calibration of all detectors is crucial for the subsequent data analysis. The stability of the gain and offset for energy and time calibration of all detectors involved

More information

Lesson 33: Photoelectric Effect

Lesson 33: Photoelectric Effect Lesson 33: Photoelectric Effect Hertz Experiment Heinrich Hertz was doing experiments in 1887 to test some of Maxwell's theories of EMR. One of the experiments involved using a coil of wire as a receiver

More information

6/2016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES. PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields.

6/2016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES. PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields. 6/016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields. APPARATUS: Electron beam tube, stand with coils, power supply,

More information

Curriculum for Excellence. Higher Physics. Success Guide

Curriculum for Excellence. Higher Physics. Success Guide Curriculum for Excellence Higher Physics Success Guide Electricity Our Dynamic Universe Particles and Waves Electricity Key Area Monitoring and Measuring A.C. Monitoring alternating current signals with

More information

10 Project Costs and Schedule

10 Project Costs and Schedule II-367 10 Project Costs and Schedule 10.1 Overview The investment costs given in this chapter include all components necessary for the baseline design of TESLA, as described in chapters 3 to 9. Not included

More information

AUTOMATION OF OPERATIONS ON THE VEPP-4 CONTROL SYSTEM

AUTOMATION OF OPERATIONS ON THE VEPP-4 CONTROL SYSTEM 10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Geneva, 10-14 Oct 2005, PO1.072-7 (2005) AUTOMATION OF OPERATIONS ON THE VEPP-4 CONTROL SYSTEM A. Bogomyagkov, S. Karnaev,

More information

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves 5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has

More information

World-first Proton Pencil Beam Scanning System with FDA Clearance

World-first Proton Pencil Beam Scanning System with FDA Clearance Hitachi Review Vol. 58 (29), No.5 225 World-first Proton Pencil Beam Scanning System with FDA Clearance Completion of Proton Therapy System for MDACC Koji Matsuda Hiroyuki Itami Daishun Chiba Kazuyoshi

More information

AS COMPETITION PAPER 2008

AS COMPETITION PAPER 2008 AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question

More information

Electron Charge to Mass Ratio Matthew Norton, Chris Bush, Brian Atinaja, Becker Steven. Norton 0

Electron Charge to Mass Ratio Matthew Norton, Chris Bush, Brian Atinaja, Becker Steven. Norton 0 Electron Charge to Mass Ratio Matthew Norton, Chris Bush, Brian Atinaja, Becker Steven Norton 0 Norton 1 Abstract The electron charge to mass ratio was an experiment that was used to calculate the ratio

More information

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

More information

PHY2061 Enriched Physics 2 Lecture Notes Relativity 4. Relativity 4

PHY2061 Enriched Physics 2 Lecture Notes Relativity 4. Relativity 4 PHY6 Enriched Physics Lectre Notes Relativity 4 Relativity 4 Disclaimer: These lectre notes are not meant to replace the corse textbook. The content may be incomplete. Some topics may be nclear. These

More information

COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION

COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION 2011(2): WAVES Doppler radar can determine the speed and direction of a moving car. Pulses of extremely high frequency radio waves are sent out in a narrow

More information

Force on Moving Charges in a Magnetic Field

Force on Moving Charges in a Magnetic Field [ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

More information

A2 Physics Unit 7 Magnetic Fields. Mr D Powell

A2 Physics Unit 7 Magnetic Fields. Mr D Powell A Physics Unit 7 Magnetic Fields Mr D Powell Chapter Map Circumference circle = r Distance trav = ¼ * r WD = Fd = d*mv /r Sub in eq to give B B 7.1 Current-carrying conductors in a magnetic field Specification

More information

Chapter 21. Magnetic Forces and Magnetic Fields

Chapter 21. Magnetic Forces and Magnetic Fields Chapter 21 Magnetic Forces and Magnetic Fields 21.1 Magnetic Fields The needle of a compass is permanent magnet that has a north magnetic pole (N) at one end and a south magnetic pole (S) at the other.

More information

Running in 2011 - Luminosity. Mike Lamont Verena Kain

Running in 2011 - Luminosity. Mike Lamont Verena Kain Running in 2011 - Luminosity Mike Lamont Verena Kain Presentations Many thanks to all the speakers! Experiments expectations Massi Ferro-Luzzi Pushing the limits: beam Elias Métral Pushing the limits:

More information

Objectives 404 CHAPTER 9 RADIATION

Objectives 404 CHAPTER 9 RADIATION Objectives Explain the difference between isotopes of the same element. Describe the force that holds nucleons together. Explain the relationship between mass and energy according to Einstein s theory

More information

Chapter 18: The Structure of the Atom

Chapter 18: The Structure of the Atom Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Laboratory for Particle Physics SUPERCONDUCTIVITY AND CRYOGENICS FOR FUTURE HIGH-ENERGY ACCELERATORS

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Laboratory for Particle Physics SUPERCONDUCTIVITY AND CRYOGENICS FOR FUTURE HIGH-ENERGY ACCELERATORS EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Laboratory for Particle Physics Departmental Report CERN/AT 2007-4 SUPERCONDUCTIVITY AND CRYOGENICS FOR FUTURE HIGH-ENERGY ACCELERATORS Ph. Lebrun High-energy

More information

PrHEP JHW2002. Experiments on high energy reactions in the diffractive regime at LHC. 1. Introduction. Twenty-sixth Johns Hopkins Workshop

PrHEP JHW2002. Experiments on high energy reactions in the diffractive regime at LHC. 1. Introduction. Twenty-sixth Johns Hopkins Workshop PROCEEDINGS Experiments on high energy reactions in the diffractive regime at LHC Helsinki Institute for Physics, c/o CERN, Route de Meyrin, CH-1211 Geneva 23, Switzerland E-mail: Stefan.Tapprogge@cern.ch

More information

Tom Wilson Product Marketing Manager Delivery Systems Varian Medical Systems International AG. CERN Accelerator School, May 2015

Tom Wilson Product Marketing Manager Delivery Systems Varian Medical Systems International AG. CERN Accelerator School, May 2015 INDUSTRIAL DESIGN Tom Wilson Product Marketing Manager Delivery Systems Varian Medical Systems International AG VARIAN ONCOLOGY SYSTEMS 1 VARIAN ONCOLOGY SYSTEMS CERN Accelerator, May 2015 Industrial Design

More information

Monday 11 June 2012 Afternoon

Monday 11 June 2012 Afternoon Monday 11 June 2012 Afternoon A2 GCE PHYSICS B (ADVANCING PHYSICS) G495 Field and Particle Pictures *G412090612* Candidates answer on the Question Paper. OCR supplied materials: Data, Formulae and Relationships

More information

AS COMPETITION PAPER 2007 SOLUTIONS

AS COMPETITION PAPER 2007 SOLUTIONS AS COMPETITION PAPER 2007 Total Mark/50 SOLUTIONS Section A: Multiple Choice 1. C 2. D 3. B 4. B 5. B 6. A 7. A 8. C 1 Section B: Written Answer Question 9. A mass M is attached to the end of a horizontal

More information

Simulation of Neutron Backgrounds from the ILC Extraction Line Beam Dump. Siva Darbha. Office of Science, SULI Program. University of Toronto

Simulation of Neutron Backgrounds from the ILC Extraction Line Beam Dump. Siva Darbha. Office of Science, SULI Program. University of Toronto SLAC-TN-07-013 August 2007 Simulation of Neutron Backgrounds from the ILC Extraction Line Beam Dump Siva Darbha Office of Science, SULI Program University of Toronto Stanford Linear Accelerator Center

More information

Charges, voltage and current

Charges, voltage and current Charges, voltage and current Lecture 2 1 Atoms and electrons Atoms are built up from Positively charged nucleus Negatively charged electrons orbiting in shells (or more accurately clouds or orbitals) -

More information

The Phenomenon of Photoelectric Emission:

The Phenomenon of Photoelectric Emission: The Photoelectric Effect. The Wave particle duality of light Light, like any other E.M.R (electromagnetic radiation) has got a dual nature. That is there are experiments that prove that it is made up of

More information

LHC MACHINE PROTECTION

LHC MACHINE PROTECTION LHC MACHINE PROTECTION Rossano Giachino, CERN, Geneva, Switzerland Abstract The energy stored in LHC magnets presents a considerable challenge for commissioning even before any beam is injected. Furthermore,

More information

Physical Principle of Formation and Essence of Radio Waves

Physical Principle of Formation and Essence of Radio Waves Physical Principle of Formation and Essence of Radio Waves Anatoli Bedritsky Abstract. This article opens physical phenomena which occur at the formation of the radio waves, and opens the essence of the

More information

Recent developments in Electromagnetic Hadron Form Factors

Recent developments in Electromagnetic Hadron Form Factors Recent developments in Electromagnetic Hadron Form Factors (JOH7RPDVL*XVWDIVVRQ '$31,$63K16DFOD\ :KDW are Form Factors? :K\ to measure? +RZ to measure? :KDWLVQHZ" Consequences, Conclusions 6SRNHSHUVR QV

More information

Searching for the Building Blocks of Matter

Searching for the Building Blocks of Matter 1 Searching for the Building Blocks of Matter Building Blocks of Matter The Smallest Scales Physicists at Fermilab are searching for the smallest building blocks of matter and determining how they interact

More information

Special Theory of Relativity

Special Theory of Relativity Special Theory of Relativity In ~1895, used simple Galilean Transformations x = x - vt t = t But observed that the speed of light, c, is always measured to travel at the same speed even if seen from different,

More information

PHY114 S11 Term Exam 3

PHY114 S11 Term Exam 3 PHY4 S Term Exam S. G. Rajeev Mar 2 20 2:0 pm to :45 pm PLEASE write your workshop number and your workshop leader s name at the top of your book, so that you can collect your graded exams at the workshop.

More information

Electromagnetism Extra Study Questions Short Answer

Electromagnetism Extra Study Questions Short Answer Electromagnetism Extra Study Questions Short Answer 1. The electrostatic force between two small charged objects is 5.0 10 5 N. What effect would each of the following changes have on the magnitude of

More information

Solved Problems in Special Relativity

Solved Problems in Special Relativity Solved Problems in Special Relativity Charles Asman, Adam Monahan and Malcolm McMillan Department of Physics and Astronomy University of British Columbia, Vancouver, British Columbia, Canada Fall 1999;

More information

Presentation of problem T1 (9 points): The Maribo Meteorite

Presentation of problem T1 (9 points): The Maribo Meteorite Presentation of problem T1 (9 points): The Maribo Meteorite Definitions Meteoroid. A small particle (typically smaller than 1 m) from a comet or an asteroid. Meteorite: A meteoroid that impacts the ground

More information

Damping Wigglers in PETRA III

Damping Wigglers in PETRA III Damping Wigglers in PETRA III WIGGLE2005, Frascati 21-22.2.2005 Winni Decking, DESY-MPY Introduction Damping Wiggler Parameters Nonlinear Dynamics with DW Operational Aspects Summary DESY and its Accelerators

More information

x 1 ' = x 1 vt 1 x 1 ' = 4.0 m t 1 = 1.0 s x 2 vt 2 ' = 4.0 m t 2 ' = x 2 = 3.0 s x 1 = x 2 x 1 ' + vt 1 ' + vt 2 v (t 1 t 2 ) = x 2 ' x 1 ' = x 2

x 1 ' = x 1 vt 1 x 1 ' = 4.0 m t 1 = 1.0 s x 2 vt 2 ' = 4.0 m t 2 ' = x 2 = 3.0 s x 1 = x 2 x 1 ' + vt 1 ' + vt 2 v (t 1 t 2 ) = x 2 ' x 1 ' = x 2 Physics 2220 Module 16 Homework 01. A firecracker explodes in reference frame S at t 1 1.0 seconds. A second firecracker explodes at the same position at t 2 3.0 seconds. In reference frame S', which moves

More information

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26 Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

More information

A Quick primer on synchrotron radiation: How would an MBA source change my x-ray beam. Jonathan Lang Advanced Photon Source

A Quick primer on synchrotron radiation: How would an MBA source change my x-ray beam. Jonathan Lang Advanced Photon Source A Quick primer on synchrotron radiation: How would an MBA source change my x-ray beam Jonathan Lang Advanced Photon Source APS Upgrade - MBA Lattice ε ο = 3100 pm ε ο = 80 pm What is emi7ance? I don t

More information

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9 Module 9 This module presents information on what X-rays are and how they are produced. Introduction Module 9, Page 2 X-rays are a type of electromagnetic radiation. Other types of electromagnetic radiation

More information

WJP, PHY381 (2015) Wabash Journal of Physics v4.3, p.1. Cloud Chamber. R.C. Dennis, Tuan Le, M.J. Madsen, and J. Brown

WJP, PHY381 (2015) Wabash Journal of Physics v4.3, p.1. Cloud Chamber. R.C. Dennis, Tuan Le, M.J. Madsen, and J. Brown WJP, PHY381 (2015) Wabash Journal of Physics v4.3, p.1 Cloud Chamber R.C. Dennis, Tuan Le, M.J. Madsen, and J. Brown Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated: May 7, 2015)

More information

Concepts in Theoretical Physics

Concepts in Theoretical Physics Concepts in Theoretical Physics Lecture 6: Particle Physics David Tong e 2 The Structure of Things 4πc 1 137 e d ν u Four fundamental particles Repeated twice! va, 9608085, 9902033 Four fundamental forces

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

Care should be taken to give an appropriate number of significant figures in the final answers to calculations.

Care should be taken to give an appropriate number of significant figures in the final answers to calculations. X069/3/0 NATIONAL QUALIFICATIONS 05 TUESDAY, 5 MAY PHYSICS.00 PM 3.30 PM ADVANCED HIGHER Reference may be made to the Physics Data Booklet. Answer all questions. Any necessary data may be found in the

More information

Study of electron cloud at MI and slip stacking process simulation

Study of electron cloud at MI and slip stacking process simulation Study of electron cloud at MI and slip stacking process simulation Alexandr S. Valkovich Purpose 1.Understand the slip stacking process which happens in the Main Injector. 2. Calculation of bunch distortion

More information

Matter Waves. Home Work Solutions

Matter Waves. Home Work Solutions Chapter 5 Matter Waves. Home Work s 5.1 Problem 5.10 (In the text book) An electron has a de Broglie wavelength equal to the diameter of the hydrogen atom. What is the kinetic energy of the electron? How

More information

Magnetic Fields and Forces. AP Physics B

Magnetic Fields and Forces. AP Physics B Magnetic ields and orces AP Physics acts about Magnetism Magnets have 2 poles (north and south) Like poles repel Unlike poles attract Magnets create a MAGNETIC IELD around them Magnetic ield A bar magnet

More information

Les Accélérateurs Laser Plasma

Les Accélérateurs Laser Plasma Les Accélérateurs Laser Plasma Victor Malka Laboratoire d Optique Appliquée ENSTA ParisTech Ecole Polytechnique CNRS PALAISEAU, France victor.malka@ensta.fr Accelerators : One century of exploration of

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Friday, June 20, 2014 1:15 to 4:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Friday, June 20, 2014 1:15 to 4:15 p.m. P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Friday, June 20, 2014 1:15 to 4:15 p.m., only The possession or use of any communications device

More information

07 - Cherenkov and transition radiation detectors

07 - Cherenkov and transition radiation detectors 07 - Cherenkov and transition radiation detectors Jaroslav Adam Czech Technical University in Prague Version 1.0 Jaroslav Adam (CTU, Prague) DPD_07, Cherenkov and transition radiation Version 1.0 1 / 30

More information

Status of High Current Ion Sources. Daniela Leitner Lawrence Berkeley National Laboratory

Status of High Current Ion Sources. Daniela Leitner Lawrence Berkeley National Laboratory http://ecrgroup.lbl.gov Status of High Current Ion Sources Daniela Leitner Lawrence Berkeley National Laboratory October, 27th, 2003 1 Content Overview of available high current sources Requirements for

More information

Review Questions PHYS 2426 Exam 2

Review Questions PHYS 2426 Exam 2 Review Questions PHYS 2426 Exam 2 1. If 4.7 x 10 16 electrons pass a particular point in a wire every second, what is the current in the wire? A) 4.7 ma B) 7.5 A C) 2.9 A D) 7.5 ma E) 0.29 A Ans: D 2.

More information

Scuola Raimondo Anni Electro-weak probes in Nuclear Physics. Electron scattering. (a general introduction) Antonio M. Lallena. Universidad de Granada

Scuola Raimondo Anni Electro-weak probes in Nuclear Physics. Electron scattering. (a general introduction) Antonio M. Lallena. Universidad de Granada Scuola Raimondo Anni Electro-weak probes in Nuclear Physics Electron scattering (a general introduction) Antonio M. Lallena Universidad de Granada Otranto, 2013 Outline i. A very short history of electron

More information

Status And Future Plans. Mitsuyoshi Tanaka. AGS Department.Brookhaven National Laboratory* Upton NY 11973, USA INTRODUCTION

Status And Future Plans. Mitsuyoshi Tanaka. AGS Department.Brookhaven National Laboratory* Upton NY 11973, USA INTRODUCTION 6th Conference on the Intersections of Particle & Nuclear Physics Big Sky, Montana May 27-June 2, 1997 / BNL-6 40 4 2 c0,lvf- 7 70 5 The BNL AGS Accelerator Complex Status And Future Plans Mitsuyoshi Tanaka

More information

& Tunnel Cross Section

& Tunnel Cross Section CLIC workshop Working group: Two beam hardware and Integration ti CLIC Civil Engineering Layouts & Tunnel Cross Section John Osborne TS-CE Acknowledgements : C.Wyss, J-L Baldy, N.Baddams 17 October 2007

More information

Chapter 19 Magnetic Forces and Fields

Chapter 19 Magnetic Forces and Fields Chapter 19 Magnetic Forces and Fields Student: 3. The magnetism of the Earth acts approximately as if it originates from a huge bar magnet within the Earth. Which of the following statements are true?

More information