f n = n is a one-to one correspondence from N

Similar documents
Georg Cantor ( ):

1 if 1 x 0 1 if 0 x 1

INTRODUCTORY SET THEORY

Cardinality. The set of all finite strings over the alphabet of lowercase letters is countable. The set of real numbers R is an uncountable set.

So let us begin our quest to find the holy grail of real analysis.

Georg Cantor and Set Theory

This chapter is all about cardinality of sets. At first this looks like a

MATH10040 Chapter 2: Prime and relatively prime numbers

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

CS 3719 (Theory of Computation and Algorithms) Lecture 4

God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886)

Continued Fractions and the Euclidean Algorithm

1. Prove that the empty set is a subset of every set.

Handout #1: Mathematical Reasoning

Metric Spaces Joseph Muscat 2003 (Last revised May 2009)

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties

Pigeonhole Principle Solutions

This asserts two sets are equal iff they have the same elements, that is, a set is determined by its elements.

Chapter 3. Distribution Problems. 3.1 The idea of a distribution The twenty-fold way

How many numbers there are?

MATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers.

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

8 Divisibility and prime numbers

Dedekind s forgotten axiom and why we should teach it (and why we shouldn t teach mathematical induction in our calculus classes)

S on n elements. A good way to think about permutations is the following. Consider the A = 1,2,3, 4 whose elements we permute with the P =

6.080 / Great Ideas in Theoretical Computer Science Spring 2008

Follow links for Class Use and other Permissions. For more information send to:

1 Definition of a Turing machine

3. Mathematical Induction

6.2 Permutations continued

Proseminar on Semantic Theory Fall 2013 Ling 720. Problem Set on the Formal Preliminaries : Answers and Notes

Lecture 16 : Relations and Functions DRAFT


Introduction to Topology

WRITING PROOFS. Christopher Heil Georgia Institute of Technology

INCIDENCE-BETWEENNESS GEOMETRY

Mathematics Review for MS Finance Students

Just the Factors, Ma am

Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University

k, then n = p2α 1 1 pα k

Lecture 2: Universality

Continued Fractions. Darren C. Collins

Notes on metric spaces

Formal Languages and Automata Theory - Regular Expressions and Finite Automata -

Markov random fields and Gibbs measures

NUMBER SYSTEMS. William Stallings

The Fundamental Theorem of Arithmetic

Today s Topics. Primes & Greatest Common Divisors

COUNTING SUBSETS OF A SET: COMBINATIONS

Math 223 Abstract Algebra Lecture Notes

Full and Complete Binary Trees

Comments on Quotient Spaces and Quotient Maps

Mathematical Methods of Engineering Analysis

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2

Patterns in Pascal s Triangle

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Graph Theory Problems and Solutions

The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.

Math 319 Problem Set #3 Solution 21 February 2002

LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL

Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].

Math Circle Beginners Group October 18, 2015

Math 4310 Handout - Quotient Vector Spaces

Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Section 1 Real Numbers

arxiv: v1 [math.gm] 28 Apr 2008

Matrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws.

2 When is a 2-Digit Number the Sum of the Squares of its Digits?

SECTION 10-2 Mathematical Induction

Introduction to Theory of Computation

CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs

Section 1.1 Real Numbers

Math 3000 Section 003 Intro to Abstract Math Homework 2

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL

Mathematical Induction

Matrix Representations of Linear Transformations and Changes of Coordinates

Cartesian Products and Relations

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions

Set theory as a foundation for mathematics

An example of a computable

Mathematical Induction. Mary Barnes Sue Gordon

Warm up. Connect these nine dots with only four straight lines without lifting your pencil from the paper.

2. Length and distance in hyperbolic geometry

Computational Models Lecture 8, Spring 2009

Near Optimal Solutions

= = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

Automata and Formal Languages

The Banach-Tarski Paradox

SYMBOL AND MEANING IN MATHEMATICS

Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi

6.3 Conditional Probability and Independence

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

MA651 Topology. Lecture 6. Separation Axioms.

Session 7 Fractions and Decimals

THE TURING DEGREES AND THEIR LACK OF LINEAR ORDER

136 CHAPTER 4. INDUCTION, GRAPHS AND TREES

On Lexicographic (Dictionary) Preference

Solving Linear Systems, Continued and The Inverse of a Matrix

( ) which must be a vector

Transcription:

Section.5 1 Section.5 Purpose of Section To introduce the concept of uncountable sets. We present Cantor s proof that the real numbers are uncountable. We also show that the cardinality of the plane is the same as the cardinality of the real numbers. Introduction It easy to see there can t be more natural numbers than real numbers f n = n is a one-to one correspondence from N since the identity function ( ) into a subset of R. The question is, is there a one-to-one correspondence from the natural numbers onto the real numbers? If so, that says there are the same number of natural numbers as real numbers. If not, it says there are fewer natural numbers than real numbers; i.e. N < R. But it is one thing to find a bijection from one set to another, it is quite another to prove that one does not exist. But this is exactly what Candor did. Using a proof by contradiction, Cantor showed there was no one-to-one correspondence from N to R, and hence the natural numbers have a smaller cardinality than the real numbers. A set that has a strictly larger cardinality than the natural numbers is called uncountable ble. Cantor s proof that the real numbers has a larger cardinality than the natural numbers is called the Cantor Diagonal argument. The proof and its results so amazed himself that he wrote to his good friend Richard Dedekind saying, I see it but I don t believe it. Theorem 1 The real numbers R are uncountable. Proof: The proof is by contradiction. In other words, we assume that R is countable, which means we can match the natural numbers 1,,3, with the real numbers. We will show that no matter how we list the real numbers, any such listing will miss some natural numbers, which contradicts the assumption the real numbers are countable. To do this consider a sample list of real numbers shown in Figure 5 expressed in decimal form 1 which we try to match with the natural numbers 1,,3,. 1 Every real number can be expressed uniquely in decimal form a0. a1aa 3... where a0 is an integer and a, a... after the decimal are integers between 0 9, provided the convention is made the numbers 1 that if the decimal expansion ends with an infinite string of 9 s, such as 0.499999 which is the same as 0.5, the expansion is modified by raising by 1 the last digit before the 9 s and changing all the 9 s to 0 s. Making this convention provides a one-to-one correspondence between the real numbers and their decimal expansion. a i

Section.5 Cantor s hypothesized one-to-one correspondence between the whole numbers and the real numbers. Figure 5 If we can associate natural numbers with the real numbers, this means every natural number will be in the left column and ever real number in the right column. Cantor shows any such listing leads to a contradiction by creating a rogue real number that is not in the table, no matter what listing of real numbers. Hence the assumption that the real numbers is countable leads to a contradiction, and hence the reals are uncountable. The strategy to find Cantor s rogue real number is to find a number 0. a a a... (which we write in decimal form) that can not be associated with 1 3 any natural number. Keeping an eye on the list of numbers in Figure 6, Cantor picks the picks the first digit a 1 after the decimal point different from the first digit after the decimal in.19704817 (i.e not 1). Doing this Cantor s rogue number could begin with 0.3 (anything but 1). Next, Cantor chooses the second digit in the rogue number anything different from the second digit after the decimal of 14.536613809 (i.e. not 3). We arbitrarily pick 5 for the second digit, giving us 0.35. Continuing this process, working down the diagonal of the table, Cantor might pick the first six digits of the rogue number to be 0.358139. Continuing this process indefinitely, Cantor obtains a real number not in the table since the rogue number differs in at least one digit We have put this number in bold type and underlined it for your convenience

Section.5 3 from each number in the list. But this contradicts the fact that the natural and real numbers can be placed in a one-to-one correspondence. Hence, they cannot be placed in one-to-one correspondence and since the natural numbers are a subset of the reals, and since the natural numbers are a subset of the real numbers, the real numbers must have a larger cardinality or size than the whole numbers. Cantor s diagonalization process. Figure 6 Cantor now had two infinities, the countable infinity of the natural numbers, called ℵ 0, and a new infinity of the real numbers. Since he didn t know if the cardinality of the real numbers was the next larger infinity after ℵ 0, he denoted the cardinality of the reals by c, meaning the cardinality of the continuum. Hence, we say that the real numbers, and any set equivalent to the real numbers, has cardinality c or is uncountable.

Section.5 4 Note: Roughly speaking an uncountable set has so many points it cannot be put in a sequence. Example 1 (Another Uncountable Set) Show there are the same number of real numbers as there are numbers 0,1 = x R : 0 < x < 1. in the interval ( ) { } Solution Define the function f : (0,1) R by 1 f ( x) = tan π x, 0 < x < 1 which is a one-to-one correspondence between (0,1) and R. Hence (0,1) R and so the open interval (0,1) also has cardinality c. Figure 7 gives a graphical representation of this correspondence. Correspondence Between (0,1) to R Figure 7 Sometimes we can graphically display a one-to-one correspondence between sets as in the following example. Margin Note: The lazy eight symbol " " does not represent the number infinity; it is simply a symbol used to denote that a set of real numbers is a,,, b,, and so on. unbounded, such as ( ) ( ) ( )

Section.5 5 Example 3 (More and More ) Show that every interval (open or closed) of real numbers has the cardinality of the continuum c. Solution We know from Example 1 that the interval (0,1) has cardinality c, and Figure 8 gives a visual one-to-one correspondence between line segments of different length. Any two line segments A B and AB of different lengths can be placed in one-to-one correspondence by the bijection x x illustrated in the drawing. Thus, all open (or closed) intervals on the real line are equivalent 3 100 100. Even the very large interval ( 10,10 ) 100 100 one can comprehend, and the tiny interval ( 10,10 ), which is longer than whose length is smaller than the width of an electron, both contain the same number of elements. Margin Note: All intervals of the form ( a b) [ a b] [ a b) ( a b ] (, b], [ a, ) have cardinality c.,,,,,,,, The shorter segment AB contains as many points as the longer A B Figure 8 3 One can also show that all intervals

Section.5 6 Margin Note: The lazy figure eight symbol " " does not represent the number infinity; it is simply a symbol used to denote that a set of real numbers a,,, b,, and so on. is unbounded, such as ( ) ( ) ( ) After Cantor s discovered there are more real numbers than natural numbers, he set about to find even larger sets, and so he turned his attention to points in the plane, where he felt there would be larger sets. Cantor worked from 1871 to 1874 to prove this theorem false. Theorem (Cardinality of the Plane) The set of points in a square has the same cardinality as the points on one of its edges. Proof: Without loss of generality, we take the square to be the unit square ( ) ( ) ( ) { } S = 0,1 0,1 x, y : 0 < x < 1, 0 < y < 1 in the Cartesian plane and show that every point ( x, y) one-to-one fashion onto a point z between 0 and 1. That is S can be mapped in a See Figure 9. ( x, y) z Correspondence from the Unit Square to the Unit Interval Figure 9

Section.5 7 To see how this mapping is constructed, suppose the point is x, y = 0.573...,0.3395.... We then alternately interlace the digits of x and ( ) ( ) y, getting the single real number z = 0.3537935... which is a real number between 0 and 1. Conversely, for any real number, say z = 0.34648391... we x, y = 0.3689...,0.4431.... can construct a unit point in the square, namely ( ) ( ) The manner in which this mapping is defined, it maps different points ( x, y ) in the plane to different real numbers z. That is (, ) (, ) x y = x y z = z 1 1 1 It is also clear by the way the mapping is defined that every real number z x, y in the square. Hence, we between 0 and 1 has a unique preimage point ( ) have found a one-to-one correspondence between the points inside the unit square S and the open interval ( 0,1 ) Summary: Countable Infinite sets (cardinality ℵ 0 ): NZQN,,, N Uncountable sets (cardinality c ) R, [ a, b],( a, b), R, R Q There are other sets the reader has seen in undergraduate mathematics. The n n -dimensional Euclidean space R has cardinality c, the set of all sequences of real numbers has cardinality c, the set of continuous function defined on an interval has a larger cardinality. Irrational Numbers: The interval ( 0,1 ) is the disjoint union of the rational and irrational numbers inside ( 0,1 ). We have seen that the interval Cardinality of the Irrational Numbers ( 0,1 ) has cardinality c and that the rational numbers has cardinality ℵ 0. That means the irrational numbers in the interval ( 0,1 ) has cardinality c, the same as the entire interval. In other words, there are more irrational numbers than rational numbers. Example 4 Find a one-to-one correspondence between the open square {(, ) : 0 1, 0 1} S = x y < x < < y <

Section.5 8 and the plane Solution {( x, y) : x, y } R = < < < <. Consider the function 1 f ( x) = tan π x, 0 < x < 1 drawn in Figure 7, which is a bijection from ( 0,1 ) to R. We now simply take pairs of that bijection to define the function ( ) (, ) = ( ), ( ) F x y f x f y F : S R by Note that this mapping maps the point ( 0.5, 0.5) S into the origin in R, and the points in upper right quadrant of S into the first quadrant of R, and so on. We leave it to the reader to show this mapping is a bijection. (See Problem 4.) Summary: We now know that the following sets are equivalent ( 0,1) ( 0,1) ( 0,1) R R

Section.5 9 Problems 1. (Visual Correspondences) Construct visual correspondences between the following sets to show they are equivalent. a) (0,1) and R b) (0, ) and (,0) c) S ( x y) x y { } =, : + < 1 and R. (Irrational Numbers) (Irrational Numbers) Show that the irrational numbers in the interval [ 0,1 ] is uncountable. 3. (Uncountable Set) Show that the set not integers) is uncountable. R Z (i.e. all real numbers that are 4. (Bijection from the Unit Square to R ) Let {(, ) : 0 1, 0 1} S = x y < x < < y < show that the function F : S R defined by ( ) (, ) = ( ), ( ) F x y f x f y where 1 f ( x) = tan π x, 0 < x < 1 is a bijection from S to R. Evaluate the function F at various points inside the unit square S to get a feel for the function. 5. Cantor-Sc Schroder hroder-bernstein Theorem A useful theorem for proving equivalence of two sets, states that if there exists a one-to-one function from A into B (not necessarily onto) and a one-to-one function from B into A (not necessarily onto), then there exists a bijection from one set to the other; 0,1 0,1 by i.e. the two sets are equivalent. Use this theorem to prove ( ) [ ] carrying out the following steps. a) Find a one-to-one function from ( 0,1) into a subset of [ ] b) Find a one-to-one function from [ 0,1 ] into a subset of ( ) c) Apply a) and b) to claim ( 0,1) [ 0,1]. 0,1. Hint: trivial. 0,1. Hint: trvial.

Section.5 10