Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products


 Angelina Todd
 5 years ago
 Views:
Transcription
1 Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing them, we will discuss properties that a relation may or may not have. These are defined only in terms of elements that must belong to the subset in certain situations. In situations like this where things are defined abstractly, it pays to learn to do a couple of things. The first is to always test the definitions and see what they mean, that is, to get a feeling for which things satisfy the definitions and which don t, and why. The second is to keep in mind a few concrete examples. These can be used when exploring what the definitions are saying. 3.1 Cartesian Products In the Cartesian plane (or xy plane), we associate the set of points in the plane with the set of all ordered points (x, y), where x and y are both real numbers. The idea of a Cartesian product of sets replaces R in the description by some other set(s), and drops the geometric interpretation. If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) : (a A) and (b B)}. 1
2 2 CHAPTER 3. CARTESIAN PRODUCTS AND RELATIONS The following points are worth special attention: The Cartesian product of two sets is a set. The elements of that set are ordered pairs. In each ordered pair, the first component is an element of A, and the second component is an element of B. The points in the xy plane correspond to the elements of the set R R. For example, if A = {1, 2, 3} and B = {a, b}, then A B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)} and B A = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}. Suppose A has m elements and B has n elements. Then, each element of A is the first component of n ordered pairs in A B: one for each element of B. Thus the number of elements in A B equals m n, the number of elements in A times the number of elements in B. This is one way in which the symbol is suggestive notation for the Cartesian product. What should A be? By definition, it is the set of all ordered pairs (a, b) where a A and b. There are no such pairs, as there are no elements b. Hence A =. Similarly, B =. We says that two ordered pairs are equal if the first components are identical and so are the second components. That is, (a, b) = (c, d) if and only if a = c and b = d. This corresponds to (and generalizes) our idea of equality for ordered pairs of real numbers. The example above shows that A B B A in general. This leads to the question of when they are equal. Certainly they are equal if A = B because then A B = A A = B A. They are also equal when A = or B = because, then A B = = B A. We now show that these are the only possibilities where equality can hold. Proposition Let A and B be sets. Then A B = B A if and only if A = B, or A =, or B =. Proof. ( ) We prove the contrapositive. Suppose A and B are nonempty sets such that A B. Then one of them has an element which does not belong to the other. Suppose first that there exists x A such that x B.
3 3.1. CARTESIAN PRODUCTS 3 Since B, the set A B has an ordered pair with first component x, whereas B A has no such ordered pair. Thus A B B A. The argument is similar in the other case, when there exists y B such that y A. ( ). If A = B then A B = A A = B A. If A =, then A B = = B A. The case where B = is similar. The set A (B C) is the set of all ordered pairs where the first component is an element of A, and the second component is an element of B C. That is, the second component is an element of B or an element of C. This is the same collection that would be obtained from the union (A B) (A C), which is made from the union of the set of all ordered pairs where the first component is an element of A and the second component is an element of B, and the set of all ordered pairs where the first component is an element of A, and the second component is an element of C. This is the outline of the proof of the following proposition. Proposition Let A, B and C be sets. Then, A (B C) = (A B) (A C). Proof. (LHS RHS) Let (x, y) A (B C). Then x A and y (B C). That is, y B or y C. This leads to two cases. If y B, then (x, y) A B, and so (x, y) (A B) (A C). If y C, then (x, y) A C, and so (x, y) (A B) (A C). Therefore, A (B C) (A B) (A C). (RHS LHS) Let (x, y) (A B) (A C). Then (x, y) A B or (x, y) A C. This leads to two cases. If (x, y) A B, then x A and y B. Since y B, we have y B C, so (x, y) A (B C). If (x, y) A C, then x A and y C. Since y C, we have y B C, so (x, y) A (B C). Therefore, (A B) (A C) A (B C). The proposition above can also be proved using set builder notation and showing that the two sets are described by logically equivalent expressions. One hint that this is so is in the informal proof outline that precedes the proposition. Another one is in the proof of the proposition: the second part of the proof above is essentially the first part written from bottom to top. Each step is an equivalence rather than just an implication. The same methods can be used to prove the following similar statements:
4 4 CHAPTER 3. CARTESIAN PRODUCTS AND RELATIONS A (B C) = (A B) (A C); (A B) C = (A C) (B C); (A B) C = (A C) (B C). It is a good exercise to investigate, then prove or disprove as appropriate, similar statements involving the Cartesian product and operations like set difference, A \ B, and symmetric difference, A B. 3.2 Relations Suppose A is the set of all students registered at UVic this term, and B is the set of all courses offered at UVic this term. Then A B is the set of all ordered pairs (s, c), where s is a student registered at UVic this term, and c is a course offered at UVic this term. The set A B represents all possible registrations by a current student in a current course. Certain subsets of A B may be of interest, for example the subset consisting of the pairs where the course is in Science and the student is actually registered in the course, or the subset consisting of the pairs where completion of the course would make the student eligible to receive a degree from the Faculty of Fine Arts. The idea is that relationships between the elements of A and the elements of B can be represented by subsets of A B. A binary relation from a set A to a set B is a subset R A B. A binary relation on a set A is a subset of R A A. The word binary arises because the relation contains pairs of objects. Ternary relations (on A, say) would contain triples of elements, quaternary relations would contain quadruples of elements, and in general nare relations would contain ordered ntuples of elements. We will only consider binary relations, so we will drop the adjective binary. When we talk about relations, we mean binary relations. We will focus almost exclusively on relations on a set A. A relation may or may not express a particular type of relationship between its elements. The definition says that a relation is simply a subset. Any subset. It could be that the only relationship between x and y is that
5 3.3. PROPERTIES OF RELATIONS 5 the pair (x, y) belongs to the subset. Subsets like R 1 = and R 2 = A A are perfectly good relations on A. On the other hand, familiar things can be seen as relations. As a sample: Equality between integers is represented by the relation R on Z where (x, y) Z if and only if x = y. Strict inequality between real numbers is represented by the relation S on R where (x, y) S if and only if x > y. The property of being a subset is represented by the relation C on P(U) where (X, Y ) C if and only if X Y. Logical implication between statements p and q is represented by the relation I on the set of all statements (say involving a certain set of Boolean variables) where (p, q) I if and only if p q. Because of these examples, and many others like them involving common mathematical symbols (that express particular relationships), infix notation is used: sometimes we write xry instead of (x, y) R, and say that x is related to y (under R). 3.3 Properties of Relations The relation = on the set of real numbers has the following properties: Every number is equal to itself. If x is equal to y, then y is equal to x. Numbers that are equal to the same number are equal to each other. That is, if x = y and y = z, then x = z. The relation on the set of all propositions (in a finite number of variables) has properties that look strongly similar to these. Every proposition is logically equivalent to itself.
6 6 CHAPTER 3. CARTESIAN PRODUCTS AND RELATIONS If p is logically to q, then q is logically equivalent to p. Propositions that are logically equivalent to the same proposition are logically equivalent to each other to each other. That is, if p q and q r, then p r. Similarly, the relation on the set of real numbers has the following properties: x x for every x R. If x y and y x, then x = y. If x y and y z, then x z. The relation on the the power set of a set S has similar properties: X X for every X P(S). If X Y and Y X, then X = Y. If X Y and Y Z, then X Z. The relation on the set of all propositions (in a finite number of variables) looks to have the same properties as the previous two, so long as we accept playing the role of =. There is, however, something subtle and beyond the scope of this discussion, going on in the second bullet point because we use instead of =. p p for every proposition x. If p q and q p, then p q. If p q and q r, then p r. It may or may not be clear that the first bullet point in each of the five collections describes the same abstract property. And the same for the third bullet point. The middle bullet point describes the same abstract property in the first two collections and in the first two of the last three, but these two properties are fundamentally different.
7 3.3. PROPERTIES OF RELATIONS 7 The first property in the five collections above is reflexivity. The dictionary defines reflexive as meaning directed back on itself. In a relation, we interpret that as meaning every element is related to itself. Thus, each of the relations described above is reflexive. The second property in the first two collections, but not the last three, is symmetry : if x is related to y, then y is related to x. The third property in all five collections is transitivity : if x is related to y, and y is related to z, then x is related to z. The second property in collection three and four is antisymmetry : if x is related to y and y is related to x, then x is the same as y. Later, we will see that being antisymmetric is very different from being not symmetric. We will also get a hint of the origin of the (unfortunate) term antisymmetric. Formal definitions of these properties follow. It is important to realize that each of these is a property that a particular relation might, or might not, have. A relation R on a set A is: reflexive if (x, x) R for every x A. (Written in infix notation, the condition is xrx for every x A.) symmetric if (y, x) R whenever (x, y) R, for all x, y A. (Written in infix notation, the condition is if xry then yrx, for all x, y A.) transitive if (x, z) R whenever (x, y), (y, z) R, for all x, y, z A. (Written in infix notation, the condition is if xry and yrz, then xrz, for all x, y, z A.) antisymmetric if x = y whenever (x, y) R and (y, x) R, for all x, y A. (Written in infix notation, the condition is if xry and yrx, then x = y, for all x, y A.) Why are we doing this? Relations that are reflexive, symmetric and transitive behave a lot like equals : they partition the set A into disjoint collections of elements that are the same (equivalent) with respect to whatever property
8 8 CHAPTER 3. CARTESIAN PRODUCTS AND RELATIONS is used to define the relation. These are called equivalence relations. Relations that are that reflexive, antisymmetric and transitive behave a lot like less than or equal to in the sense that they imply an ordering of some of the elements of A. To interpret this for the subset relation, think of X Y as reading X precedes or equals Y (there are some pairs of sets for which neither precedes or equals the other). These are called partial orders. What follows are six examples of determining whether or not a relation has the properties defined above. Consider the relation R 1 = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3)} on the set A = {1, 2, 3}. R 1 is reflexive: A = {1, 2, 3} and (1, 1), (2, 2), (3, 3) R 1. R 1 is not symmetric: (2, 3) R 1 but (3, 2) R 1. R 1 is not antisymmetric: (1, 2), (2, 1) R 1 but 1 2. R 1 is not transitive: (1, 2), (2, 3) R 1 but (1, 3) R 1. The definition says that a relation is symmetric if, whenever a pair (x, y) is in the relation, so is its reversal (y, x). This means that when x y, either both of (x, y) and (y, x) are in the relation, or neither are. The definition says that a relation is antisymmetric if, when x y, we never have both of (x, y) and (y, x) in the relation. (The definition is phrased in a way that makes it easy to use in proofs.) This means that x y, either (x, y) is in the relation and (y, x) is not in it, or (y, x) is in the relation and (x, y) is not in it, or neither pair is in it. The only possibility that is not permitted to arise in an antisymmetric relation is for it to contain both (x, y) and (y, x), where x y. (There is no pair of different elements which are related in a symmetric way.) It is possible for a relation to be both symmetric and antisymmetric, for example A = {(1, 1), (2, 2)} on the set {1, 2, 3}. The relation R 1 above shows that it is also possible for a relation to be neither symmetric nor antisymmetric. Consider the relation R 2 = on any nonempty set A. R 2 is not reflexive. Since A, there exists x A. The ordered pair (x, x) R 2.
9 3.3. PROPERTIES OF RELATIONS 9 R 2 is symmetric. The implication if (x, y) R 2, then (y, x) R 2 is true because its hypothesis is always false. R 2 is antisymmetric. The implication if (x, y), (y, x) R 2, then x = y is true because its hypothesis is always false. R 2 is transitive. The implication if (x, y), (y, z) R 2, then (x, z) R 2 is true because its hypothesis is always false. If A =, then what above changes slightly because R 2 is reflexive. Can you explain why? Let R 3 be the subset relation on P(S), the set of all subsets of S = {1, 2, 3, 4}, that is, (X, Y ) R 3 if and only X Y. R 3 is reflexive because X X for every X S (for every X P(S)). R 2 is not symmetric: (, {1}) R 3 because {1} but ({1}, ) R 3 because {1}. R 3 is antisymmetric. Suppose (X, Y ), (Y, X) R 3. Then X Y and Y X. We proved before that this means X = Y. R 3 is transitive. Suppose (X, Y ), (Y, Z) R 3. Then X Y and Y Z. We proved before that this means X Z, that is (X, Z) R 3. If S =, then what above changes slightly because R 3 is symmetric. Can you explain why? Let R 4 be the relation on N defined by (m, n) R 4 if and only if m n is even. R 4 is reflexive. Let k N. Then k k = 0. Since 0 is even, (k, k) R 4. R 4 is symmetric. Suppose (m, n) R 4. Then m n is even. Since n m = (m n), and the negative of an even number is even, (n, m) R 4. R 4 not antisymmetric: (1, 3), (3, 1) R 4 but 1 3. R 4 is transitive. Suppose (k, m), (m, n) R 4. Then k m is even, and m n is even. Hence, (k m) + (m n) = k n is even it is the sum of two even numbers. Therefore (k, n) R 4.
10 10 CHAPTER 3. CARTESIAN PRODUCTS AND RELATIONS Let A be a set with at least two elements, and let R 5 be the relation A A on A. R 5 is reflexive. It contains all possible ordered pairs of elements of A, so it contains (x, x) for every x A. R 5 is symmetric. It contains all possible ordered pairs of elements of A, so it contains (y, x) whenever it contains (x, y). R 5 not antisymmetric: since A has at least two elements, there exist a, b A such that a b. Since (a, b), (b, a) A A, the statement follows. R 5 is transitive. It contains all possible ordered pairs of elements of A, so it contains (x, z) whenever it contains (x, y) and (y, z). If A has at most one element, then the above changes. In that case, R 5 is antisymmetric. Can you explain why? Finally, let R 6 be the relation on Z Z defined by (a, b)r 6 (c, d) if and only if a c and b d. Notice that, here, it is pairs of elements that are being related (to each other) under R 6, so technically R 6 is an set of ordered pairs, of which the components are ordered pairs. The infix notation (a, b)r 6 (c, d) is far less cumbersome that writing ((a, b), (c, d)) R 6. R 6 is reflexive. Let (a, b) Z Z. Since a a and b b, we have (a, b)r 6 (a, b). R 6 is not symmetric: (1, 2)R 6 (3, 4) but (3, 4)R 6 (1, 2). R 6 is antisymmetric. Suppose (a, b)r 6 (c, d) and (c, d)r 6 (a, b). Then a c and b d, and c a and d b. Therefore a = c and b = d, so that (a, b) = (c, d). R 6 is transitive. Suppose (a, b)r 6 (c, d) and (c, d)r 6 (e, f). We want (a, b)r 6 (e, f). Since (a, b)r 6 (c, d), a c and b d. Since (c, d)r 6 (e, f), c e and d f. Therefore a e and b f, so that (a, b)r 6 (e, f). We close this section with a different sort of example. Suppose R is a relation on {1, 2, 3, 4} that is symmetric and transitive. Suppose also that (1, 2), (2, 3), (1, 4) R. What else must be in R?
11 3.3. PROPERTIES OF RELATIONS 11 Since R is symmetric, we must have (2, 1), (3, 2), (4, 1) R. Since R is transitive and (1, 2), (2, 1) R, we must have (1, 1) R. Similarly (2, 2), (3, 3), (4, 4) R. Since (1, 2), (2, 3) R, transitivity implies (1, 3) R. Symmetry gives (3, 1) R. Let s summarize what we have done so far in an array. The rows and columns are indexed by {1, 2, 3, 4}, and the entry in row i and column j is the truth value of the statement (i, j) R (that is, it is 1 if the pair (i, j) R and 0 otherwise Notice that the array is symmetric (in the matrixtheoretic sense): the (i, j) entry equals the (j, i)entry. Must (2, 4) be in R? We have (2, 1), (1, 4) R, so (2, 4) R. Thus (4, 2) R by symmetry. What about (3, 4)? We have (3, 1), (1, 4) R, so again the answer is (3, 4) R. Thus (4, 3) R. Therefore R = A A. An array of the type in the previous example rows and columns indexed by elements of A and (i, j)entry the truth value of the statement (i, j) R denotes a reflexive relation when every entry on the main diagonal equals 1; symmetric relation when it is symmetric about the main diagonal: the (i, j)entry equals the (j, i)entry. antisymmetric relation when there is no i j such that the (i, j)entry and the (j, i)entry are both equal to 1. (Entries on the main diagonal don t matter, and it acceptable for the (i, j)entry and the (j, i)entry to both equal 0.) It is not easily possible to look at the array and see if the relation is transitive. All of the possibilities need to be checked.
12 12 CHAPTER 3. CARTESIAN PRODUCTS AND RELATIONS 3.4 Equivalence Relations An equivalence relation on a set A is a relation on A that is reflexive; symmetric; and transitive Relations with these three properties are similar to =. Suppose R is an equivalence relation on A. Instead of saying (x, y) R or x is related to y under R, for the sake of this discussion let s say x is the same as y. The reflexive property then says everything in A is the same as itself. The symmetric property says if x is the same as y, then y is the same as x. And the transitive property says things that are both the same as the same element are the same as each other. Another translation of these statements arises from replacing is the same as by is equivalent to. The following are examples of equivalence relations: logical equivalence on the set of all propositions; the relation R on Z defined by xry if and only if x y is even; the relation T on {0, 1,..., 24} defined by h 1 T h 2 if any only if h 1 hours is the same time as h 2 hours on a 12hour clock; the relation S on the set of all computer programs defined by p 1 Sp 2 if and only if p 1 computes the same function at p 2 ; the relation E on the set of all algebraic expressions in x defined by p(x) E q(x) if and only if p(x) = q(x) for every real number x. For example, if p(x) = x 2 1 and q(x) = (x + 1)(x 1), then p(x) E q(x). It is a useful exercise to prove that each of these is an equivalence relation. Every equivalence relation carves up (mathematicians would say partitions ) the underlying set into collections (sets) of equivalent things (things that are the same ), where the meaning of equivalent depends on the definition of the relation. In the examples above:
13 3.4. EQUIVALENCE RELATIONS 13 logical equivalence partitions the universe of all statements into collections of statements that mean the same thing, and hence can be freely substituted for each other; R partitions the integers into the even integers and the odd integers; T partitions {0, 1,..., 24} into collections of hours that represent the same time on a 12hour clock; S partitions the set of all computer programs into collections that do the same thing; E partitions the set of all algebraic expressions into collections that give the same numerical value for every real number x, and hence can be freely substituted for each other when manipulating equations. Each of these collections of equivalent things is an example of what is called an equivalence class. Let R be an equivalence relation on A, and x A. The equivalence class of x is the set [x] = {y : yrx}. Let A be a set. A partition of A is a collection of disjoint, nonempty subsets whose union is A. That is, it is a set of subsets of A such that the empty set is not in the collection; and every element of A belongs to exactly one set in the collection. Each set in the collection is called a cell, or block, or element of the partition. A: For example, if A = {a, b, c, d, e}, then the following are all partitions of {{a}, {b, e}, {c, d}}; {A}; {{a, c, e}, {b, d}}; {{a}, {b}, {c}, {d}, {e}}. None of the following are partitions of A:
14 14 CHAPTER 3. CARTESIAN PRODUCTS AND RELATIONS {{a}, {b, e}, {c, d}, }; {{a, c, e}, {d}}; {{a}, {b}, {c}, {a, d}, {e}}; {a}, {b}, {c}, {d}, {e}. The last example of something that isn t a partition is slippery. It isn t a set, hence it can t be a partition. But this is just a technicality mathematicians frequently write partitions in this way. The point of this example was to make sure you re aware of what happens sometimes, and what is intended. That equivalence relations and partitions are actually two sides of the same coin is the main consequence of the two theorems below. The first theorem says that the collection of equivalence classes is a partition of A (which is consistent with what we observed above). The second theorem says that for any possible partition of A there is an equivalence relation for which the subsets in the collection are exactly the equivalence classes. Theorem Let R be an equivalence relation on A. Then 1. x [x]; 2. if xry then [x] = [y]; and 3. if x is not related to y under R, then [x] [y] =. Proof. The first statement follows because R is reflexive. To see the second statement, suppose xry. If z [x] then (by definition of equivalence classes) zrx. By transitivity, zry. That is z [y]. Therefore [x] [y]. A similar argument proves that [y] [x], so that [x] = [y]. To see the third statement, we proceed by contradiction. Suppose x is not related to y under R, but [x] [y]. Let z [x] [y]. Then zrx and zry. By symmetry, xrz. And then by transitivity, xry, a contradiction. Therefore, [x] [y] =. Part 1 of the above theorem says that the equivalence classes are all nonempty, and parts 2 and 3 together say that every element of X belongs to exactly one equivalence class. Parts 2 and 3 also tell you how to determine
15 3.4. EQUIVALENCE RELATIONS 15 if two equivalence classes are the same: [x] = [y] if and only if x is related to y (equivalently, since R is symmetric, y is related to x). For example, suppose R is the relation on R defined by xry if and only if x rounds to the same integer as y. Then R is an equivalence relation (exercise: prove it). The partition of R induced by R is {[n 0.5, n + 0.5) : n Z}, where each halfopen interval [n 0.5, n + 0.5) = {x : n x < n + 0.5}. Among [1], [ 2], [ 3], [2], [e], [π] there are exactly three different equivalence classes because [1] = [ 2]; [ 3] = [2], and [e] = [π]. Theorem Let Π = {X 1, X 2,..., X t } be a partition of a set A. Then the relation R on A defined by xry if and only if x belongs to the same cell of Π as y is an equivalence relation; and Π is the partition of A induced by the set of equivalence classes of R. Proof. The argument that shows R is an equivalence relation is left as an exercise. We argue that Π is the partition of A induced by the set of equivalence classes of R. That is, it must be shown that, for any x A, the equivalence class of x equals the cell of the partition that contains x. Take any x A, and suppose x X i. We need to show that [x] = X i. On the one hand, if y X i then yrx by definition of R. Hence, y [x]. Therefore, X i [x]. On the other hand, if y [x] then yrx. By definition of R, the element y belongs to the same cell of Π as x. That is, y X i. Therefore [x] X i. It now follows that [x] = X i. For example, suppose we want an equivalence relation F on [0, ) for which the partition of R induced by F is {[n, n+1) : n N {0}}. According to the theorem statement, we define xfy if and only if there exists n N {0} such that x, y [n, n + 1). Looking at the definition of F we see that xfy if and only if the integer part of x (the part before the decimal point) is the same as the integer part of y, or equivalently that the greatest integer less than or equal to x (commonly known as the floor of x and denoted x ) is the same as the greatest integer less than or equal to y. In symbols xfy x = y.
Lecture 17 : Equivalence and Order Relations DRAFT
CS/Math 240: Introduction to Discrete Mathematics 3/31/2011 Lecture 17 : Equivalence and Order Relations Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last lecture we introduced the notion
More informationCartesian Products and Relations
Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special
More informationMathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson
Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement
More informationSo let us begin our quest to find the holy grail of real analysis.
1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers
More informationLecture 16 : Relations and Functions DRAFT
CS/Math 240: Introduction to Discrete Mathematics 3/29/2011 Lecture 16 : Relations and Functions Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT In Lecture 3, we described a correspondence
More informationHandout #1: Mathematical Reasoning
Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or
More informationINTRODUCTORY SET THEORY
M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H1088 Budapest, Múzeum krt. 68. CONTENTS 1. SETS Set, equal sets, subset,
More information3. Mathematical Induction
3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)
More informationThe last three chapters introduced three major proof techniques: direct,
CHAPTER 7 Proving NonConditional Statements The last three chapters introduced three major proof techniques: direct, contrapositive and contradiction. These three techniques are used to prove statements
More information8 Divisibility and prime numbers
8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express
More informationCHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs
CHAPTER 3 Methods of Proofs 1. Logical Arguments and Formal Proofs 1.1. Basic Terminology. An axiom is a statement that is given to be true. A rule of inference is a logical rule that is used to deduce
More informationFull and Complete Binary Trees
Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full
More informationMath 4310 Handout  Quotient Vector Spaces
Math 4310 Handout  Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable
More informationElementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.
Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole
More informationPage 331, 38.4 Suppose a is a positive integer and p is a prime. Prove that p a if and only if the prime factorization of a contains p.
Page 331, 38.2 Assignment #11 Solutions Factor the following positive integers into primes. a. 25 = 5 2. b. 4200 = 2 3 3 5 2 7. c. 10 10 = 2 10 5 10. d. 19 = 19. e. 1 = 1. Page 331, 38.4 Suppose a is a
More informationCHAPTER 2. Logic. 1. Logic Definitions. Notation: Variables are used to represent propositions. The most common variables used are p, q, and r.
CHAPTER 2 Logic 1. Logic Definitions 1.1. Propositions. Definition 1.1.1. A proposition is a declarative sentence that is either true (denoted either T or 1) or false (denoted either F or 0). Notation:
More informationFundamentele Informatica II
Fundamentele Informatica II Answer to selected exercises 1 John C Martin: Introduction to Languages and the Theory of Computation M.M. Bonsangue (and J. Kleijn) Fall 2011 Let L be a language. It is clear
More informationBasic Proof Techniques
Basic Proof Techniques David Ferry dsf43@truman.edu September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document
More information1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
More informationDiscrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us
More informationCS 3719 (Theory of Computation and Algorithms) Lecture 4
CS 3719 (Theory of Computation and Algorithms) Lecture 4 Antonina Kolokolova January 18, 2012 1 Undecidable languages 1.1 ChurchTuring thesis Let s recap how it all started. In 1990, Hilbert stated a
More informationMathematical Induction
Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,
More informationCONTENTS 1. Peter Kahn. Spring 2007
CONTENTS 1 MATH 304: CONSTRUCTING THE REAL NUMBERS Peter Kahn Spring 2007 Contents 2 The Integers 1 2.1 The basic construction.......................... 1 2.2 Adding integers..............................
More informationContinued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
More informationWRITING PROOFS. Christopher Heil Georgia Institute of Technology
WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this
More information6.3 Conditional Probability and Independence
222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted
More informationPractice with Proofs
Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using
More informationE3: PROBABILITY AND STATISTICS lecture notes
E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................
More information1.7 Graphs of Functions
64 Relations and Functions 1.7 Graphs of Functions In Section 1.4 we defined a function as a special type of relation; one in which each xcoordinate was matched with only one ycoordinate. We spent most
More information6.2 Permutations continued
6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of
More informationMathematical Induction
Mathematical Induction In logic, we often want to prove that every member of an infinite set has some feature. E.g., we would like to show: N 1 : is a number 1 : has the feature Φ ( x)(n 1 x! 1 x) How
More informationMathematical Induction. Mary Barnes Sue Gordon
Mathematics Learning Centre Mathematical Induction Mary Barnes Sue Gordon c 1987 University of Sydney Contents 1 Mathematical Induction 1 1.1 Why do we need proof by induction?.... 1 1. What is proof by
More informationUndergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics
Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights
More information3 Some Integer Functions
3 Some Integer Functions A Pair of Fundamental Integer Functions The integer function that is the heart of this section is the modulo function. However, before getting to it, let us look at some very simple
More informationLEARNING OBJECTIVES FOR THIS CHAPTER
CHAPTER 2 American mathematician Paul Halmos (1916 2006), who in 1942 published the first modern linear algebra book. The title of Halmos s book was the same as the title of this chapter. FiniteDimensional
More informationArkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 3 Binary Operations We are used to addition and multiplication of real numbers. These operations combine two real numbers
More informationINCIDENCEBETWEENNESS GEOMETRY
INCIDENCEBETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full
More informationBinary Adders: Half Adders and Full Adders
Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order
More informationSolutions to InClass Problems Week 4, Mon.
Massachusetts Institute of Technology 6.042J/18.062J, Fall 05: Mathematics for Computer Science September 26 Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld revised September 26, 2005, 1050 minutes Solutions
More informationSECTION 102 Mathematical Induction
73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms
More informationThis chapter is all about cardinality of sets. At first this looks like a
CHAPTER Cardinality of Sets This chapter is all about cardinality of sets At first this looks like a very simple concept To find the cardinality of a set, just count its elements If A = { a, b, c, d },
More informationMathematical Induction. Lecture 1011
Mathematical Induction Lecture 1011 Menu Mathematical Induction Strong Induction Recursive Definitions Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach
More informationGod created the integers and the rest is the work of man. (Leopold Kronecker, in an afterdinner speech at a conference, Berlin, 1886)
Chapter 2 Numbers God created the integers and the rest is the work of man. (Leopold Kronecker, in an afterdinner speech at a conference, Berlin, 1886) God created the integers and the rest is the work
More informationRegular Languages and Finite Automata
Regular Languages and Finite Automata 1 Introduction Hing Leung Department of Computer Science New Mexico State University Sep 16, 2010 In 1943, McCulloch and Pitts [4] published a pioneering work on a
More information4.5 Linear Dependence and Linear Independence
4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then
More information6.4 Normal Distribution
Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under
More informationPigeonhole Principle Solutions
Pigeonhole Principle Solutions 1. Show that if we take n + 1 numbers from the set {1, 2,..., 2n}, then some pair of numbers will have no factors in common. Solution: Note that consecutive numbers (such
More informationLINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL
Chapter 6 LINEAR INEQUALITIES 6.1 Introduction Mathematics is the art of saying many things in many different ways. MAXWELL In earlier classes, we have studied equations in one variable and two variables
More informationDiscrete Mathematics. Hans Cuypers. October 11, 2007
Hans Cuypers October 11, 2007 1 Contents 1. Relations 4 1.1. Binary relations................................ 4 1.2. Equivalence relations............................. 6 1.3. Relations and Directed Graphs.......................
More informationWHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly
More informationMath 223 Abstract Algebra Lecture Notes
Math 223 Abstract Algebra Lecture Notes Steven Tschantz Spring 2001 (Apr. 23 version) Preamble These notes are intended to supplement the lectures and make up for the lack of a textbook for the course
More information4. CLASSES OF RINGS 4.1. Classes of Rings class operator Aclosed Example 1: product Example 2:
4. CLASSES OF RINGS 4.1. Classes of Rings Normally we associate, with any property, a set of objects that satisfy that property. But problems can arise when we allow sets to be elements of larger sets
More informationMatrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws.
Matrix Algebra A. Doerr Before reading the text or the following notes glance at the following list of basic matrix algebra laws. Some Basic Matrix Laws Assume the orders of the matrices are such that
More informationDIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents
DIFFERENTIABILITY OF COMPLEX FUNCTIONS Contents 1. Limit definition of a derivative 1 2. Holomorphic functions, the CauchyRiemann equations 3 3. Differentiability of real functions 5 4. A sufficient condition
More informationMath 55: Discrete Mathematics
Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete
More informationON SOME CLASSES OF GOOD QUOTIENT RELATIONS
Novi Sad J. Math. Vol. 32, No. 2, 2002, 131140 131 ON SOME CLASSES OF GOOD QUOTIENT RELATIONS Ivica Bošnjak 1, Rozália Madarász 1 Abstract. The notion of a good quotient relation has been introduced as
More informationReal Roots of Univariate Polynomials with Real Coefficients
Real Roots of Univariate Polynomials with Real Coefficients mostly written by Christina Hewitt March 22, 2012 1 Introduction Polynomial equations are used throughout mathematics. When solving polynomials
More informationPart 1 Expressions, Equations, and Inequalities: Simplifying and Solving
Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words
More informationIf n is odd, then 3n + 7 is even.
Proof: Proof: We suppose... that 3n + 7 is even. that 3n + 7 is even. Since n is odd, there exists an integer k so that n = 2k + 1. that 3n + 7 is even. Since n is odd, there exists an integer k so that
More information1. Prove that the empty set is a subset of every set.
1. Prove that the empty set is a subset of every set. Basic Topology Written by MenGen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since
More informationStudent Outcomes. Lesson Notes. Classwork. Discussion (10 minutes)
NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 5 8 Student Outcomes Students know the definition of a number raised to a negative exponent. Students simplify and write equivalent expressions that contain
More informationBasic Probability Concepts
page 1 Chapter 1 Basic Probability Concepts 1.1 Sample and Event Spaces 1.1.1 Sample Space A probabilistic (or statistical) experiment has the following characteristics: (a) the set of all possible outcomes
More information8 Square matrices continued: Determinants
8 Square matrices continued: Determinants 8. Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You
More informationLecture 5 Principal Minors and the Hessian
Lecture 5 Principal Minors and the Hessian Eivind Eriksen BI Norwegian School of Management Department of Economics October 01, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 5 Principal Minors and
More informationSet Theory Basic Concepts and Definitions
Set Theory Basic Concepts and Definitions The Importance of Set Theory One striking feature of humans is their inherent need and ability to group objects according to specific criteria. Our prehistoric
More informationThe Fundamental Theorem of Arithmetic
The Fundamental Theorem of Arithmetic 1 Introduction: Why this theorem? Why this proof? One of the purposes of this course 1 is to train you in the methods mathematicians use to prove mathematical statements,
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
More informationIntroduction to Topology
Introduction to Topology Tomoo Matsumura November 30, 2010 Contents 1 Topological spaces 3 1.1 Basis of a Topology......................................... 3 1.2 Comparing Topologies.......................................
More information26 Integers: Multiplication, Division, and Order
26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue
More informationMultivariable Calculus and Optimization
Multivariable Calculus and Optimization Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Multivariable Calculus and Optimization 1 / 51 EC2040 Topic 3  Multivariable Calculus
More informationDigitalCommons@University of Nebraska  Lincoln
University of Nebraska  Lincoln DigitalCommons@University of Nebraska  Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 71007 Pythagorean Triples Diane Swartzlander University
More information8 Primes and Modular Arithmetic
8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.
More informationMATH 60 NOTEBOOK CERTIFICATIONS
MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5
More informationSection 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4.
Difference Equations to Differential Equations Section. The Sum of a Sequence This section considers the problem of adding together the terms of a sequence. Of course, this is a problem only if more than
More informationDiscrete Mathematics
Discrete Mathematics ChihWei Yi Dept. of Computer Science National Chiao Tung University March 16, 2009 2.1 Sets 2.1 Sets 2.1 Sets Basic Notations for Sets For sets, we ll use variables S, T, U,. We can
More informationSection 1.1 Real Numbers
. Natural numbers (N):. Integer numbers (Z): Section. Real Numbers Types of Real Numbers,, 3, 4,,... 0, ±, ±, ±3, ±4, ±,... REMARK: Any natural number is an integer number, but not any integer number is
More informationCHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.
CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,
More informationReading 13 : Finite State Automata and Regular Expressions
CS/Math 24: Introduction to Discrete Mathematics Fall 25 Reading 3 : Finite State Automata and Regular Expressions Instructors: Beck Hasti, Gautam Prakriya In this reading we study a mathematical model
More informationGeorg Cantor (18451918):
Georg Cantor (84598): The man who tamed infinity lecture by Eric Schechter Associate Professor of Mathematics Vanderbilt University http://www.math.vanderbilt.edu/ schectex/ In papers of 873 and 874,
More informationWe can express this in decimal notation (in contrast to the underline notation we have been using) as follows: 9081 + 900b + 90c = 9001 + 100c + 10b
In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should
More informationSample Induction Proofs
Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand Sample Induction Proofs Below are model solutions to some of the practice problems on the induction worksheets. The solutions given
More informationSOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties
SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces
More informationChapter 11 Number Theory
Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications
More informationBasic Concepts of Set Theory, Functions and Relations
March 1, 2006 p. 1 Basic Concepts of Set Theory, Functions and Relations 1. Basic Concepts of Set Theory...1 1.1. Sets and elements...1 1.2. Specification of sets...2 1.3. Identity and cardinality...3
More informationNotes on Determinant
ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 918/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without
More informationSpecial Situations in the Simplex Algorithm
Special Situations in the Simplex Algorithm Degeneracy Consider the linear program: Maximize 2x 1 +x 2 Subject to: 4x 1 +3x 2 12 (1) 4x 1 +x 2 8 (2) 4x 1 +2x 2 8 (3) x 1, x 2 0. We will first apply the
More informationLinear Algebra I. Ronald van Luijk, 2012
Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.
More informationThe Ideal Class Group
Chapter 5 The Ideal Class Group We will use Minkowski theory, which belongs to the general area of geometry of numbers, to gain insight into the ideal class group of a number field. We have already mentioned
More informationMATH 10034 Fundamental Mathematics IV
MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.
More informationYou know from calculus that functions play a fundamental role in mathematics.
CHPTER 12 Functions You know from calculus that functions play a fundamental role in mathematics. You likely view a function as a kind of formula that describes a relationship between two (or more) quantities.
More informationLecture 1: Systems of Linear Equations
MTH Elementary Matrix Algebra Professor Chao Huang Department of Mathematics and Statistics Wright State University Lecture 1 Systems of Linear Equations ² Systems of two linear equations with two variables
More informationMATH10040 Chapter 2: Prime and relatively prime numbers
MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive
More informationThe Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.
The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,
More informationLogic in Computer Science: Logic Gates
Logic in Computer Science: Logic Gates Lila Kari The University of Western Ontario Logic in Computer Science: Logic Gates CS2209, Applied Logic for Computer Science 1 / 49 Logic and bit operations Computers
More informationConditional Probability, Independence and Bayes Theorem Class 3, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Conditional Probability, Independence and Bayes Theorem Class 3, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of conditional probability and independence
More informationMATH10212 Linear Algebra. Systems of Linear Equations. Definition. An ndimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0534405967. Systems of Linear Equations Definition. An ndimensional vector is a row or a column
More informationSolutions of Linear Equations in One Variable
2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools
More informationQuotient Rings and Field Extensions
Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.
More informationZeros of a Polynomial Function
Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we
More information