Comments on Quotient Spaces and Quotient Maps
|
|
|
- Claud Booth
- 9 years ago
- Views:
Transcription
1 22M:132 Fall 07 J. Simon Comments on Quotient Spaces and Quotient Maps There are many situations in topology where we build a topological space by starting with some (often simpler) space[s] and doing some kind of gluing or identifications. The situations may look different at first, but really they are instances of the same general construction. In the first section below, we give some examples, without any explanation of the theoretical/technial issues. In the next section, we give the general definition of a quotient space and examples of several kinds of constructions that are all special instances of this general one. 1. Examples of building topological spaces with interesting shapes by starting with simpler spaces and doing some kind of gluing or identifications. Example 0.1. Identify the two endpoints of a line segment to form a circle. Example 0.2. Identify two opposite edges of a rectangle (i.e. a rectangular strip of paper) to form a cylinder. c J. Simon, all rights reserved page 1
2 Example 0.3. Now identify the top and bottom circles of the cylinder to each other, resulting in a 2-dimensional surface called a torus. Example 0.4. Start with a round 2-dimensional disk; identify the whole boundary circle to a single point. The result is a surface, the 2-sphere. Example 0.5.?? Take two different spheres (in particular, disjoint from each other); pick one point on each sphere and glue the two spheres together by identifying the chosen point from each. c J. Simon, all rights reserved page 2
3 Example 0.6. The set of all homeomorphisms from a space X onto itself forms a group: the operation is composition (The composition of two homeomorphisms is a homeomorphism; functional composition is associative; the identity map I : X X is the identity element in the group of homeomorphisms.) The group of all self-homeomorphisms of X may have interesting subgroups. When we specify some [sub]group of homeomorphisms of X that is isomorphic to some abstract group G, we call this an action of the group G on X. Note that in this situation, we are viewing the elements of G as homeomorphisms of X, and the group operation in G as function composition; so, in particular, for each g, h G, x X, we are insisting that (g h)(x) = g(h(x)). When we have a group G acting on a space X, there is a natural quotient space. For each x X, let Gx = {g(x) g G}. View each of these orbit sets as a single point in some new space X. 2. Definition of quotient space Suppose X is a topological space, and suppose we have some equivalence relation defined on X. Let X be the set of equivalence classes. We want to define a special topology on X, called the quotient topology. To do this, it is convenient to introduce the function π : X X defined by π(x) = [x], that is, π(x) = the equivalence class containing x.this can be confusing, so say it over to yourself a few times: π is a function from X into the power set of X; it assigns to each point x X a certain subset of X, namely the equivalence class containing the point x. Since each x X is contained in exactly one equivalence class, the function x [x] is well-defined. At the risk of belaboring the obvious, since each equivalence class has at least one member, the function π is surjective. Before talking about the quotient topology, let s look at several examples of the quotient sets X. Example 0.7. Let X = {a, b, c}, a set with 3 points. Partition X into two equivalence classes: {1, 3} and {2}. So X has two elements, call them O and T. The function π is π(1) = O, π(2) = T, π(3) = O. Example 0.8. In our previous example 0.1, one equivalence class has two elements; every other equivalence class is a singleton. Likewise, in example??, one equivalence class has two elements and all the others are singletons. Example 0.9. In our previous example 0.2, each equivalence class coming from points on the vertical edges being identified consists of two points; all other equivalence classes are singletons. c J. Simon, all rights reserved page 3
4 Example 0.10 (shrinking a set to a point). Let X be any space, and A X. The the quotient space X/A is the set of equivalence classes [x], where [x] = A if x A and [x] = {x} if x / A. The set X has one giant point A and the rest are just the points of X A. This is the situation in example 0.4 Example Let X be the real line R 1. Let G be the additive group of integers, Z. Define an action of G on R by n(x) = x + n for each n Z, x R. Here the set Gx consists of all integer translates of the point x. Note that the sets Gx do form a partition of X. That is, the relation x y there exists g G with g(x) = y is an equivalence relation on X. [Unassigned exercise: Check this claim; it depends on the fact that G is a group.] However, unlike our previous examples, it may be not so obvious what a geometric picture of X looks like: the number of points is the same as the half-open interval [0, 1); but what should the topology be?? 3. The quotient topology If we think of constructing X by actually picking up a set X and squishing some parts together, we would like the passage from X to X to be continuous. We make this precise by insisting that the projection map π : X X π(x) = [x] be continuous. This puts an obligation on the topology we assign to X : If a set U is open in X then π 1 (U) is open in X. (Think of this as an upper bound on which sets in X can be open.) We define the quotient topology on X by letting all sets U that pass this test be admitted. A set U is open in X if and only if π 1 (U) is open in X. The quotient topology on X is the finest topology on X for which the projection map π is continuous. We now have an unambiguously defined special topology on the set X of equivalence classes. But that does not mean that it is easy to recognize which topology is the right one. Going back to our example 0.6, the set of equivalence classes (i.e. orbit sets Gx) is in 1-1 correspondence with the points of the half-open interval [0, 1). But that does not imply that the quotient space, with the quotient topology, is homeomorphic to the usual [0, 1). To understand how to recognize the quotient spaces, we introduce the idea of quotient map and then develop the text s Theorem This theorem may look cryptic, but it is the tool we use to prove that when we think we know what a quotient space looks like, we are right (or to help discover that our intuitive answer is wrong). c J. Simon, all rights reserved page 4
5 4. Quotient maps Suppose p : X Y is a map such that a. p is surjective, b. p is continuous [i.e. U open in Y = p 1 open in X], and c. U Y, p 1 (U) open in X = U open in Y. In this case we say the map p is a quotient map. The last two items say that U is open in Y if and only if p 1 (U) is open in X. Theorem. If p : X Y is surjective, continuous, and an open map, the p is a quotient map. If p : X Y is surjective, continuous, and a closed map, then p is a quotient map. Proof. The proof of this theorem is left as an unassigned exercise; it is not hard, and you should know how to do it. (Consider this part of the list of sample problems for the next exam.) Remark. Note that the properties open map and closed map are independent of each other (there are maps that are one but not the other) and strictly stronger than quotient map [HW Exercise 3 page 145]. Remark (Saturated sets). A quotient map does not have to be an open map. But it does have the property that certain open sets in X are taken to open sets in Y. We say that a set V X is saturated with respect to a function f [or with respect to an equivalence relation ] if V is a union of point-inverses [resp. union of equivalence classes]. A quotient map has the property that the image of a saturated open set is open. Likewise, when defining the quotient topology, the function π : X X takes saturated open sets to open sets. Suppose now that you have a space X and an equivalence relation. You form the set of equivalence classes X and you give X the quotient topology. How can you know what the space X looks like? Let s use the group action example 0.6 to illustrate how we can answer the question. The interval [0, 1) has the right number of points. So does the circle S 1. Which is really the quotient space? It turns out S 1 is the right answer. To see this, define a map q : R S 1 by q(t) = cos(2πt), sin(2πt) R 2. We claim this function q has two properties; together, they imply (Theorem 22.2) that the quotient space of R under the action of Z is homeomorphic to S 1. a. The function q distinguishes points of the domain R exactly the same way as the equivalence relation. That is, q(x) = q(y) [x] = [y]. b. The map q is a quotient map. Proposition. In the preceding example (action of Z on R), X is homeomorphic to S 1. c J. Simon, all rights reserved page 5
6 Proof. Define a function f : S 1 X as follows: For each z S 1, f(z) = π(q 1 (z)). Because of condition (a) above, the function f is well-defined and is a bijection between S 1 and X. We next show f is continuous. Let U be an open set in X. Then π 1 (U) is an open set in R that is saturated with respect to π. By condition (a), since π and q have exactly the same point-inverses, π 1 (U) is also saturated with respect to q. But then, since q is a quotient map, q(π 1 (U)) is open in S 1. Since f 1 (U) is precisely q(π 1 (U)), we have that f 1 (U) is open. The proof that f 1 is continuous is almost identical. There is one case of quotient map that is particularly easy to recognize. Once we study compact spaces, we will have the following: Theorem. Suppose f : X Y is a continuous surjective function. If X is compact and Y is Hausdorff, then f is a quotient map. Proof. We show that f is a closed map. Let C be a closed subset of X. A closed subset of a compact space is compact, so C is compact. The continuous image of a compact set is compact, so f(c) is a compact subset of Y. A compact subset of a Hausdorff space is closed. So f(c) is closed in Y. This theorem tells us that in all of our examples above (except 0.6, where we needed a fancier proof), we have the right picture of the quotient space. [end of handout] c J. Simon, all rights reserved page 6
Introduction to Topology
Introduction to Topology Tomoo Matsumura November 30, 2010 Contents 1 Topological spaces 3 1.1 Basis of a Topology......................................... 3 1.2 Comparing Topologies.......................................
MA651 Topology. Lecture 6. Separation Axioms.
MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely
Practice with Proofs
Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using
1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
CHAPTER 1 BASIC TOPOLOGY
CHAPTER 1 BASIC TOPOLOGY Topology, sometimes referred to as the mathematics of continuity, or rubber sheet geometry, or the theory of abstract topological spaces, is all of these, but, above all, it is
FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES
FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied
Mathematical Research Letters 1, 249 255 (1994) MAPPING CLASS GROUPS ARE AUTOMATIC. Lee Mosher
Mathematical Research Letters 1, 249 255 (1994) MAPPING CLASS GROUPS ARE AUTOMATIC Lee Mosher Let S be a compact surface, possibly with the extra structure of an orientation or a finite set of distinguished
Metric Spaces Joseph Muscat 2003 (Last revised May 2009)
1 Distance J Muscat 1 Metric Spaces Joseph Muscat 2003 (Last revised May 2009) (A revised and expanded version of these notes are now published by Springer.) 1 Distance A metric space can be thought of
GROUPS ACTING ON A SET
GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear
Fixed Point Theorems in Topology and Geometry
Fixed Point Theorems in Topology and Geometry A Senior Thesis Submitted to the Department of Mathematics In Partial Fulfillment of the Requirements for the Departmental Honors Baccalaureate By Morgan Schreffler
Tree sums and maximal connected I-spaces
Tree sums and maximal connected I-spaces Adam Bartoš [email protected] Faculty of Mathematics and Physics Charles University in Prague Twelfth Symposium on General Topology Prague, July 2016 Maximal and
Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products
Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing
4. Expanding dynamical systems
4.1. Metric definition. 4. Expanding dynamical systems Definition 4.1. Let X be a compact metric space. A map f : X X is said to be expanding if there exist ɛ > 0 and L > 1 such that d(f(x), f(y)) Ld(x,
Solutions to Homework 10
Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x
FIBER PRODUCTS AND ZARISKI SHEAVES
FIBER PRODUCTS AND ZARISKI SHEAVES BRIAN OSSERMAN 1. Fiber products and Zariski sheaves We recall the definition of a fiber product: Definition 1.1. Let C be a category, and X, Y, Z objects of C. Fix also
RANDOM INTERVAL HOMEOMORPHISMS. MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis
RANDOM INTERVAL HOMEOMORPHISMS MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis This is a joint work with Lluís Alsedà Motivation: A talk by Yulij Ilyashenko. Two interval maps, applied
INCIDENCE-BETWEENNESS GEOMETRY
INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full
Metric Spaces. Chapter 7. 7.1. Metrics
Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some
A Short Proof that Compact 2-Manifolds Can Be Triangulated
Inventiones math. 5, 160--162 (1968) A Short Proof that Compact 2-Manifolds Can Be Triangulated P. H. DOYLE and D. A. MORAN* (East Lansing, Michigan) The result mentioned in the title of this paper was
MA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity
MA4001 Engineering Mathematics 1 Lecture 10 Limits and Dr. Sarah Mitchell Autumn 2014 Infinite limits If f(x) grows arbitrarily large as x a we say that f(x) has an infinite limit. Example: f(x) = 1 x
Lecture 16 : Relations and Functions DRAFT
CS/Math 240: Introduction to Discrete Mathematics 3/29/2011 Lecture 16 : Relations and Functions Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT In Lecture 3, we described a correspondence
Math 4310 Handout - Quotient Vector Spaces
Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable
The Banach-Tarski Paradox
University of Oslo MAT2 Project The Banach-Tarski Paradox Author: Fredrik Meyer Supervisor: Nadia S. Larsen Abstract In its weak form, the Banach-Tarski paradox states that for any ball in R, it is possible
A CONSTRUCTION OF THE UNIVERSAL COVER AS A FIBER BUNDLE
A CONSTRUCTION OF THE UNIVERSAL COVER AS A FIBER BUNDLE DANIEL A. RAMRAS In these notes we present a construction of the universal cover of a path connected, locally path connected, and semi-locally simply
INTRODUCTORY SET THEORY
M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,
1 Local Brouwer degree
1 Local Brouwer degree Let D R n be an open set and f : S R n be continuous, D S and c R n. Suppose that the set f 1 (c) D is compact. (1) Then the local Brouwer degree of f at c in the set D is defined.
A Topology Primer. Preface. Lecture Notes 2001/2002. Klaus Wirthmüller. http://www.mathematik.uni-kl.de/ wirthm/de/top.html
A Topology Primer Lecture Notes 2001/2002 Klaus Wirthmüller http://www.mathematik.uni-kl.de/ wirthm/de/top.html Preface These lecture notes were written to accompany my introductory courses of topology
Finite dimensional topological vector spaces
Chapter 3 Finite dimensional topological vector spaces 3.1 Finite dimensional Hausdorff t.v.s. Let X be a vector space over the field K of real or complex numbers. We know from linear algebra that the
Geometric Transformations
Geometric Transformations Definitions Def: f is a mapping (function) of a set A into a set B if for every element a of A there exists a unique element b of B that is paired with a; this pairing is denoted
G = G 0 > G 1 > > G k = {e}
Proposition 49. 1. A group G is nilpotent if and only if G appears as an element of its upper central series. 2. If G is nilpotent, then the upper central series and the lower central series have the same
INTRODUCTION TO TOPOLOGY
INTRODUCTION TO TOPOLOGY ALEX KÜRONYA In preparation January 24, 2010 Contents 1. Basic concepts 1 2. Constructing topologies 13 2.1. Subspace topology 13 2.2. Local properties 18 2.3. Product topology
TOPOLOGY: THE JOURNEY INTO SEPARATION AXIOMS
TOPOLOGY: THE JOURNEY INTO SEPARATION AXIOMS VIPUL NAIK Abstract. In this journey, we are going to explore the so called separation axioms in greater detail. We shall try to understand how these axioms
Smooth functions statistics
Smooth functions statistics V. I. rnold To describe the topological structure of a real smooth function one associates to it the graph, formed by the topological variety, whose points are the connected
x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1
Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs
Lemma 5.2. Let S be a set. (1) Let f and g be two permutations of S. Then the composition of f and g is a permutation of S.
Definition 51 Let S be a set bijection f : S S 5 Permutation groups A permutation of S is simply a Lemma 52 Let S be a set (1) Let f and g be two permutations of S Then the composition of f and g is a
3. Prime and maximal ideals. 3.1. Definitions and Examples.
COMMUTATIVE ALGEBRA 5 3.1. Definitions and Examples. 3. Prime and maximal ideals Definition. An ideal P in a ring A is called prime if P A and if for every pair x, y of elements in A\P we have xy P. Equivalently,
Logic, Combinatorics and Topological Dynamics, II
Logic, Combinatorics and Topological Dynamics, II Alexander S. Kechris January 9, 2009 Part II. Generic symmetries Generic properties Let X be a topological space and P X a subset of X viewed as a property
Point Set Topology. A. Topological Spaces and Continuous Maps
Point Set Topology A. Topological Spaces and Continuous Maps Definition 1.1 A topology on a set X is a collection T of subsets of X satisfying the following axioms: T 1.,X T. T2. {O α α I} T = α IO α T.
1. The volume of the object below is 186 cm 3. Calculate the Length of x. (a) 3.1 cm (b) 2.5 cm (c) 1.75 cm (d) 1.25 cm
Volume and Surface Area On the provincial exam students will need to use the formulas for volume and surface area of geometric solids to solve problems. These problems will not simply ask, Find the volume
INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS
INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem
9. Quotient Groups Given a group G and a subgroup H, under what circumstances can we find a homomorphism φ: G G ', such that H is the kernel of φ?
9. Quotient Groups Given a group G and a subgroup H, under what circumstances can we find a homomorphism φ: G G ', such that H is the kernel of φ? Clearly a necessary condition is that H is normal in G.
f(x) = g(x), if x A h(x), if x B.
1. Piecewise Functions By Bryan Carrillo, University of California, Riverside We can create more complicated functions by considering Piece-wise functions. Definition: Piecewise-function. A piecewise-function
TOPOLOGY OF SINGULAR FIBERS OF GENERIC MAPS
TOPOLOGY OF SINGULAR FIBERS OF GENERIC MAPS OSAMU SAEKI Dedicated to Professor Yukio Matsumoto on the occasion of his 60th birthday Abstract. We classify singular fibers of C stable maps of orientable
Conditional Probability, Independence and Bayes Theorem Class 3, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Conditional Probability, Independence and Bayes Theorem Class 3, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of conditional probability and independence
Mathematical Induction
Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,
Inner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
Math 1B, lecture 5: area and volume
Math B, lecture 5: area and volume Nathan Pflueger 6 September 2 Introduction This lecture and the next will be concerned with the computation of areas of regions in the plane, and volumes of regions in
SPERNER S LEMMA AND BROUWER S FIXED POINT THEOREM
SPERNER S LEMMA AND BROUWER S FIXED POINT THEOREM ALEX WRIGHT 1. Intoduction A fixed point of a function f from a set X into itself is a point x 0 satisfying f(x 0 ) = x 0. Theorems which establish the
I. GROUPS: BASIC DEFINITIONS AND EXAMPLES
I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called
3 Contour integrals and Cauchy s Theorem
3 ontour integrals and auchy s Theorem 3. Line integrals of complex functions Our goal here will be to discuss integration of complex functions = u + iv, with particular regard to analytic functions. Of
TOPIC 4: DERIVATIVES
TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the
Homework # 3 Solutions
Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8
Arrangements And Duality
Arrangements And Duality 3.1 Introduction 3 Point configurations are tbe most basic structure we study in computational geometry. But what about configurations of more complicated shapes? For example,
FIBRATION SEQUENCES AND PULLBACK SQUARES. Contents. 2. Connectivity and fiber sequences. 3
FIRTION SEQUENES ND PULLK SQURES RY MLKIEWIH bstract. We lay out some foundational facts about fibration sequences and pullback squares of topological spaces. We pay careful attention to connectivity ranges
Real Roots of Univariate Polynomials with Real Coefficients
Real Roots of Univariate Polynomials with Real Coefficients mostly written by Christina Hewitt March 22, 2012 1 Introduction Polynomial equations are used throughout mathematics. When solving polynomials
Prime Factorization 0.1. Overcoming Math Anxiety
0.1 Prime Factorization 0.1 OBJECTIVES 1. Find the factors of a natural number 2. Determine whether a number is prime, composite, or neither 3. Find the prime factorization for a number 4. Find the GCF
Outline 2.1 Graph Isomorphism 2.2 Automorphisms and Symmetry 2.3 Subgraphs, part 1
GRAPH THEORY LECTURE STRUCTURE AND REPRESENTATION PART A Abstract. Chapter focuses on the question of when two graphs are to be regarded as the same, on symmetries, and on subgraphs.. discusses the concept
BANACH AND HILBERT SPACE REVIEW
BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but
Chapter 7: Products and quotients
Chapter 7: Products and quotients Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 7: Products
A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE. 1. Introduction and Preliminaries
Acta Math. Univ. Comenianae Vol. LXVI, 2(1997), pp. 285 291 285 A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE E. T. BASKORO, M. MILLER and J. ŠIRÁŇ Abstract. It is well known that Moore digraphs do
THE DIMENSION OF A VECTOR SPACE
THE DIMENSION OF A VECTOR SPACE KEITH CONRAD This handout is a supplementary discussion leading up to the definition of dimension and some of its basic properties. Let V be a vector space over a field
Lecture 17 : Equivalence and Order Relations DRAFT
CS/Math 240: Introduction to Discrete Mathematics 3/31/2011 Lecture 17 : Equivalence and Order Relations Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last lecture we introduced the notion
6.2 Permutations continued
6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of
Surface bundles over S 1, the Thurston norm, and the Whitehead link
Surface bundles over S 1, the Thurston norm, and the Whitehead link Michael Landry August 16, 2014 The Thurston norm is a powerful tool for studying the ways a 3-manifold can fiber over the circle. In
1. Prove that the empty set is a subset of every set.
1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: [email protected] Proof: For any element x of the empty set, x is also an element of every set since
Math 231b Lecture 35. G. Quick
Math 231b Lecture 35 G. Quick 35. Lecture 35: Sphere bundles and the Adams conjecture 35.1. Sphere bundles. Let X be a connected finite cell complex. We saw that the J-homomorphism could be defined by
PSEUDOARCS, PSEUDOCIRCLES, LAKES OF WADA AND GENERIC MAPS ON S 2
PSEUDOARCS, PSEUDOCIRCLES, LAKES OF WADA AND GENERIC MAPS ON S 2 Abstract. We prove a Bruckner-Garg type theorem for the fiber structure of a generic map from a continuum X into the unit interval I. We
G. GRAPHING FUNCTIONS
G. GRAPHING FUNCTIONS To get a quick insight int o how the graph of a function looks, it is very helpful to know how certain simple operations on the graph are related to the way the function epression
No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics
No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results
COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction
COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH ZACHARY ABEL 1. Introduction In this survey we discuss properties of the Higman-Sims graph, which has 100 vertices, 1100 edges, and is 22 regular. In fact
Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson
Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement
ON SELF-INTERSECTIONS OF IMMERSED SURFACES
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 126, Number 12, December 1998, Pages 3721 3726 S 0002-9939(98)04456-6 ON SELF-INTERSECTIONS OF IMMERSED SURFACES GUI-SONG LI (Communicated by Ronald
Metric Spaces. Chapter 1
Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence
Chapter 13: Basic ring theory
Chapter 3: Basic ring theory Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 3: Basic ring
FACTORING AFTER DEDEKIND
FACTORING AFTER DEDEKIND KEITH CONRAD Let K be a number field and p be a prime number. When we factor (p) = po K into prime ideals, say (p) = p e 1 1 peg g, we refer to the data of the e i s, the exponents
MULTIPLE INTEGRALS. h 2 (y) are continuous functions on [c, d] and let f(x, y) be a function defined on R. Then
MULTIPLE INTEGALS 1. ouble Integrals Let be a simple region defined by a x b and g 1 (x) y g 2 (x), where g 1 (x) and g 2 (x) are continuous functions on [a, b] and let f(x, y) be a function defined on.
How To Understand The Theory Of Differential Geometry
Chapter 23 Fiber bundles Consider a manifold M with the tangent bundle T M = P M T P M. Let us look at this more closely. T M can be thought of as the original manifold M with a tangent space stuck at
CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.
CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,
The GED math test gives you a page of math formulas that
Math Smart 643 The GED Math Formulas The GED math test gives you a page of math formulas that you can use on the test, but just seeing the formulas doesn t do you any good. The important thing is understanding
S on n elements. A good way to think about permutations is the following. Consider the A = 1,2,3, 4 whose elements we permute with the P =
Section 6. 1 Section 6. Groups of Permutations: : The Symmetric Group Purpose of Section: To introduce the idea of a permutation and show how the set of all permutations of a set of n elements, equipped
POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS
POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS RUSS WOODROOFE 1. Unique Factorization Domains Throughout the following, we think of R as sitting inside R[x] as the constant polynomials (of degree 0).
An algorithmic classification of open surfaces
An algorithmic classification of open surfaces Sylvain Maillot January 8, 2013 Abstract We propose a formulation for the homeomorphism problem for open n-dimensional manifolds and use the Kerekjarto classification
FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.
FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is
Selected practice exam solutions (part 5, item 2) (MAT 360)
Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On
Let H and J be as in the above lemma. The result of the lemma shows that the integral
Let and be as in the above lemma. The result of the lemma shows that the integral ( f(x, y)dy) dx is well defined; we denote it by f(x, y)dydx. By symmetry, also the integral ( f(x, y)dx) dy is well defined;
(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9
Homework #01, due 1/20/10 = 9.1.2, 9.1.4, 9.1.6, 9.1.8, 9.2.3 Additional problems for study: 9.1.1, 9.1.3, 9.1.5, 9.1.13, 9.2.1, 9.2.2, 9.2.4, 9.2.5, 9.2.6, 9.3.2, 9.3.3 9.1.1 (This problem was not assigned
Offline sorting buffers on Line
Offline sorting buffers on Line Rohit Khandekar 1 and Vinayaka Pandit 2 1 University of Waterloo, ON, Canada. email: [email protected] 2 IBM India Research Lab, New Delhi. email: [email protected]
Triangle deletion. Ernie Croot. February 3, 2010
Triangle deletion Ernie Croot February 3, 2010 1 Introduction The purpose of this note is to give an intuitive outline of the triangle deletion theorem of Ruzsa and Szemerédi, which says that if G = (V,
The Mean Value Theorem
The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers
1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ]
1 Homework 1 (1) Prove the ideal (3,x) is a maximal ideal in Z[x]. SOLUTION: Suppose we expand this ideal by including another generator polynomial, P / (3, x). Write P = n + x Q with n an integer not
CROSS-EFFECTS OF HOMOTOPY FUNCTORS AND SPACES OF TREES. WARNING: This paper is a draft and has not been fully checked for errors.
CROSS-EFFECTS OF HOMOTOPY FUNCTORS AND SPACES OF TREES MICHAEL CHING WARNING: This paper is a draft and has not been full checked for errors. 1. Total homotop fibres of cubes of based spaces Definition
SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties
SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces
ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS
ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS DANIEL RABAYEV AND JACK SONN Abstract. Let f(x) be a monic polynomial in Z[x] with no rational roots but with roots in Q p for
Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees
Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees Apex in a pyramid or cone, the vertex opposite the base; in
Lecture 4: BK inequality 27th August and 6th September, 2007
CSL866: Percolation and Random Graphs IIT Delhi Amitabha Bagchi Scribe: Arindam Pal Lecture 4: BK inequality 27th August and 6th September, 2007 4. Preliminaries The FKG inequality allows us to lower bound
Mathematical Methods of Engineering Analysis
Mathematical Methods of Engineering Analysis Erhan Çinlar Robert J. Vanderbei February 2, 2000 Contents Sets and Functions 1 1 Sets................................... 1 Subsets.............................
Lecture Notes on Topology for MAT3500/4500 following J. R. Munkres textbook. John Rognes
Lecture Notes on Topology for MAT3500/4500 following J. R. Munkres textbook John Rognes November 29th 2010 Contents Introduction v 1 Set Theory and Logic 1 1.1 ( 1) Fundamental Concepts..............................
Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate
