# Notes on metric spaces

Size: px
Start display at page:

Transcription

1 Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course. 2 Convergence of real numbers 2.1 Limits Let x n R. We say that x n x if for all ε > 0 there exists N N such that if n N we have x n x < ε for all n > N. 2.2 Lim sup and lim inf When we come to study ergodic theory, we will often have to check that various sequences converge. It will often be most convenient to do this by using lim sups and lim infs. Definition. Let x n R be a sequence. Define ( lim sup x n = lim n n sup{x k } k n ). Remark. The lim sup always exists (although it may be ± ). This is because sup k n {x k } is a decreasing sequence (in n), and decreasing sequences always converge. Definition. Let x n R be a sequence. Define ( ) lim inf x n = lim inf {x k}. n n k n Remark. For the same reason as above, the lim inf always exists but may be equal to ±. Proposition 2.1 Let x n be a sequence. Then x n x if and only if lim sup n x n = lim inf n x n = x. 1

2 Remark. Thus in order to show that a sequence converges, we need only show that both the lim sup and the lim inf agree. In fact, it is clear from the definitions that lim inf n x n lim sup n x n. Hence to show that x n converges, we need only show that lim sup n x n lim inf n x n. Example. Take ( ) 1 x n = ( 1) n + ( 1) n 2 n. Then lim sup n x n = +1 and lim inf n x n = 1. 3 Metric spaces 3.1 Metric spaces Let X be a set. A function d : X X [0, ) is called a metric if (i) d(x, y) 0 and d(x, y) = 0 if and only if x = y, (ii) d(x, y) = d(y, x), (iii) d(x, z) d(x, y) + d(y, z) (the triangle inequality). We call (X, d) a metric space. Examples. 1. Take X = R and define d(x, y) = x y. 2. Take X = R 2 and define 3. Take X = R 2 and define 4. Consider the space Define d((x 1, x 2 ), (y 1, y 2 )) = y 1 x 1 + y 2 x 2. d((x 1, x 2 ), (y 1, y 2 )) = y 1 x y 2 x 2 2. C([0, 1], R) = {f : [0, 1] R f is continuous}. f = sup f(x). x [0,1] (a standard result says that this supremum is finite.) Then we can define a metric by d(f, g) = f g. 5. More generally, if X is a compact (see below) metric space then the space C(X, R) of continuous real-valued functions defined on X is a metric space with metric d(f, g) = sup x X f(x) g(x). 2

3 3.2 Convergence Let (X, d) be a metric space. Let x n X be a sequence of points in X. We say that x n converges to x X (and write x n x) if for all ε > 0 there exists N N such that for all n N we have d(x n, x) < ε. A sequence x n is Cauchy if: for all ε > 0 there exists N N such that for all n, m N we have d(x n, x m ) ε. A metric space (X, d) is said to be complete if every Cauchy sequence converges. Examples of complete metric spaces include: R, R 2 (with either of the metrics above), C(X, R) where X is a compact metric space,.... The set of all rationals Q is not complete: the sequence x 1 = 1, x 2 = 1.4, x 3 = 1.41, x 4 = 1.414,..., x n = decimal expansion of 2 to n decimal places is Cauchy but does not converge in Q (because 2 is irrational). 3.3 Open and closed sets Let (X, d) be a metric space. Let x X and let ε > 0. The set B(x, ε) = {y X d(x, y) < ε} of all points y that are distance at most ε from x is called the open ball of radius ε and centre x. We can think of B(x, ε) as being a small neighbourhood around the point x. A subset U X is called open if for all x U there exists ε > 0 such that B(x, ε) U, i.e. every point x in U has a small neighbourhood that is also contained in U. One can easily show that open balls B(x, ε) are open subsets. A set F is said to be closed if its complement X \ F is open. There are other ways of defining closed sets: Proposition 3.1 Let (X, d) be a metric space and let F X. Then the following are equivalent: (i) F is closed (i.e. X \ F is open); (ii) if x n F is a sequence of points in F such that x n x for some x X then x F (i.e. any convergent sequence of points in F has its limit in F ). 4 Compactness We will usually study compact metric spaces. Roughly speaking, these are spaces where sequences of points cannot escape. 3

4 4.1 Sequential compactness Let (X, d) be a metric space. We say that X is sequentially compact if every sequence x n X has a convergent subsequence, i.e. there exist n j such that x nj x for some x X. Examples. 1. [0, 1] is compact. 2. (0, 1) is not compact (because x n = 1/n does not have a convergent subsequence in (0, 1)). 3. C(X, R) is not compact. 4.2 Compactness by open covers Let (X, d) be a metric space. A collection of open sets U = {U α α A} is called an open cover if X = α A U α. We say that X is compact if every open cover of X has a finite subcover, i.e. if U = {U α α A} is an open cover of X then there exists α 1,..., α n such that X = U α1 U αn. Example. (0, 1) is not compact: the open cover {(1/(n + 2), 1/n)} does not have a finite subcover. The two notions of compactness are the same: Proposition 4.1 Let (X, d) be a metric space. Then X is sequentially compact if and only if it is compact. 4.3 Properties of compact spaces Proposition 4.2 Let X be compact. Then X is closed. Proposition 4.3 (Heine-Borel) A subset X R d is compact if and only if it is closed and bounded. Remark. For subspaces of spaces other than R d, this characterisation of compactness fails. For example, there are closed and bounded subsets of C([0, 1], R) that are not compact. 4

5 5 Continuity 5.1 (ε, δ)-continuity Definition. Let (X, d) be a metric space and let x X. A function f : X R is said to be continuous at x if for all ε > 0 there exists δ > 0 such that if d(x, y) < δ then f(x) f(y). We say that f is continuous if it is continuous at every point x X. Remark. More generally, we can easily modify this definition to define what it means for a map f : X Y between two metric spaces X and Y to be continuous. 5.2 Continuity by convergence of sequences Let (X, d) be a metric space. We can give an alternative characterisation of continuity in terms of how the images of convergent subsequences behave. Proposition 5.1 The following are equivalent: (i) f : X R is continuous at x X, (ii) for all convergent sequences x n X such that x n x then f(x n ) f(x). Remark. Again, this definition can easily be extended to the case of a continuous function f : X Y between two arbitrary metric spaces. 5.3 Continuity by preimages of open sets Here is another characterisation of continuity in terms of open sets. Proposition 5.2 Let X and Y be two metric spaces and let f : X Y. The following are equivalent: (i) f is continuous (ii) if U Y is an open subset of Y then the set is an open subset of X. f 1 (U) = {x X f(x) U} 5

6 5.4 Continuity and compactness Continuous functions defined on compact metric spaces enjoy various nice properties and we describe some of them here. Proposition 5.3 (Uniform continuity) Let (X, d X ) be a compact metric space and let (Y, d Y ) be a metric space (not necessarily compact). Let f : X Y be continuous. Then f is uniformly continuous: i.e. ε > 0, δ > 0 s.t. x, y X, if d X (x, y) < ε then d Y (f(x), f(y)) < δ. Remarks. 1. Recall that in the (ε, δ)-definition of continuity, given x X and ε > 0 we choose δ > 0 such that d X (x, y) < ε implies d Y (f(x), f(y)) < δ. The crucial point is that a priori δ depends on both ε and x. With uniform continuity, the same δ will work for any x. 2. In particular, if T : X X is a continuous transformation of a compact metric space then T is uniformly continuous. 3. If f : X R is a continuous real-valued function defined on a compact metric space then it is uniformly continuous. Proposition 5.4 (Continuous image of a compact set is compact) Let (X, d) be a compact metric space and let f : X Y be continuous. Then f(x) Y is a compact subset of Y. Proposition 5.5 (Continuous functions are separable) Let (X, d) be a compact metric space. Then the space C(X, R) = {f : X R f is continuous} is separable, i.e. there exists a countable dense set {f n }, i.e. f C(X, R) and ε > 0, n > 0 such that f f n < ε Proposition 5.6 (Stone-Weierstrass theorem) Let (X, d) be a compact metric space and let A C(X, R) be an algebra of continuous functions defined on X, i.e. (i) the zero function f(x) 0 A, (ii) if f, g A and λ R then λf + g A, (iii) if f, g A then the product function fg A. Suppose that A separates the points of X and does not vanish at any point of X, i.e. 6

7 (i) for all x, y X with x y there exists f A such that f(x) f(y), (ii) for all x X there is some f A for which f(x) 0. Then A is dense in C(X, R). Remark. A similar result holds for C(X, C), provided one assumes that if f A then f A (where the bar denotes complex conjugation). Examples. 1. Take X = [0, 1] and take A to be the algebra of all polynomials. Clearly polynomials separate points and do not vanish at any point. The Stone-Weierstrass theorem implies that any continuous function can be arbitrarily well approximated by a polynomial. 2. Take X = R/Z and take A to be the algebra of all trigonometric polynomials, i.e. A = { j α je 2πil jx α j C, l j Z}. Then A is an algebra that separates points and does not vanish at any point. Hence any continuous function f : R/Z C defined on the circle can be arbitrarily well approximated by a trigonometric polynomial. 7

### Metric Spaces. Chapter 7. 7.1. Metrics

Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

### 1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

### Metric Spaces Joseph Muscat 2003 (Last revised May 2009)

1 Distance J Muscat 1 Metric Spaces Joseph Muscat 2003 (Last revised May 2009) (A revised and expanded version of these notes are now published by Springer.) 1 Distance A metric space can be thought of

### FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied

### Mathematical Methods of Engineering Analysis

Mathematical Methods of Engineering Analysis Erhan Çinlar Robert J. Vanderbei February 2, 2000 Contents Sets and Functions 1 1 Sets................................... 1 Subsets.............................

### 1 if 1 x 0 1 if 0 x 1

Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

### THE BANACH CONTRACTION PRINCIPLE. Contents

THE BANACH CONTRACTION PRINCIPLE ALEX PONIECKI Abstract. This paper will study contractions of metric spaces. To do this, we will mainly use tools from topology. We will give some examples of contractions,

### BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

### Introduction to Topology

Introduction to Topology Tomoo Matsumura November 30, 2010 Contents 1 Topological spaces 3 1.1 Basis of a Topology......................................... 3 1.2 Comparing Topologies.......................................

### Metric Spaces. Chapter 1

Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence

### and s n (x) f(x) for all x and s.t. s n is measurable if f is. REAL ANALYSIS Measures. A (positive) measure on a measurable space

RAL ANALYSIS A survey of MA 641-643, UAB 1999-2000 M. Griesemer Throughout these notes m denotes Lebesgue measure. 1. Abstract Integration σ-algebras. A σ-algebra in X is a non-empty collection of subsets

### x a x 2 (1 + x 2 ) n.

Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number

### Math 104: Introduction to Analysis

Math 104: Introduction to Analysis Evan Chen UC Berkeley Notes for the course MATH 104, instructed by Charles Pugh. 1 1 August 29, 2013 Hard: #22 in Chapter 1. Consider a pile of sand principle. You wish

### Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

### Practice with Proofs

Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using

### 1. Let X and Y be normed spaces and let T B(X, Y ).

Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: NVP, Frist. 2005-03-14 Skrivtid: 9 11.30 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

### SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties

SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces

### CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,

### MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete

### MEASURE AND INTEGRATION. Dietmar A. Salamon ETH Zürich

MEASURE AND INTEGRATION Dietmar A. Salamon ETH Zürich 12 May 2016 ii Preface This book is based on notes for the lecture course Measure and Integration held at ETH Zürich in the spring semester 2014. Prerequisites

### Metric Spaces. Lecture Notes and Exercises, Fall 2015. M.van den Berg

Metric Spaces Lecture Notes and Exercises, Fall 2015 M.van den Berg School of Mathematics University of Bristol BS8 1TW Bristol, UK mamvdb@bristol.ac.uk 1 Definition of a metric space. Let X be a set,

### 1 Norms and Vector Spaces

008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)

### TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

### FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 2. OPERATORS ON HILBERT SPACES

FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 2. OPERATORS ON HILBERT SPACES CHRISTOPHER HEIL 1. Elementary Properties and Examples First recall the basic definitions regarding operators. Definition 1.1 (Continuous

### Finite dimensional topological vector spaces

Chapter 3 Finite dimensional topological vector spaces 3.1 Finite dimensional Hausdorff t.v.s. Let X be a vector space over the field K of real or complex numbers. We know from linear algebra that the

### Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011

Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely

### Inner Product Spaces

Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

### CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

### Separation Properties for Locally Convex Cones

Journal of Convex Analysis Volume 9 (2002), No. 1, 301 307 Separation Properties for Locally Convex Cones Walter Roth Department of Mathematics, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam

### I. Pointwise convergence

MATH 40 - NOTES Sequences of functions Pointwise and Uniform Convergence Fall 2005 Previously, we have studied sequences of real numbers. Now we discuss the topic of sequences of real valued functions.

### 9 More on differentiation

Tel Aviv University, 2013 Measure and category 75 9 More on differentiation 9a Finite Taylor expansion............... 75 9b Continuous and nowhere differentiable..... 78 9c Differentiable and nowhere monotone......

### God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886)

Chapter 2 Numbers God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886) God created the integers and the rest is the work

### Vector and Matrix Norms

Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty

### Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

### No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results

### n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...

6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence

### MA651 Topology. Lecture 6. Separation Axioms.

MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples

### Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

### 10.2 Series and Convergence

10.2 Series and Convergence Write sums using sigma notation Find the partial sums of series and determine convergence or divergence of infinite series Find the N th partial sums of geometric series and

### INTRODUCTION TO TOPOLOGY

INTRODUCTION TO TOPOLOGY ALEX KÜRONYA In preparation January 24, 2010 Contents 1. Basic concepts 1 2. Constructing topologies 13 2.1. Subspace topology 13 2.2. Local properties 18 2.3. Product topology

### Lecture Notes on Analysis II MA131. Xue-Mei Li

Lecture Notes on Analysis II MA131 Xue-Mei Li March 8, 2013 The lecture notes are based on this and previous years lectures by myself and by the previous lecturers. I would like to thank David Mond, who

### 5.3 Improper Integrals Involving Rational and Exponential Functions

Section 5.3 Improper Integrals Involving Rational and Exponential Functions 99.. 3. 4. dθ +a cos θ =, < a

### 0 <β 1 let u(x) u(y) kuk u := sup u(x) and [u] β := sup

456 BRUCE K. DRIVER 24. Hölder Spaces Notation 24.1. Let Ω be an open subset of R d,bc(ω) and BC( Ω) be the bounded continuous functions on Ω and Ω respectively. By identifying f BC( Ω) with f Ω BC(Ω),

### How To Find Out How To Calculate A Premeasure On A Set Of Two-Dimensional Algebra

54 CHAPTER 5 Product Measures Given two measure spaces, we may construct a natural measure on their Cartesian product; the prototype is the construction of Lebesgue measure on R 2 as the product of Lebesgue

### HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

### Lecture Notes for Analysis II MA131. Xue-Mei Li with revisions by David Mond

Lecture Notes for Analysis II MA131 Xue-Mei Li with revisions by David Mond January 8, 2013 Contents 0.1 Introduction............................ 3 1 Continuity of Functions of One Real Variable 6 1.1

### 6. Define log(z) so that π < I log(z) π. Discuss the identities e log(z) = z and log(e w ) = w.

hapter omplex integration. omplex number quiz. Simplify 3+4i. 2. Simplify 3+4i. 3. Find the cube roots of. 4. Here are some identities for complex conjugate. Which ones need correction? z + w = z + w,

### 1. Let P be the space of all polynomials (of one real variable and with real coefficients) with the norm

Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 005-06-15 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

### The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].

Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real

### Chapter 5. Banach Spaces

9 Chapter 5 Banach Spaces Many linear equations may be formulated in terms of a suitable linear operator acting on a Banach space. In this chapter, we study Banach spaces and linear operators acting on

### 4. Expanding dynamical systems

4.1. Metric definition. 4. Expanding dynamical systems Definition 4.1. Let X be a compact metric space. A map f : X X is said to be expanding if there exist ɛ > 0 and L > 1 such that d(f(x), f(y)) Ld(x,

### THE CONTRACTION MAPPING THEOREM

THE CONTRACTION MAPPING THEOREM KEITH CONRAD 1. Introduction Let f : X X be a mapping from a set X to itself. We call a point x X a fixed point of f if f(x) = x. For example, if [a, b] is a closed interval

### Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents

Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents William H. Sandholm January 6, 22 O.. Imitative protocols, mean dynamics, and equilibrium selection In this section, we consider

### Fixed Point Theorems

Fixed Point Theorems Definition: Let X be a set and let T : X X be a function that maps X into itself. (Such a function is often called an operator, a transformation, or a transform on X, and the notation

### RANDOM INTERVAL HOMEOMORPHISMS. MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis

RANDOM INTERVAL HOMEOMORPHISMS MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis This is a joint work with Lluís Alsedà Motivation: A talk by Yulij Ilyashenko. Two interval maps, applied

### (Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties

Lecture 1 Convex Sets (Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties 1.1.1 A convex set In the school geometry

### Lecture Notes on Measure Theory and Functional Analysis

Lecture Notes on Measure Theory and Functional Analysis P. Cannarsa & T. D Aprile Dipartimento di Matematica Università di Roma Tor Vergata cannarsa@mat.uniroma2.it daprile@mat.uniroma2.it aa 2006/07 Contents

### How To Know The Limit Set Of A Fuchsian Group On A Boundary Of A Hyperbolic Plane

Reading material on the limit set of a Fuchsian group Recommended texts Many books on hyperbolic geometry and Kleinian and Fuchsian groups contain material about limit sets. The presentation given here

### DIRICHLET S PROBLEM WITH ENTIRE DATA POSED ON AN ELLIPSOIDAL CYLINDER. 1. Introduction

DIRICHLET S PROBLEM WITH ENTIRE DATA POSED ON AN ELLIPSOIDAL CYLINDER DMITRY KHAVINSON, ERIK LUNDBERG, HERMANN RENDER. Introduction A function u is said to be harmonic if u := n j= 2 u = 0. Given a domain

### How To Prove The Dirichlet Unit Theorem

Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

### Columbia University in the City of New York New York, N.Y. 10027

Columbia University in the City of New York New York, N.Y. 10027 DEPARTMENT OF MATHEMATICS 508 Mathematics Building 2990 Broadway Fall Semester 2005 Professor Ioannis Karatzas W4061: MODERN ANALYSIS Description

### MA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity

MA4001 Engineering Mathematics 1 Lecture 10 Limits and Dr. Sarah Mitchell Autumn 2014 Infinite limits If f(x) grows arbitrarily large as x a we say that f(x) has an infinite limit. Example: f(x) = 1 x

### ON SEQUENTIAL CONTINUITY OF COMPOSITION MAPPING. 0. Introduction

ON SEQUENTIAL CONTINUITY OF COMPOSITION MAPPING Abstract. In [1] there was proved a theorem concerning the continuity of the composition mapping, and there was announced a theorem on sequential continuity

### The Ergodic Theorem and randomness

The Ergodic Theorem and randomness Peter Gács Department of Computer Science Boston University March 19, 2008 Peter Gács (Boston University) Ergodic theorem March 19, 2008 1 / 27 Introduction Introduction

### Method To Solve Linear, Polynomial, or Absolute Value Inequalities:

Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with

### ALMOST COMMON PRIORS 1. INTRODUCTION

ALMOST COMMON PRIORS ZIV HELLMAN ABSTRACT. What happens when priors are not common? We introduce a measure for how far a type space is from having a common prior, which we term prior distance. If a type

### Linear Algebra I. Ronald van Luijk, 2012

Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.

### Representation of functions as power series

Representation of functions as power series Dr. Philippe B. Laval Kennesaw State University November 9, 008 Abstract This document is a summary of the theory and techniques used to represent functions

### Stanford Math Circle: Sunday, May 9, 2010 Square-Triangular Numbers, Pell s Equation, and Continued Fractions

Stanford Math Circle: Sunday, May 9, 00 Square-Triangular Numbers, Pell s Equation, and Continued Fractions Recall that triangular numbers are numbers of the form T m = numbers that can be arranged in

### 2.3 Convex Constrained Optimization Problems

42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

### FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.

FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is

### MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

### Mathematics for Econometrics, Fourth Edition

Mathematics for Econometrics, Fourth Edition Phoebus J. Dhrymes 1 July 2012 1 c Phoebus J. Dhrymes, 2012. Preliminary material; not to be cited or disseminated without the author s permission. 2 Contents

### 3 Contour integrals and Cauchy s Theorem

3 ontour integrals and auchy s Theorem 3. Line integrals of complex functions Our goal here will be to discuss integration of complex functions = u + iv, with particular regard to analytic functions. Of

### 88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a

88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small

### a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

### Triangle deletion. Ernie Croot. February 3, 2010

Triangle deletion Ernie Croot February 3, 2010 1 Introduction The purpose of this note is to give an intuitive outline of the triangle deletion theorem of Ruzsa and Szemerédi, which says that if G = (V,

### Lecture 7: Continuous Random Variables

Lecture 7: Continuous Random Variables 21 September 2005 1 Our First Continuous Random Variable The back of the lecture hall is roughly 10 meters across. Suppose it were exactly 10 meters, and consider

### 5 Numerical Differentiation

D. Levy 5 Numerical Differentiation 5. Basic Concepts This chapter deals with numerical approximations of derivatives. The first questions that comes up to mind is: why do we need to approximate derivatives

### Let H and J be as in the above lemma. The result of the lemma shows that the integral

Let and be as in the above lemma. The result of the lemma shows that the integral ( f(x, y)dy) dx is well defined; we denote it by f(x, y)dydx. By symmetry, also the integral ( f(x, y)dx) dy is well defined;

### 4 Lyapunov Stability Theory

4 Lyapunov Stability Theory In this section we review the tools of Lyapunov stability theory. These tools will be used in the next section to analyze the stability properties of a robot controller. We

### I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

### Recall that two vectors in are perpendicular or orthogonal provided that their dot

Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

### MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets.

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. Norm The notion of norm generalizes the notion of length of a vector in R n. Definition. Let V be a vector space. A function α

### Lecture notes on Ordinary Differential Equations. Plan of lectures

1 Lecture notes on Ordinary Differential Equations Annual Foundation School, IIT Kanpur, Dec.3-28, 2007. by Dept. of Mathematics, IIT Bombay, Mumbai-76. e-mail: sivaji.ganesh@gmail.com References Plan

### Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4.

Difference Equations to Differential Equations Section. The Sum of a Sequence This section considers the problem of adding together the terms of a sequence. Of course, this is a problem only if more than

### 36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous?

36 CHAPTER 1. LIMITS AND CONTINUITY 1.3 Continuity Before Calculus became clearly de ned, continuity meant that one could draw the graph of a function without having to lift the pen and pencil. While this

### A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails

12th International Congress on Insurance: Mathematics and Economics July 16-18, 2008 A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails XUEMIAO HAO (Based on a joint

### Chapter 7. Continuity

Chapter 7 Continuity There are many processes and eects that depends on certain set of variables in such a way that a small change in these variables acts as small change in the process. Changes of this

### Basics of Polynomial Theory

3 Basics of Polynomial Theory 3.1 Polynomial Equations In geodesy and geoinformatics, most observations are related to unknowns parameters through equations of algebraic (polynomial) type. In cases where

### Chapter 20. Vector Spaces and Bases

Chapter 20. Vector Spaces and Bases In this course, we have proceeded step-by-step through low-dimensional Linear Algebra. We have looked at lines, planes, hyperplanes, and have seen that there is no limit

### Inner product. Definition of inner product

Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product

### Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

### DISINTEGRATION OF MEASURES

DISINTEGRTION OF MESURES BEN HES Definition 1. Let (, M, λ), (, N, µ) be sigma-finite measure spaces and let T : be a measurable map. (T, µ)-disintegration is a collection {λ y } y of measures on M such

### Reference: Introduction to Partial Differential Equations by G. Folland, 1995, Chap. 3.

5 Potential Theory Reference: Introduction to Partial Differential Equations by G. Folland, 995, Chap. 3. 5. Problems of Interest. In what follows, we consider Ω an open, bounded subset of R n with C 2