Math 319 Problem Set #3 Solution 21 February 2002
|
|
|
- Iris Blankenship
- 9 years ago
- Views:
Transcription
1 Math 319 Problem Set #3 Solution 21 February ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod 3), x a 3 (mod 4), x a 4 (mod 6), x a 5 (mod 12). Explain how you know your answer works, and, if applicable, how you found it. Solution: All the given moduli are divisors of 12, so if we can choose the a i so that each of the numbers 0, 1,..., 11 satisfies at least one of the congruences, then we will be finished. (Why? If y is any integer then there exists an x {0, 1, 2,, 11} such that y x (mod 12). If we have chosen the a i as above, then x is congruent some a i modulo 12, and so by transitivity, y a i (mod 12). The mod-12 congruence implies any of the other congruences in this problem.) If we take a 1 = 0, then all of the even numbers satisfy the first congruence. If we take a 2 = 1, then in addition, the numbers 1 and 7 satisfy the second congruence. (Eight down, four remaining.) If we take a 3 = 1, then in addition, the numbers 5 and 9 satisfy the congruence. Only the numbers 8 and 11 remain, and we have two more congruences to play with, so we predict victory in two moves. Let a 4 = 2; that takes care of 8. Let a 5 = (a) Let p and q be primes. Prove that if p 1 (mod q 1), then a p a (mod q) for every integer a. Solution: Case 1: Suppose q a. Then a p 0 (mod q) and a 0 (mod q), so that a p a (mod q). Case 2: Suppose q/ a. Suppose p 1 (mod q 1). Then there is an integer k such that Thus p = k(q 1) + 1. a p = a k(q 1) a (1) = a (a k ) (q 1). (2)
2 Now since q/ a, we also know that q/ a k, so by Fermat s little theorem, we have Thus from (1) and (2) above, we get as required. (a k ) (q 1) 1 (mod q). a p a (a k ) (q 1) (mod q) a 1 (mod q) a (mod q) (b) ( 2.1, problem 20) Use the result in part (2a) to prove that n 7 n is divisible by 42 for any integer n. Proof: Since 42 = [2, 3, 7], the result will follow if we can show that 2, 3, and 7 all divide n 7 n for every integer n. That is, we need to show n 7 n 0 modulo 2, 3, and 7. We observe that 7 is congruent to 1 modulo (2 1), modulo (3 1), and modulo (7 1), so by the result above, the congruences all hold for every integer n. n 7 n (mod 2) n 7 n (mod 3) n 7 n (mod 7) 3. ( 2.1, problem 27) Prove that n5 5 + n n is an integer for every integer n. 15 Proof: Rewriting the given expression with a common denominator, we get 3n 5 + 5n 3 + 7n. 15 Our task is thus to prove that 3n 5 + 5n 3 + 7n 0 (mod 15) for every integer n. This will follow if we can establish the two congruences 3n 5 + 5n 3 + 7n 0 (mod 3) 3n 5 + 5n 3 + 7n 0 (mod 5). Using the properties of congruences, we have 3n 5 + 5n 3 + 7n 2n 3 + n (mod 3).
3 By Theorem 2.8, for any integer n, n 3 n (mod 3), from which it follows that 2n 3 + n 2n + n 3n 0 (mod 3), and we have shown that 3n 5 + 5n 3 + 7n 0 (mod 3). Similarly, 3n 5 + 5n 3 + 7n 3n 5 + 2n (mod 5), and again by Theorem 2.8, n 5 n (mod 5) for any n, so that 3n 2 + 2n 3n + 2n 5n 0 (mod 5). We have shown that for any integer n, 3n 5 + 5n 3 + 7n 0 (mod 5). Since 3n 5 + 5n 3 + 7n is a multiple of both 3 and 5, it must also be a multiple of [3, 5], and since (3, 5) = 1, we know that [3, 5] = 15. Thus 3n 5 + 5n 3 + 7n is divisible by 15 for any integer n, and the proof is complete. 4. ( 2.1, problem 46) Show that for any prime p, if a p b p (mod p), then a p b p (mod p 2 ). Proof: Suppose a p b p (mod p). From Theorem 2.8, we know that a p a (mod p) and b p b (mod p), even if p happens to divide a or b. From this it follows that a b p (a b). Now we have the factorization (mod p), that is (a b)(a p 1 + a p 2 b + a p 3 b ab p 2 + b p 1 ) = a p b p. Since p (a b), to show that p 2 (a p b p ), we need to show that p (a p 1 + a p 2 b + a p 3 b ab p 2 + b p 1 ). Since a b (mod p), we have, for each i with 1 i p, a p i b i 1 a (p i)+(i 1) a p 1 (mod p). That is, every term in (a p 1 + a p 2 b + a p 3 b ab p 2 + b p 1 ) is congruent to a p 1 modulo p. Since there are p terms in the sum, we have (a p 1 + a p 2 b + a p 3 b ab p 2 + b p 1 ) pa p 1 (mod p).
4 But clearly pa p 1 0 (mod p), because p 0 (mod p). It follows that p divides (a p 1 + a p 2 b + a p 3 b ab p 2 + b p 1 ), and since p divides (a b) as well, the product (a b)(a p 1 + a p 2 b + a p 3 b ab p 2 + b p 1 ) = a p b p is divisible by p 2. Thus and the proof is complete. a p b p (mod p) Alternate Proof: Suppose a p b p (mod p). By Theorem 2.8, we know a a p (mod p) and b b p (mod p). It follows that a b (mod p). Write a = pα + r 1 b = pβ + r 2 where α, β, r 1, and r 2 are integers, and 0 r 1, r 2 p. Then because p (a b), it follows that p (r 1 r 2 ), and since r 1 r 2 < p, we must have r 1 = r 2. Let r denote their common value. Then a p = (pα + r) p p 1 ( ) = (pα) p + p (pα) p i r i + r p. i i=1 Since p 2, we know p 2 divides (pα) p. ( ) p Moreover, by an earlier problem, we know p divides for each i with 1 i p 1, i and certainly p divides (pα) p i for each i less than p. Thus p 2 divides each term of the sum p 1 i=1 ( ) p (pα) p i r i, i
5 and so p 2 divides the entire sum. From this it follows that p 2 divides a p r p, so we get By an analogous argument, a p r p (mod p 2 ). b p r p (mod p 2 ), and so by Theorem 2.1(1) and (2), we get as required. a p b p (mod p 2 ), 5. ( 2.1, problem 50) For every positive integer n, prove that there exists a (non-zero) multiple m of n whose base-ten representation contains only the digits 0 and 1. Prove that the same holds for the digits 0 and 2, for 0 and 3, and so on up to the digits 0 and 9, but for no other pair of digits. Proof: If n = 1, then n 1, and if n = 2, then n 10. Now suppose n > 2. Suppose first that 2/ n and 5/ n. Then (10, n) = 1, and by Theorem 2.8, we get 10 ϕ(n) 1 (mod n). Then (10 ϕ(n) ) k 1 (mod n) for every positive integer k, and since ϕ(n) 2, all the numbers kϕ(n) are different, so that each of the numbers 10 kϕ(n) is a distinct power of ten, and each is congruent to 1 modulo n. n Let N = 10 kϕ(n). Then the base-ten representation of N contains exactly n ones k=1 and all the other digits are zero. Furthermore, so that N is a non-zero multiple of N. n n N 10 kϕ(n) 1 n (mod n), k=1 k=1 (Note: If n is a large prime, do not try this at home.) Now suppose n = 2 a 5 b m, where m is relatively prime to 5 and 2. Then we find a number M made up of ones and zeros such that m divides M. Let c = max{a, b}, and let N = 10 c M.
6 Then n = 2 a 5 b m divides 2 c 5 c m = 10 c m, which divides 10 c M = N (by Theorem 1.1(6)), so by Theorem 1.1(2), n divides N. Furthermore, since M is made up of ones and zeros, so is N. The numbers 2N, 3N, 4N, and so on satisfy the requirements of the second sentence above. Since every multiple of 10 has at least one zero in its base-ten representation, there is no way to satisfy the requirements of this claim with any pair of digits that does not contain a zero.
Applications of Fermat s Little Theorem and Congruences
Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4
k, then n = p2α 1 1 pα k
Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square
3 0 + 4 + 3 1 + 1 + 3 9 + 6 + 3 0 + 1 + 3 0 + 1 + 3 2 mod 10 = 4 + 3 + 1 + 27 + 6 + 1 + 1 + 6 mod 10 = 49 mod 10 = 9.
SOLUTIONS TO HOMEWORK 2 - MATH 170, SUMMER SESSION I (2012) (1) (Exercise 11, Page 107) Which of the following is the correct UPC for Progresso minestrone soup? Show why the other numbers are not valid
8 Primes and Modular Arithmetic
8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.
Quotient Rings and Field Extensions
Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.
Every Positive Integer is the Sum of Four Squares! (and other exciting problems)
Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Sophex University of Texas at Austin October 18th, 00 Matilde N. Lalín 1. Lagrange s Theorem Theorem 1 Every positive integer
Computing exponents modulo a number: Repeated squaring
Computing exponents modulo a number: Repeated squaring How do you compute (1415) 13 mod 2537 = 2182 using just a calculator? Or how do you check that 2 340 mod 341 = 1? You can do this using the method
Homework until Test #2
MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such
SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me
SYSTEMS OF PYTHAGOREAN TRIPLES CHRISTOPHER TOBIN-CAMPBELL Abstract. This paper explores systems of Pythagorean triples. It describes the generating formulas for primitive Pythagorean triples, determines
Some practice problems for midterm 2
Some practice problems for midterm 2 Kiumars Kaveh November 15, 2011 Problem: What is the remainder of 6 2000 when divided by 11? Solution: This is a long-winded way of asking for the value of 6 2000 mod
The Fundamental Theorem of Arithmetic
The Fundamental Theorem of Arithmetic 1 Introduction: Why this theorem? Why this proof? One of the purposes of this course 1 is to train you in the methods mathematicians use to prove mathematical statements,
I. GROUPS: BASIC DEFINITIONS AND EXAMPLES
I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called
Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may
Number Theory Divisibility and Primes Definition. If a and b are integers and there is some integer c such that a = b c, then we say that b divides a or is a factor or divisor of a and write b a. Definition
PYTHAGOREAN TRIPLES KEITH CONRAD
PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient
Math Workshop October 2010 Fractions and Repeating Decimals
Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at,
Introduction to Finite Fields (cont.)
Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number
CHAPTER 5. Number Theory. 1. Integers and Division. Discussion
CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a
Stupid Divisibility Tricks
Stupid Divisibility Tricks 101 Ways to Stupefy Your Friends Appeared in Math Horizons November, 2006 Marc Renault Shippensburg University Mathematics Department 1871 Old Main Road Shippensburg, PA 17013
On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples
On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, 2006 1 Introduction 1.1 Mazur s Theorem Let C be a
Chapter 4 Complementary Sets Of Systems Of Congruences Proceedings NCUR VII. è1993è, Vol. II, pp. 793í796. Jeærey F. Gold Department of Mathematics, Department of Physics University of Utah Don H. Tucker
On the largest prime factor of x 2 1
On the largest prime factor of x 2 1 Florian Luca and Filip Najman Abstract In this paper, we find all integers x such that x 2 1 has only prime factors smaller than 100. This gives some interesting numerical
Today s Topics. Primes & Greatest Common Divisors
Today s Topics Primes & Greatest Common Divisors Prime representations Important theorems about primality Greatest Common Divisors Least Common Multiples Euclid s algorithm Once and for all, what are prime
V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography
V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography 3 Congruence Congruences are an important and useful tool for the study of divisibility. As we shall see, they are also critical
ALGEBRAIC APPROACH TO COMPOSITE INTEGER FACTORIZATION
ALGEBRAIC APPROACH TO COMPOSITE INTEGER FACTORIZATION Aldrin W. Wanambisi 1* School of Pure and Applied Science, Mount Kenya University, P.O box 553-50100, Kakamega, Kenya. Shem Aywa 2 Department of Mathematics,
26 Ideals and Quotient Rings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 26 Ideals and Quotient Rings In this section we develop some theory of rings that parallels the theory of groups discussed
Kevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm
MTHSC 412 Section 2.4 Prime Factors and Greatest Common Divisor Greatest Common Divisor Definition Suppose that a, b Z. Then we say that d Z is a greatest common divisor (gcd) of a and b if the following
2 When is a 2-Digit Number the Sum of the Squares of its Digits?
When Does a Number Equal the Sum of the Squares or Cubes of its Digits? An Exposition and a Call for a More elegant Proof 1 Introduction We will look at theorems of the following form: by William Gasarch
Handout #1: Mathematical Reasoning
Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or
CONTENTS 1. Peter Kahn. Spring 2007
CONTENTS 1 MATH 304: CONSTRUCTING THE REAL NUMBERS Peter Kahn Spring 2007 Contents 2 The Integers 1 2.1 The basic construction.......................... 1 2.2 Adding integers..............................
SUM OF TWO SQUARES JAHNAVI BHASKAR
SUM OF TWO SQUARES JAHNAVI BHASKAR Abstract. I will investigate which numbers can be written as the sum of two squares and in how many ways, providing enough basic number theory so even the unacquainted
An Overview of Integer Factoring Algorithms. The Problem
An Overview of Integer Factoring Algorithms Manindra Agrawal IITK / NUS The Problem Given an integer n, find all its prime divisors as efficiently as possible. 1 A Difficult Problem No efficient algorithm
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 3 Binary Operations We are used to addition and multiplication of real numbers. These operations combine two real numbers
Mathematical Induction
Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,
Student Outcomes. Lesson Notes. Classwork. Discussion (10 minutes)
NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 5 8 Student Outcomes Students know the definition of a number raised to a negative exponent. Students simplify and write equivalent expressions that contain
15 Prime and Composite Numbers
15 Prime and Composite Numbers Divides, Divisors, Factors, Multiples In section 13, we considered the division algorithm: If a and b are whole numbers with b 0 then there exist unique numbers q and r such
8 Divisibility and prime numbers
8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express
MATH10040 Chapter 2: Prime and relatively prime numbers
MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive
Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.
Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole
Integer roots of quadratic and cubic polynomials with integer coefficients
Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street
3. Mathematical Induction
3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)
Discrete Mathematics, Chapter 4: Number Theory and Cryptography
Discrete Mathematics, Chapter 4: Number Theory and Cryptography Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 4 1 / 35 Outline 1 Divisibility
MATH 289 PROBLEM SET 4: NUMBER THEORY
MATH 289 PROBLEM SET 4: NUMBER THEORY 1. The greatest common divisor If d and n are integers, then we say that d divides n if and only if there exists an integer q such that n = qd. Notice that if d divides
Playing with Numbers
PLAYING WITH NUMBERS 249 Playing with Numbers CHAPTER 16 16.1 Introduction You have studied various types of numbers such as natural numbers, whole numbers, integers and rational numbers. You have also
Groups in Cryptography
Groups in Cryptography Çetin Kaya Koç http://cs.ucsb.edu/~koc/cs178 [email protected] Koç (http://cs.ucsb.edu/~koc) ucsb cs 178 intro to crypto winter 2013 1 / 13 Groups in Cryptography A set S and a binary
Just the Factors, Ma am
1 Introduction Just the Factors, Ma am The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive
Chapter 3. if 2 a i then location: = i. Page 40
Chapter 3 1. Describe an algorithm that takes a list of n integers a 1,a 2,,a n and finds the number of integers each greater than five in the list. Ans: procedure greaterthanfive(a 1,,a n : integers)
Factoring Algorithms
Factoring Algorithms The p 1 Method and Quadratic Sieve November 17, 2008 () Factoring Algorithms November 17, 2008 1 / 12 Fermat s factoring method Fermat made the observation that if n has two factors
Primes in Sequences. Lee 1. By: Jae Young Lee. Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov
Lee 1 Primes in Sequences By: Jae Young Lee Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov Lee 2 Jae Young Lee MA341 Number Theory PRIMES IN SEQUENCES
a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
Revised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)
Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.
= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that
Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without
Chapter 11 Number Theory
Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications
RSA Encryption. Tom Davis [email protected] http://www.geometer.org/mathcircles October 10, 2003
RSA Encryption Tom Davis [email protected] http://www.geometer.org/mathcircles October 10, 2003 1 Public Key Cryptography One of the biggest problems in cryptography is the distribution of keys.
The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.
The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,
Properties of Real Numbers
16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should
3 Some Integer Functions
3 Some Integer Functions A Pair of Fundamental Integer Functions The integer function that is the heart of this section is the modulo function. However, before getting to it, let us look at some very simple
. 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9
Introduction The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive integer We say d is a
WRITING PROOFS. Christopher Heil Georgia Institute of Technology
WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this
GREATEST COMMON DIVISOR
DEFINITION: GREATEST COMMON DIVISOR The greatest common divisor (gcd) of a and b, denoted by (a, b), is the largest common divisor of integers a and b. THEOREM: If a and b are nonzero integers, then their
Chapter 17. Orthogonal Matrices and Symmetries of Space
Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length
The application of prime numbers to RSA encryption
The application of prime numbers to RSA encryption Prime number definition: Let us begin with the definition of a prime number p The number p, which is a member of the set of natural numbers N, is considered
Math 55: Discrete Mathematics
Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What
Lectures on Number Theory. Lars-Åke Lindahl
Lectures on Number Theory Lars-Åke Lindahl 2002 Contents 1 Divisibility 1 2 Prime Numbers 7 3 The Linear Diophantine Equation ax+by=c 12 4 Congruences 15 5 Linear Congruences 19 6 The Chinese Remainder
MATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers.
MATHEMATICAL INDUCTION MIGUEL A LERMA (Last updated: February 8, 003) Mathematical Induction This is a powerful method to prove properties of positive integers Principle of Mathematical Induction Let P
5544 = 2 2772 = 2 2 1386 = 2 2 2 693. Now we have to find a divisor of 693. We can try 3, and 693 = 3 231,and we keep dividing by 3 to get: 1
MATH 13150: Freshman Seminar Unit 8 1. Prime numbers 1.1. Primes. A number bigger than 1 is called prime if its only divisors are 1 and itself. For example, 3 is prime because the only numbers dividing
So let us begin our quest to find the holy grail of real analysis.
1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers
COMMUTATIVE RINGS. Definition: A domain is a commutative ring R that satisfies the cancellation law for multiplication:
COMMUTATIVE RINGS Definition: A commutative ring R is a set with two operations, addition and multiplication, such that: (i) R is an abelian group under addition; (ii) ab = ba for all a, b R (commutative
Homework 2 Solutions
Homework Solutions 1. (a) Find the area of a regular heagon inscribed in a circle of radius 1. Then, find the area of a regular heagon circumscribed about a circle of radius 1. Use these calculations to
CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY
January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.
Introduction. Appendix D Mathematical Induction D1
Appendix D Mathematical Induction D D Mathematical Induction Use mathematical induction to prove a formula. Find a sum of powers of integers. Find a formula for a finite sum. Use finite differences to
Solving Rational Equations
Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,
Five fundamental operations. mathematics: addition, subtraction, multiplication, division, and modular forms
The five fundamental operations of mathematics: addition, subtraction, multiplication, division, and modular forms UC Berkeley Trinity University March 31, 2008 This talk is about counting, and it s about
Section 4.2: The Division Algorithm and Greatest Common Divisors
Section 4.2: The Division Algorithm and Greatest Common Divisors The Division Algorithm The Division Algorithm is merely long division restated as an equation. For example, the division 29 r. 20 32 948
MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS
MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS Class Meetings: MW 2:00-3:15 pm in Physics 144, September 7 to December 14 [Thanksgiving break November 23 27; final exam December 21] Instructor:
The Chinese Remainder Theorem
The Chinese Remainder Theorem Evan Chen [email protected] February 3, 2015 The Chinese Remainder Theorem is a theorem only in that it is useful and requires proof. When you ask a capable 15-year-old why
THE NUMBER OF REPRESENTATIONS OF n OF THE FORM n = x 2 2 y, x > 0, y 0
THE NUMBER OF REPRESENTATIONS OF n OF THE FORM n = x 2 2 y, x > 0, y 0 RICHARD J. MATHAR Abstract. We count solutions to the Ramanujan-Nagell equation 2 y +n = x 2 for fixed positive n. The computational
6.2 Permutations continued
6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of
17 Greatest Common Factors and Least Common Multiples
17 Greatest Common Factors and Least Common Multiples Consider the following concrete problem: An architect is designing an elegant display room for art museum. One wall is to be covered with large square
Lecture 13 - Basic Number Theory.
Lecture 13 - Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that A divides B, denoted
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization
Lecture 16 : Relations and Functions DRAFT
CS/Math 240: Introduction to Discrete Mathematics 3/29/2011 Lecture 16 : Relations and Functions Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT In Lecture 3, we described a correspondence
26 Integers: Multiplication, Division, and Order
26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue
GCDs and Relatively Prime Numbers! CSCI 2824, Fall 2014!
GCDs and Relatively Prime Numbers! CSCI 2824, Fall 2014!!! Challenge Problem 2 (Mastermind) due Fri. 9/26 Find a fourth guess whose scoring will allow you to determine the secret code (repetitions are
We can express this in decimal notation (in contrast to the underline notation we have been using) as follows: 9081 + 900b + 90c = 9001 + 100c + 10b
In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should
α = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
Lecture 3: Finding integer solutions to systems of linear equations
Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture
Math 4310 Handout - Quotient Vector Spaces
Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable
Grade 6 Math Circles March 10/11, 2015 Prime Time Solutions
Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Lights, Camera, Primes! Grade 6 Math Circles March 10/11, 2015 Prime Time Solutions Today, we re going
CISC - Curriculum & Instruction Steering Committee. California County Superintendents Educational Services Association
CISC - Curriculum & Instruction Steering Committee California County Superintendents Educational Services Association Primary Content Module IV The Winning EQUATION NUMBER SENSE: Factors of Whole Numbers
Handout NUMBER THEORY
Handout of NUMBER THEORY by Kus Prihantoso Krisnawan MATHEMATICS DEPARTMENT FACULTY OF MATHEMATICS AND NATURAL SCIENCES YOGYAKARTA STATE UNIVERSITY 2012 Contents Contents i 1 Some Preliminary Considerations
Theorem3.1.1 Thedivisionalgorithm;theorem2.2.1insection2.2 If m, n Z and n is a positive
Chapter 3 Number Theory 159 3.1 Prime Numbers Prime numbers serve as the basic building blocs in the multiplicative structure of the integers. As you may recall, an integer n greater than one is prime
Solution to Homework 2
Solution to Homework 2 Olena Bormashenko September 23, 2011 Section 1.4: 1(a)(b)(i)(k), 4, 5, 14; Section 1.5: 1(a)(b)(c)(d)(e)(n), 2(a)(c), 13, 16, 17, 18, 27 Section 1.4 1. Compute the following, if
Continued Fractions. Darren C. Collins
Continued Fractions Darren C Collins Abstract In this paper, we discuss continued fractions First, we discuss the definition and notation Second, we discuss the development of the subject throughout history
Math 3000 Section 003 Intro to Abstract Math Homework 2
Math 3000 Section 003 Intro to Abstract Math Homework 2 Department of Mathematical and Statistical Sciences University of Colorado Denver, Spring 2012 Solutions (February 13, 2012) Please note that these
Stanford Math Circle: Sunday, May 9, 2010 Square-Triangular Numbers, Pell s Equation, and Continued Fractions
Stanford Math Circle: Sunday, May 9, 00 Square-Triangular Numbers, Pell s Equation, and Continued Fractions Recall that triangular numbers are numbers of the form T m = numbers that can be arranged in
Basic Proof Techniques
Basic Proof Techniques David Ferry [email protected] September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document
Math Circle Beginners Group October 18, 2015
Math Circle Beginners Group October 18, 2015 Warm-up problem 1. Let n be a (positive) integer. Prove that if n 2 is odd, then n is also odd. (Hint: Use a proof by contradiction.) Suppose that n 2 is odd
Grade 7/8 Math Circles Fall 2012 Factors and Primes
1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Grade 7/8 Math Circles Fall 2012 Factors and Primes Factors Definition: A factor of a number is a whole
The last three chapters introduced three major proof techniques: direct,
CHAPTER 7 Proving Non-Conditional Statements The last three chapters introduced three major proof techniques: direct, contrapositive and contradiction. These three techniques are used to prove statements
