WELCOME to Aurorae In the Solar System. J.E. Klemaszewski
|
|
|
- Evangeline McCarthy
- 10 years ago
- Views:
Transcription
1 WELCOME to Aurorae In the Solar System
2 Aurorae in the Solar System Sponsoring Projects Galileo Europa Mission Jupiter System Data Analysis Program ACRIMSAT Supporting Projects Ulysses Project Outer Planets / Solar Probe NASA HQ Office of Space Science Sun-Earth Connection Theme Stanford Solar Center Deep Space Network SOHO IMIG satellite program Raytheon ITSS Timed Solar2000
3 Logistics Aurorae in the Solar System Badges - please keep them on & visible Video taping ERC souvenir store - yellow sign (~3:30) Lunch-time activities SFOF - green sign, 11:30 & 12:00 (limit 45/tour) Welcome to Outer Space (video) 11:30-12:00 in Von Karman auditorium Telescopes (weather permitting)
4 Aurorae in the Solar System Agenda Overview The Solar Maximum apple Light Activities Aurorae on Earth apple Magnetic and Energetic Activities Jupiter s Aurorae and Atmospheric Phenomena The Sun-Jupiter Connection apple Educational Observation Programs Evaluations/Give-Aways/Handouts/Badges +Radio JOVE (depart from blue sign at 3:15)
5 The Sun How big is it? Overview What s it made of? How is it structured? Aurora What are they? How do they form? Where are they located? The Earth and Jupiter Composition Structure
6 The Sun Size Mass = 1.99 x kg (332,000x Earth) Diameter = 1,392,000 km (109x Earth) Composition abundance mass Hydrogen 91.2% 71.0% Helium 8.6% 27.1 % Oxygen 0.08% 0.97% Carbon 0.045% 0.40 % Nitrogen, Silicon, Magnesium, Neon, Iron, Sulfur 0.03% 0.53%
7 Measuring Composition Temperature Determined from the peak frequency or wavelength of a continuous spectrum Emission lines Narrow slices of the continuous spectrum Line patterns unique to each element or molecule Absorption lines Gaps in spectrum due to absorption by cool gases Correspond to same wavelengths as emission lines Characteristic of the intervening gas
8 The Electromagnetic Sky
9 Spectroscopy Electromagnetic Spectrum Radio waves: sub-cm to 100s m radar, magnetic fields, interstellar gas, galactic structure Infrared radiation: ~1-100 microns molecular composition, cool stars, galaxies visible light: nm composition, planets, stars, galaxies Ultraviolet radiation: m interstellar medium, hot stars X rays: m stellar atmospheres, neutron stars, hot gases Gamma rays: <10-16 m neutron stars, active galactic nuclei
10 Behind the Scenes Electron Transitions Produce visible & ultraviolet spectral-line features Molecular vibration changes produce infrared spectral features Molecular rotation changes Produce radio-wave spectral-line features
11 The Sun s Structure thickness (km) density (g/cm 3 ) Core 15 Million K 200, ,000 Radiation zone 7 Million K 300,000 15,000 Convection zone 2 Million K 200, Photosphere 5800 K 500 2x10-4
12 The Sun s Atmosphere Chromosphere thickness (km) density (g/cm 3 ) 4500 K x10-6 Transition Zone 8000 K x10-10 Corona 1 Million K millions Solar wind 2 Million K 10-23
13 The Sun s Corona
14 The Corona and Solar Wind Coronal holes Low-density (by ~10x) regions, 10s to 100s of thousands of km across Magnetic field lines extend far out into space Permit escape of matter, windows for solar wind
15 The Corona and Solar Wind The Solar Wind Electromagnetic radiation Fast-moving (500 km/sec) charged particles Protons, Electrons Output Transport of ~1 million tons of solar matter / second 4x10 26 Watts (= 100 billion 1-megaton bomb / second) 1400 watts/m 2 reaches Earth
16 Aurorae in the Solar System Ingredients: Solar wind supplies charged particles Magnetic Field accelerates charged particles Atmosphere excited by charged particles emit photons producing aurora Colors produced by type of atom or molecule excited and path used to return to ground state
17 Aurorae in the Solar System Mercury? Jupiter Venus Earth Mars Saturn Uranus Pluto Neptune
18 Aurorae in the Solar System Mercury - no Jupiter Venus? Earth Mars Saturn Uranus Pluto Neptune
19 Aurorae in the Solar System Mercury - no Jupiter Venus - no. Earth? Mars Saturn Uranus Pluto Neptune
20 Aurorae in the Solar System Mercury - no Jupiter Venus - no Earth - yes Mars? Saturn Uranus Pluto Neptune
21 Aurorae in the Solar System Mercury - no Venus - no Earth - yes Mars - no. Jupiter? Io? Europa? Ganymede? Callisto? Saturn Uranus Pluto Neptune
22 Jovian Aurora
23 Io Aurora
24 Aurorae in the Solar System Mercury - no Venus - no Earth - yes Mars - no Jupiter - yes Io - yes Europa -? We re looking Ganymede - yes Callisto - none detected Saturn? Titan? Uranus Pluto Neptune
25 Saturnian Aurora
26 Aurorae in the Solar System Mercury - no Venus - no Earth - yes Mars - no Jupiter - yes Io - yes Europa -? We re looking Ganymede - yes Callisto - none detected Saturn - yes Titan - wait for Cassini Uranus? Pluto Neptune
27 Aurorae in the Solar System Mercury - no Venus - no Earth - yes Mars - no Jupiter - yes Io - yes Europa -? We re looking Ganymede - yes Callisto - none detected Saturn - yes Titan - wait for Cassini Uranus - yes Pluto Neptune?
28 Aurorae in the Solar System Mercury - no Venus - no Earth - yes Mars - no Jupiter - yes Io - yes Europa -? We re looking Ganymede - yes Callisto - none detected Saturn - yes Titan - wait for Cassini Uranus - yes Pluto -? Neptune - yes
29 Aurorae in the Solar System Mercury - no Venus - no Earth - yes Mars - no Jupiter - yes Io - yes Europa -? We re looking Ganymede - yes Callisto - none detected Saturn - yes Titan - wait for Cassini Uranus - yes Pluto - probably not Neptune - yes
30 The Earth Structure Core Inner Outer Mantle Crust Composition Iron, Nickel, Sulfur Solid Liquid Fe-, Mg-rich silicates Silicates, carbonates, etc. Atmosphere N 2, O 2, Ar, CO 2, H 2 O, etc. Magnetosphere Van Allen belts Electrons (outer) Protons (inner)
31 Visible Aurora Images courtesy Jan Curti s
32 X-ray Aurora
33 Jupiter Atmospheric Composition 86.1% H & 13.8% He methane, ammonia, water vapor Atmospheric Structure Gaseous upper atmosphere Liquid mantle High-density core Atmospheric Features Bright zones and dark belts Storms: Great Red Spot, White Ovals, etc. Lightning Auroral activity Magnetosphere
34 Aurora Occur when atmospheric molecules are excited by incoming charged particles which have accelerated by a magnetosphere Generally occur near high latitudes, near the north and south magneti c poles Charged particles are continually resupplied by the sun *Rates may vary
7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits
7. Our Solar System Terrestrial & Jovian planets Seven large satellites [moons] Chemical composition of the planets Asteroids & comets The Terrestrial & Jovian Planets Four small terrestrial planets Like
THE SOLAR SYSTEM - EXERCISES 1
THE SOLAR SYSTEM - EXERCISES 1 THE SUN AND THE SOLAR SYSTEM Name the planets in their order from the sun. 1 2 3 4 5 6 7 8 The asteroid belt is between and Which planet has the most moons? About how many?
DESCRIPTION ACADEMIC STANDARDS INSTRUCTIONAL GOALS VOCABULARY BEFORE SHOWING. Subject Area: Science
DESCRIPTION Host Tom Selleck conducts a stellar tour of Jupiter, Saturn, Uranus, Neptune, and Pluto--the outer planets of Earth's solar system. Information from the Voyager space probes plus computer models
5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves
5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has
Asteroids. Earth. Asteroids. Earth Distance from sun: 149,600,000 kilometers (92,960,000 miles) Diameter: 12,756 kilometers (7,926 miles) dotted line
Image taken by NASA Asteroids About 6,000 asteroids have been discovered; several hundred more are found each year. There are likely hundreds of thousands more that are too small to be seen from Earth.
NOTES: GEORGIA HIGH SCHOOL SCIENCE TEST THE SOLAR SYSTEM
NOTES: GEORGIA HIGH SCHOOL SCIENCE TEST THE SOLAR SYSTEM 1.What is a Solar system? A solar system consists of: * one central star, the Sun and * nine planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn,
Perspective and Scale Size in Our Solar System
Perspective and Scale Size in Our Solar System Notes Clue Session in Mary Gates RM 242 Mon 6:30 8:00 Read Lang Chpt. 1 Moodle Assignment due Thursdays at 6pm (first one due 1/17) Written Assignments due
Name: João Fernando Alves da Silva Class: 7-4 Number: 10
Name: João Fernando Alves da Silva Class: 7-4 Number: 10 What is the constitution of the Solar System? The Solar System is constituted not only by planets, which have satellites, but also by thousands
2007 Pearson Education Inc., publishing as Pearson Addison-Wesley. The Jovian Planets
The Jovian Planets The Jovian planets are gas giants - much larger than Earth Sizes of Jovian Planets Planets get larger as they get more massive up to a point... Planets more massive than Jupiter are
From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?
From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly
Geol 116 The Planet Class 7-1 Feb 28, 2005. Exercise 1, Calculate the escape velocities of the nine planets in the solar system
Exercises/Discussions Atmospheric Composition: Escape Velocities and Surface Temperature Objectives Escape velocity and the mass and size of a planetary body The effect of escape velocity and surface temperature
STUDY GUIDE: Earth Sun Moon
The Universe is thought to consist of trillions of galaxies. Our galaxy, the Milky Way, has billions of stars. One of those stars is our Sun. Our solar system consists of the Sun at the center, and all
Solar System Overview
Solar System Overview Planets: Four inner planets, Terrestrial planets Four outer planets, Jovian planets Asteroids: Minor planets (planetesimals) Meteroids: Chucks of rocks (smaller than asteroids) (Mercury,
Solar System Fact Sheet
Solar System Fact Sheet (Source: http://solarsystem.nasa.gov; http://solarviews.com) The Solar System Categories Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Rocky or Gas Rocky Rocky Rocky Rocky
Chapter 7 Our Planetary System. Agenda. Intro Astronomy. Intro Astronomy. What does the solar system look like? A. General Basics
Chapter 7 Our Planetary System Agenda Pass back & discuss Test 2 Where we are (at) Ch. 7 Our Planetary System Finish Einstein s Big Idea Earth, as viewed by the Voyager spacecraft A. General Basics Intro
The atmospheres of different planets
The atmospheres of different planets Thomas Baron October 13, 2006 1 Contents 1 Introduction 3 2 The atmosphere of the Earth 3 2.1 Description and Composition.................... 3 2.2 Discussion...............................
Copyright 2006, Astronomical Society of the Pacific
2 1 3 4 Diameter: 590 miles (950 km) Distance to Sun: 257 million miles (414 million km) Orbits: # 18 Composition: Outer layer probably ice and frozen ammonia, no Diameter: 750 miles (1200 km) Distance
Multiple Choice Identify the choice that best completes the statement or answers the question.
Test 2 f14 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Carbon cycles through the Earth system. During photosynthesis, carbon is a. released from wood
Earth Is Not the Center of the Universe
Earth Is Not the Center of the Universe Source: Utah State Office of Education Introduction Have you ever looked up at the night sky and wondered about all the pinpoint lights? People through the ages
1 A Solar System Is Born
CHAPTER 3 1 A Solar System Is Born SECTION Formation of the Solar System BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a nebula? How did our solar system
Science 9 Worksheet 13-1 The Solar System
Name Date Due Date Science 9 Read pages 264-287 of SP to help you answer the following questions: Also, go to a school computer connected to the internet. Go to Mr. Colgur s Webpage at http://sd67.bc.ca/teachers/dcolgur
Lecture 12: The Solar System Briefly
Lecture 12: The Solar System Briefly Formation of the Moonhttp://www.youtube.com/watch?v=WpOKztEiMqo&feature =related Formation of our Solar System Conservation of Angular Momentum Why are the larger,
The Solar System. Olivia Paquette
The Solar System Olivia Paquette Table of Contents The Sun 1 Mercury 2,3 Venus 4,5 Earth 6,7 Mars 8,9 Jupiter 10,11 Saturn 12 Uranus 13 Neptune Pluto 14 15 Glossary. 16 The Sun Although it may seem like
CHARACTERISTICS OF THE SOLAR SYSTEM
reflect Our solar system is made up of thousands of objects, at the center of which is a star, the Sun. The objects beyond the Sun include 8 planets, at least 5 dwarf planets, and more than 170 moons.
8.1 Radio Emission from Solar System objects
8.1 Radio Emission from Solar System objects 8.1.1 Moon and Terrestrial planets At visible wavelengths all the emission seen from these objects is due to light reflected from the sun. However at radio
Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System
Solar System Fundamentals What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Properties of Planets What is a planet? Defined finally in August 2006!
Chapter 7 Our Planetary System. What does the solar system look like? Thought Question How does the Earth-Sun distance compare with the Sun s radius
Chapter 7 Our Planetary System 7.1 Studying the Solar System Our goals for learning:! What does the solar system look like?! What can we learn by comparing the planets to one another?! What are the major
Our Planetary System. Earth, as viewed by the Voyager spacecraft. 2014 Pearson Education, Inc.
Our Planetary System Earth, as viewed by the Voyager spacecraft 7.1 Studying the Solar System Our goals for learning: What does the solar system look like? What can we learn by comparing the planets to
Class 2 Solar System Characteristics Formation Exosolar Planets
Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System
Background Information Students will learn about the Solar System while practicing communication skills.
Teacher Information Background Information Students will learn about the Solar System while practicing communication skills. Materials clipboard for each student pencils copies of map and Available Destinations
7. In which part of the electromagnetic spectrum are molecules most easily detected? A. visible light B. radio waves C. X rays D.
1. Most interstellar matter is too cold to be observed optically. Its radiation can be detected in which part of the electromagnetic spectrum? A. gamma ray B. ultraviolet C. infrared D. X ray 2. The space
Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation
The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered
Electromagnetic Radiation (EMR) and Remote Sensing
Electromagnetic Radiation (EMR) and Remote Sensing 1 Atmosphere Anything missing in between? Electromagnetic Radiation (EMR) is radiated by atomic particles at the source (the Sun), propagates through
California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping
California Standards Grades 912 Boardworks 2009 Science Contents Standards Mapping Earth Sciences Earth s Place in the Universe 1. Astronomy and planetary exploration reveal the solar system s structure,
LER 2891. Ages. Grades. Solar System. A fun game of thinking & linking!
Solar System Ages 7+ LER 2891 Grades 2+ Card Game A fun game of thinking & linking! Contents 45 Picture cards 45 Word cards 8 New Link cards 2 Super Link cards Setup Shuffle the two decks together to mix
Titan: The Solar System s Abiotic Petroleum Factory
Titan: The Solar System s Abiotic Petroleum Factory J. Hunter Waite, Ph.D. Institute Scientist Space Science & Engineering Division Southwest Research Institute Titan: The Solar System s Abiotic Petroleum
Study Guide: Solar System
Study Guide: Solar System 1. How many planets are there in the solar system? 2. What is the correct order of all the planets in the solar system? 3. Where can a comet be located in the solar system? 4.
The facts we know today will be the same tomorrow but today s theories may tomorrow be obsolete.
The Scale of the Universe Some Introductory Material and Pretty Pictures The facts we know today will be the same tomorrow but today s theories may tomorrow be obsolete. A scientific theory is regarded
UNIT V. Earth and Space. Earth and the Solar System
UNIT V Earth and Space Chapter 9 Earth and the Solar System EARTH AND OTHER PLANETS A solar system contains planets, moons, and other objects that orbit around a star or the star system. The solar system
Chapter 6 Formation of Planetary Systems Our Solar System and Beyond
Chapter 6 Formation of Planetary Systems Our Solar System and Beyond The solar system exhibits clear patterns of composition and motion. Sun Over 99.9% of solar system s mass Made mostly of H/He gas (plasma)
Cosmic Journey: A Solar System Adventure General Information
Cosmic Journey: A Solar System Adventure General Information Imagine it a huge spiral galaxy containing hundreds of billions of stars, spiraling out from a galactic center. Nestled deep within one of the
The Electromagnetic Spectrum
INTRODUCTION The Electromagnetic Spectrum I. What is electromagnetic radiation and the electromagnetic spectrum? What do light, X-rays, heat radiation, microwaves, radio waves, and gamma radiation have
Earth Sciences -- Grades 9, 10, 11, and 12. California State Science Content Standards. Mobile Climate Science Labs
Earth Sciences -- Grades 9, 10, 11, and 12 California State Science Content Standards Covered in: Hands-on science labs, demonstrations, & activities. Investigation and Experimentation. Lesson Plans. Presented
Discover the planets of our solar system. In 90 minutes through the universe. On a hiking path between Ehrenfriedensdorf and Drebach
Discover the planets of our solar system In 90 minutes through the universe On a hiking path between Ehrenfriedensdorf and Drebach Solar System - Sonnensystem The Solar System consists of the Sun and the
A Solar System Coloring Book
A Solar System Coloring Book Courtesy of the Windows to the Universe Project http://www.windows2universe.org The Sun Size: The Sun is wider than 100 Earths. Temperature: ~27,000,000 F in the center, ~10,000
Science Standard 4 Earth in Space Grade Level Expectations
Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal
The Solar System. Source http://starchild.gsfc.nasa.gov/docs/starchild/solar_system_level1/solar_system.html
The Solar System What is the solar system? It is our Sun and everything that travels around it. Our solar system is elliptical in shape. That means it is shaped like an egg. Earth s orbit is nearly circular.
Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation
Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics
Grade 6 Standard 3 Unit Test A Astronomy. 1. The four inner planets are rocky and small. Which description best fits the next four outer planets?
Grade 6 Standard 3 Unit Test A Astronomy Multiple Choice 1. The four inner planets are rocky and small. Which description best fits the next four outer planets? A. They are also rocky and small. B. They
The Sun: Our nearest star
The Sun: Our nearest star Property Surface T Central T Luminosity Mass Lifetime (ms) Value 5500K 15x10 6 K 2 x 10 33 ergs 4 x 10 33 grams 10 billion years Solar Structure Build a model and find the central
Astronomy Notes for Educators
Our Solar System Astronomy Notes for Educators Our Solar System 5-1 5-2 Specific Outcomes: Learning Outcome 1: Knowledge / Content and it place in the Milky Way Different types of bodies make up the Solar
Introduction to Astronomy. Lecture 4: Our star, the Sun
Introduction to Astronomy Lecture 4: Our star, the Sun 1 Sun Facts Age = 4.6 x 10 9 years Mean Radius = 7.0x10 5 km = 1.1x10 2 R = 1R Volume = 1.4x10 18 km 3 = 1.3x10 6 R = 1V Mass = 2x10 30 kg = 3.3x10
Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing
LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What
In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees.
In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees. A panoramic painting of the Milky Way as seen from Earth, done by Knut Lundmark in the 1940 s. The
Homework #4 Solutions ASTR100: Introduction to Astronomy Fall 2009: Dr. Stacy McGaugh
Homework #4 Solutions ASTR100: Introduction to Astronomy Fall 2009: Dr. Stacy McGaugh Chapter 5: #50 Hotter Sun: Suppose the surface temperature of the Sun were about 12,000K, rather than 6000K. a. How
CHAPTER 6 THE TERRESTRIAL PLANETS
CHAPTER 6 THE TERRESTRIAL PLANETS MULTIPLE CHOICE 1. Which of the following is NOT one of the four stages in the development of a terrestrial planet? 2. That Earth, evidence that Earth differentiated.
A SOLAR SYSTEM COLORING BOOK
A SOLAR SYSTEM COLORING BOOK Brought to you by: THE SUN Size: The Sun is wider than 100 Earths. 1 Temperature: 27,000,000 F in the center, 10,000 F at the surface. So that s REALLY hot anywhere on the
Introduction to the Solar System
Introduction to the Solar System Lesson Objectives Describe some early ideas about our solar system. Name the planets, and describe their motion around the Sun. Explain how the solar system formed. Introduction
Lecture 10 Formation of the Solar System January 6c, 2014
1 Lecture 10 Formation of the Solar System January 6c, 2014 2 Orbits of the Planets 3 Clues for the Formation of the SS All planets orbit in roughly the same plane about the Sun. All planets orbit in the
The Sun and Solar Energy
I The Sun and Solar Energy One of the most important forces behind global change on Earth is over 90 million miles distant from the planet. The Sun is the ultimate, original source of the energy that drives
Europa and Titan: Oceans in the Outer Solar System? Walter S. Kiefer, Lunar and Planetary Institute, Houston TX
Europa and Titan: Oceans in the Outer Solar System? Walter S. Kiefer, Lunar and Planetary Institute, Houston TX Biologists believe that life requires the presence of some sort of liquid to serve as a medium
Use the following image to answer the next question. 1. Which of the following rows identifies the electrical charge on A and B shown above?
Old Science 30 Physics Practice Test A on Fields and EMR Test Solutions on the Portal Site Use the following image to answer the next question 1. Which of the following rows identifies the electrical charge
Atomic Structure: Chapter Problems
Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand
L3: The formation of the Solar System
credit: NASA L3: The formation of the Solar System UCL Certificate of astronomy Dr. Ingo Waldmann A stable home The presence of life forms elsewhere in the Universe requires a stable environment where
165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars
Name Date Period 30 GALAXIES AND THE UNIVERSE SECTION 30.1 The Milky Way Galaxy In your textbook, read about discovering the Milky Way. (20 points) For each item in Column A, write the letter of the matching
- 1 - Jennifer McClure. To: [email protected]. From: Jennifer McClure ([email protected])
To: [email protected] Jennifer McClure From: Jennifer McClure ([email protected]) 1 st year Physics (F300), Department of Physics, University of Liverpool. - 1 - The Northern Lights;
AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred.
Forms of Energy AZ State Standards Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred. PO 1. Describe the following ways in which
Science Focus 9 Space Exploration Topic Test
SPACE EXPLORATION UNIT TEST ASSESSMENT Student Name Class 1. The axis for the frame of reference to identify locations on the earth are A. Equinox and Solstice B. Ecuador and Madagascar C. Equator and
Solar Energy Production
Solar Energy Production We re now ready to address the very important question: What makes the Sun shine? Why is this such an important topic in astronomy? As humans, we see in the visible part of the
Solar Ast ro p h y s ics
Peter V. Foukal Solar Ast ro p h y s ics Second, Revised Edition WI LEY- VCH WILEY-VCH Verlag Co. KCaA Contents Preface 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.1.1 2.1.2 2.2 2.2.1 2.2.2 2.2.3 2.3
The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC
The Hidden Lives of Galaxies Jim Lochner, USRA & NASA/GSFC What is a Galaxy? Solar System Distance from Earth to Sun = 93,000,000 miles = 8 light-minutes Size of Solar System = 5.5 light-hours What is
The Main Point. Lecture #34: Solar System Origin II. Chemical Condensation ( Lewis ) Model. How did the solar system form? Reading: Chapter 8.
Lecture #34: Solar System Origin II How did the solar system form? Chemical Condensation ("Lewis") Model. Formation of the Terrestrial Planets. Formation of the Giant Planets. Planetary Evolution. Reading:
THE SOLAR SYSTEM AND THE UNIVERSE
THE SOLAR SYSTEM AND THE UNIVERSE TEACHER INFORMATION SHEETS MERCURY Gigantic iron core (70% of interior); perhaps partially molten Thin silicate mantle (25%) Thin crust perhaps
Corso di Fisica Te T cnica Ambientale Solar Radiation
Solar Radiation Solar radiation i The Sun The Sun is the primary natural energy source for our planet. It has a diameter D = 1.39x10 6 km and a mass M = 1.989x10 30 kg and it is constituted by 1/3 of He
The Earth s Atmosphere
THE SUN-EARTH SYSTEM III The Earth s Atmosphere Composition and Distribution of the Atmosphere The composition of the atmosphere and the way its gases interact with electromagnetic radiation determine
Welcome to Class 4: Our Solar System (and a bit of cosmology at the start) Remember: sit only in the first 10 rows of the room
Welcome to Class 4: Our Solar System (and a bit of cosmology at the start) Remember: sit only in the first 10 rows of the room What is the difference between dark ENERGY and dark MATTER? Is Earth unique,
THE SOLAR SYSTEM Syllabus
THE SOLAR SYSTEM Syllabus Course Title The Solar System: Earth and Space Science Course Description This course provides an overview of what we know about the Solar System: how it began and evolved, its
Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:
Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007 Name: Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures this past week. Choose
WHERE DID ALL THE ELEMENTS COME FROM??
WHERE DID ALL THE ELEMENTS COME FROM?? In the very beginning, both space and time were created in the Big Bang. It happened 13.7 billion years ago. Afterwards, the universe was a very hot, expanding soup
Cosmic Journey: Teacher Packet
Cosmic Journey: Teacher Packet Compiled by: Morehead State University Star Theatre with help from Bethany DeMoss Table of Contents Table of Contents 1 Corresponding Standards 2 Vocabulary 4 Sizing up the
Atoms Absorb & Emit Light
Atoms Absorb & Emit Light Spectra The wavelength of the light that an element emits or absorbs is its fingerprint. Atoms emit and absorb light First Test is Thurs, Feb 1 st About 30 multiple choice questions
Probing for Information
Name Class Date Inquiry Lab Probing for Information Using Scientific Methods Information about planets in our solar system has been collected by observation from Earth and from probes, or scientific instruments,
Our Solar System. Our Solar System LEVELED BOOK S. www.readinga-z.com. Visit www.readinga-z.com for thousands of books and materials.
Our Solar System A Reading A Z Level S Leveled Book Word Count: 1,766 LEVELED BOOK S Our Solar System Written by Bruce D. Cooper Visit www.readinga-z.com for thousands of books and materials. www.readinga-z.com
ATM S 111, Global Warming: Understanding the Forecast
ATM S 111, Global Warming: Understanding the Forecast DARGAN M. W. FRIERSON DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 1: OCTOBER 1, 2015 Outline How exactly the Sun heats the Earth How strong? Important concept
Sunlight and its Properties. EE 495/695 Y. Baghzouz
Sunlight and its Properties EE 495/695 Y. Baghzouz The sun is a hot sphere of gas whose internal temperatures reach over 20 million deg. K. Nuclear fusion reaction at the sun's core converts hydrogen to
Section 1 The Earth System
Section 1 The Earth System Key Concept Earth is a complex system made up of many smaller systems through which matter and energy are continuously cycled. What You Will Learn Energy and matter flow through
Lecture 14. Introduction to the Sun
Lecture 14 Introduction to the Sun ALMA discovers planets forming in a protoplanetary disc. Open Q: what physics do we learn about the Sun? 1. Energy - nuclear energy - magnetic energy 2. Radiation - continuum
Solar Nebula Theory. Basic properties of the Solar System that need to be explained:
Solar Nebula Theory Basic properties of the Solar System that need to be explained: 1. All planets orbit the Sun in the same direction as the Sun s rotation 2. All planetary orbits are confined to the
THE SOLAR SYSTEM. Worksheets UNIT 1. Raül Martínez Verdún
Worksheets UNIT 1 October-December 2009 NAME: DATE: Worksheet 1A Cut out these 9 circles and then order them from the smallest to the biggest. NAME: DATE: Worksheet 1B NAME: DATE: Worksheet 2 Read the
Lesson 6: Earth and the Moon
Lesson 6: Earth and the Moon Reading Assignment Chapter 7.1: Overall Structure of Planet Earth Chapter 7.3: Earth s Interior More Precisely 7-2: Radioactive Dating Chapter 7.5: Earth s Magnetosphere Chapter
Modeling Galaxy Formation
Galaxy Evolution is the study of how galaxies form and how they change over time. As was the case with we can not observe an individual galaxy evolve but we can observe different galaxies at various stages
Jr. Edition. Solar System. Trading Cards. Solar System Trading Cards, Jr. Edition. Learn more about the solar system on these websites:
Solar System Trading Cards, Jr. Edition To use these cards: Print out onto card stock or heavy paper. Cut out and fold in half along dotted line; glue or tape each card together. FOLD National Aeronautics
Related Standards and Background Information
Related Standards and Background Information Earth Patterns, Cycles and Changes This strand focuses on student understanding of patterns in nature, natural cycles, and changes that occur both quickly and
astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.
1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were increased,
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun
Voyage: A Journey through our Solar System. Grades 5-8. Lesson 1: Our Solar System
Voyage: A Journey through our Solar System Grades 5-8 Lesson 1: Our Solar System On October 17, 2001, a one to ten billion scale model of the Solar System was permanently installed on the National Mall
NASA Explorer Schools Pre-Algebra Unit Lesson 2 Student Workbook. Solar System Math. Comparing Mass, Gravity, Composition, & Density
National Aeronautics and Space Administration NASA Explorer Schools Pre-Algebra Unit Lesson 2 Student Workbook Solar System Math Comparing Mass, Gravity, Composition, & Density What interval of values
Origins of the Cosmos Summer 2016. Pre-course assessment
Origins of the Cosmos Summer 2016 Pre-course assessment In order to grant two graduate credits for the workshop, we do require you to spend some hours before arriving at Penn State. We encourage all of
Lab 7: Gravity and Jupiter's Moons
Lab 7: Gravity and Jupiter's Moons Image of Galileo Spacecraft Gravity is the force that binds all astronomical structures. Clusters of galaxies are gravitationally bound into the largest structures in
