Georg Cantor and Set Theory
|
|
|
- Georgiana McCormick
- 9 years ago
- Views:
Transcription
1 Georg Cantor and Set Theory. Life Father, Georg Waldemar Cantor, born in Denmark, successful merchant, and stock broker in St Petersburg. Mother, Maria Anna Böhm, was Russian. In 856, because of father s poor health, family moved to Germany. Georg graduated from high school in 860 with an outstanding report, which mentioned in particular his exceptional skills in mathematics, in particular trigonometry. Höhere Gewerbeschule in Darmstadt from 860, Polytechnic of Zürich in 86. Cantor s father wanted Cantor to become:-... a shining star in the engineering firmament. 86: Cantor got his father s permission to study mathematics. Father died. 86 Cantor moved to the University of Berlin where he attended lectures by Weierstrass, Kummer and Kronecker. Dissertation on number theory in 867. Teacher in a girls school. Professor at Halle in 87. Friendship with Richard Dedekind.
2 874: marriage with Vally Guttmann, a friend of his sister. Honeymoon in Interlaken in Switzerland where Cantor spent much time in mathematical discussions with Dedekind. Starting in 877 papers in set theory. Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Theory of sets not finding the acceptance hoped for. May 884 Cantor had the first recorded attack of depression. He recovered after a few weeks but now seemed less confident. Turned toward philosophy and tried to show that Francis Bacon wrote the Shakespeare plays. International Congress of Mathematicians 897. Hurwitz openly expressed his great admiration of Cantor and proclaimed him as one by whom the theory of functions has been enriched. Jacques Hadamard expressed his opinion that the notions of the theory of sets were known and indispensable instruments. Paradoxes of set theory appear. Retirement 9, frequently ill, died of a heart attack. Hilbert:...the finest product of mathematical genius and one of the supreme achievements of purely intellectual human activity.
3 . Set Theory What do we count? the birds of a flock the fish in a school the students of the student body the students of the class of 007 the bisons of a herd the chairs in Bil 5 the students in Math 00 the members of a tribe the members of a congregation the residents of Hawaii the soldiers in a regiment a band of Indians the members of the Mafia the geese in a gaggle the members of the middle class
4 4 What are sets? flock of birds school of fish student body class of 007 herd of bison herd of sheep tribe congregation people regiment of soldiers band of Indians Mafia gaggle of geese the middle class abstraction SET. Definition.. (Cantor) By a set we are to understand any collection into a whole M of definite and separate objects m of our intuition or our thought. Notation: M = {m}. Examples. () {0,,, }. () {}, the empty set. () {(x, y) x 5y + = 0} (4) {f f is a factor of 40}
5 Definition.. Two sets are equal if and only if they contain exactly the same elements. 5 Example. {, 4} = {, 4/, } = {4, } = {6/, } Note. a = b means that a and b are names of the same object. Names contain information. Definition.. A pair (a, b) of objects a, b is defined to be (a, b) = {{a}, {a, b}}. Lemma.4. (a, b) = (a, b ) if and only if a = a and b = b.
6 6 Set builder scheme. S = {x U P (x)} S is the set consisting of all elements x in the universe U such that the condition P (x) is satisfied. {n Z 0 n 5} = {0,,,, 4, 5}. {f N f is a factor of 60 = 5} = {, 5,, 5,, 0, 6, 0, 4, 0,, 60}. {(x, y) x 6 + y 9 = } is an ellipse in a Cartesian coordinate system.
7 What is counting? We know certain sets very well, e.g., sets of fingers. We understand more fingers, fewer fingers. We can compare arbitrary sets with sets of fingers by matching them with sets of fingers. We can compare arbitrary sets with other arbitrary sets and arrive at the concepts same size, more elements, fewer elements. This is the first abstraction according to Cantor. We invent numbers to go with our model sets, e.g. a hand has five fingers. This is the second abstraction according to Cantor. There is nothing sacred or natural about the names and symbols used for these counting numbers. Numerals and numeration schemes were developed to measure the size or count of any (finite) set. Definition.5. A set A is finite if it can be matched with an initial segment of N, say {,,..., n}, and if so, we say that the count of A is n. Notation: A = n. 7
8 8 The arithmetic of counting numbers Why is + 4 = 7? We take a set of three elements, say {a, b, c} and a disjoint set with four elements, say, {d, e, f, g}, and combine them into a new set {a, b, c, d, e, f, g} and count to get 7. This is why + 4 = 7. Why is = 6? We take a set of two elements, say {a, b} and a set with three elements, say, {a, b, c}, and form all pairs { } (a, a) (a, b) (a, c) (b, a) (b, b) (b, c) and count to get 6. This is why = 6. Definition.6. Let m, n N. Choose disjoint sets A and B such that A = m and B = n. Then, by definition, m+n = A B and m n = A B where A B = {(a, b) a A, b B}, the Cartesian Product of A and B.
9 Transfinite cardinals and cardinal arithmetic Carl Friedrich Gauss in a letter: I protest against an infinite quantity as an actual entity; this is never allowed in mathematics. The infinite is only a manner of speaking. Definition.7. Two sets M and N are said to contain the same number of elements if the elements of M and N can be matched one-to-one. The sets are then equinumerous. Example. N = {,,,...} and its subset of squares {,,,...} are equinumerous. The matching is given by n n, i.e., n N gets the partner n, and every square s gets the partner s. Observed by Galileo Galilei. Example. Any two closed real line segments [a, b] and [a, b ] with a < b and a < b are equipotent. Example. Any line segement [a, b] with a < b is equipotent with a square or a cube. Definition.8. A set M is countable if there is a one-to-one matching of the elements of M with the natural numbers in N. In this case the count is ℵ 0 or a. 9
10 0 Definition.9. (Cantor) Every set M has a definite power, which we also call its cardinal number. The cardinal of M is the general concept which, by means of our active faculty of thought arises from M when we make abstraction from the nature of its various elements and of the order in which they are given. We denote the result of this double act of abstraction by M.
11 The rational numbers are countable. The algebraic numbers, i.e. the numbers which are roots of polynomial equations with integer coefficients, are countable. The real numbers R are not countable. Set c = R. The idea of a one-one matching (correspondence) appears implicitly for the first time. Definition.0. An algebraic number is a number that is the root of a polynomial with integer coefficients. A transcendental number is a number that is not a root of any polynomial equation with integer coefficients. Liouville established in 85 that transcendental numbers exist. In 874 Charles Hermite proved e to be transcendental, Ferdinand Lindemann proved that π is transcendental in 88.
12 Remark. A set is matched one-to-one with N if and only if the elements can be listed in a sequence. () Counting Q = { a b a, b Z, b 0}. It suffices to list the fractions a b with a, b > 0. First list those fractions a b with a + b =, then those with a + b =, then a + b =, etc. List the fractions a b with a + b = s according to the size of the numberator. To wit: () Polynomials a n x n + + a x + a 0 linearly ordered using N = n + a n + + a + a 0. () R is NOT countable: famous diagonal argument. (4) Every subset of N is either finite or countable.
13 Proof. Start with a listing of N and omit all elements not belonging to the subset. ℵ 0 is the smallest infinite cardinal. (5) Addition and multiplication for arbitrary cardinals is defined as it was for finite cardinals, i.e., the ordinary counting numbers. (6) Laws of cardinal arithmetic (associative, commutative, distributive, etc., hold but subtraction is tricky.). (7) ℵ 0 is the smallest transfinite cardinal. (8) ℵ 0 + = ℵ 0. (Hilbert s hotel) (9) ℵ 0 + ℵ 0 = ℵ 0. (0) ℵ 0 ℵ 0 = ℵ 0. () A set is finite if it is not equinumerous with any of its (proper) parts. () A set is infinite if it is equinumerous with one of its (proper) parts. ()
14 4 Theorem.. (Cantor) The set P(X) of all subsets of a set X has a larger cardinality (number of elements) than the original set X. Proof. Suppose they have the same number of elements. Let f : X P(X) be a bijection between X and P(X). () Let D = {x X : x / f(x)}. () Since D is a subset of X and f is onto, D = f(d) for some d X. () Thus d f(d) iff (by ()) d D iff (by ()) d / f(d). This is a contradiction.
15 A problem Let U be the set of all sets. Then, for any set X, U X. But P(X) > U, a contradiction. Russel s Paradox S := {X X is a set and NOT X X}. 5 The Continuum Hypothesis The set of cardinal numbers is well-ordered, i.e. every non-void set of cardinal numbers contains a smallest element. Is c the smallest cardinal greater than a?
Georg Cantor (1845-1918):
Georg Cantor (845-98): The man who tamed infinity lecture by Eric Schechter Associate Professor of Mathematics Vanderbilt University http://www.math.vanderbilt.edu/ schectex/ In papers of 873 and 874,
CS 3719 (Theory of Computation and Algorithms) Lecture 4
CS 3719 (Theory of Computation and Algorithms) Lecture 4 Antonina Kolokolova January 18, 2012 1 Undecidable languages 1.1 Church-Turing thesis Let s recap how it all started. In 1990, Hilbert stated a
This asserts two sets are equal iff they have the same elements, that is, a set is determined by its elements.
3. Axioms of Set theory Before presenting the axioms of set theory, we first make a few basic comments about the relevant first order logic. We will give a somewhat more detailed discussion later, but
God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886)
Chapter 2 Numbers God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886) God created the integers and the rest is the work
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly
Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products
Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing
This chapter is all about cardinality of sets. At first this looks like a
CHAPTER Cardinality of Sets This chapter is all about cardinality of sets At first this looks like a very simple concept To find the cardinality of a set, just count its elements If A = { a, b, c, d },
Basic Concepts of Set Theory, Functions and Relations
March 1, 2006 p. 1 Basic Concepts of Set Theory, Functions and Relations 1. Basic Concepts of Set Theory...1 1.1. Sets and elements...1 1.2. Specification of sets...2 1.3. Identity and cardinality...3
Continued Fractions. Darren C. Collins
Continued Fractions Darren C Collins Abstract In this paper, we discuss continued fractions First, we discuss the definition and notation Second, we discuss the development of the subject throughout history
MATH10040 Chapter 2: Prime and relatively prime numbers
MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive
How many numbers there are?
How many numbers there are? RADEK HONZIK Radek Honzik: Charles University, Department of Logic, Celetná 20, Praha 1, 116 42, Czech Republic [email protected] Contents 1 What are numbers 2 1.1 Natural
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely
Continued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
CHAPTER 5. Number Theory. 1. Integers and Division. Discussion
CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a
INTRODUCTORY SET THEORY
M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,
So let us begin our quest to find the holy grail of real analysis.
1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers
Handout #1: Mathematical Reasoning
Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or
Zeros of a Polynomial Function
Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we
MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column
Mathematics Review for MS Finance Students
Mathematics Review for MS Finance Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,
Cartesian Products and Relations
Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special
Set Theory Basic Concepts and Definitions
Set Theory Basic Concepts and Definitions The Importance of Set Theory One striking feature of humans is their inherent need and ability to group objects according to specific criteria. Our prehistoric
k, then n = p2α 1 1 pα k
Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square
PYTHAGOREAN TRIPLES KEITH CONRAD
PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient
Chapter 3. Distribution Problems. 3.1 The idea of a distribution. 3.1.1 The twenty-fold way
Chapter 3 Distribution Problems 3.1 The idea of a distribution Many of the problems we solved in Chapter 1 may be thought of as problems of distributing objects (such as pieces of fruit or ping-pong balls)
CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs
CHAPTER 3 Methods of Proofs 1. Logical Arguments and Formal Proofs 1.1. Basic Terminology. An axiom is a statement that is given to be true. A rule of inference is a logical rule that is used to deduce
Math 223 Abstract Algebra Lecture Notes
Math 223 Abstract Algebra Lecture Notes Steven Tschantz Spring 2001 (Apr. 23 version) Preamble These notes are intended to supplement the lectures and make up for the lack of a textbook for the course
The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.
The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,
6.2 Permutations continued
6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of
3. Mathematical Induction
3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)
9.2 Summation Notation
9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a
SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties
SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces
Mathematical Induction
Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,
1. Prove that the empty set is a subset of every set.
1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: [email protected] Proof: For any element x of the empty set, x is also an element of every set since
THE PRIME NUMBER THEOREM AND THE RIEMANN HYPOTHESIS. A marriage of calculus and arithmetic. BERNARD RUSSO University of California, Irvine
THE PRIME NUMBER THEOREM AND THE RIEMANN HYPOTHESIS A marriage of calculus and arithmetic BERNARD RUSSO University of California, Irvine MARINA HIGH SCHOOL JUNE 7, 2011 Biographical Sketch Bernard Russo
Introduction to Topology
Introduction to Topology Tomoo Matsumura November 30, 2010 Contents 1 Topological spaces 3 1.1 Basis of a Topology......................................... 3 1.2 Comparing Topologies.......................................
FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES
FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete
26 Integers: Multiplication, Division, and Order
26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue
Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us
The Fundamental Theorem of Arithmetic
The Fundamental Theorem of Arithmetic 1 Introduction: Why this theorem? Why this proof? One of the purposes of this course 1 is to train you in the methods mathematicians use to prove mathematical statements,
a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
Regular Languages and Finite Automata
Regular Languages and Finite Automata 1 Introduction Hing Leung Department of Computer Science New Mexico State University Sep 16, 2010 In 1943, McCulloch and Pitts [4] published a pioneering work on a
1 VECTOR SPACES AND SUBSPACES
1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such
Cardinality. The set of all finite strings over the alphabet of lowercase letters is countable. The set of real numbers R is an uncountable set.
Section 2.5 Cardinality (another) Definition: The cardinality of a set A is equal to the cardinality of a set B, denoted A = B, if and only if there is a bijection from A to B. If there is an injection
March 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions
MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial
Mathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
Lecture 1. Basic Concepts of Set Theory, Functions and Relations
September 7, 2005 p. 1 Lecture 1. Basic Concepts of Set Theory, Functions and Relations 0. Preliminaries...1 1. Basic Concepts of Set Theory...1 1.1. Sets and elements...1 1.2. Specification of sets...2
SECTION 10-2 Mathematical Induction
73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms
Computability Theory
CSC 438F/2404F Notes (S. Cook and T. Pitassi) Fall, 2014 Computability Theory This section is partly inspired by the material in A Course in Mathematical Logic by Bell and Machover, Chap 6, sections 1-10.
ALGEBRAIC APPROACH TO COMPOSITE INTEGER FACTORIZATION
ALGEBRAIC APPROACH TO COMPOSITE INTEGER FACTORIZATION Aldrin W. Wanambisi 1* School of Pure and Applied Science, Mount Kenya University, P.O box 553-50100, Kakamega, Kenya. Shem Aywa 2 Department of Mathematics,
7 Relations and Functions
7 Relations and Functions In this section, we introduce the concept of relations and functions. Relations A relation R from a set A to a set B is a set of ordered pairs (a, b), where a is a member of A,
MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.
MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar
Linear Algebra I. Ronald van Luijk, 2012
Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.
Math 4310 Handout - Quotient Vector Spaces
Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable
Stanford Math Circle: Sunday, May 9, 2010 Square-Triangular Numbers, Pell s Equation, and Continued Fractions
Stanford Math Circle: Sunday, May 9, 00 Square-Triangular Numbers, Pell s Equation, and Continued Fractions Recall that triangular numbers are numbers of the form T m = numbers that can be arranged in
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize
1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain
Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is
Similarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
LEARNING OBJECTIVES FOR THIS CHAPTER
CHAPTER 2 American mathematician Paul Halmos (1916 2006), who in 1942 published the first modern linear algebra book. The title of Halmos s book was the same as the title of this chapter. Finite-Dimensional
Answer Key for California State Standards: Algebra I
Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.
Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov [email protected]
Polynomials Alexander Remorov [email protected] Warm-up Problem 1: Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) such that f(x)f(x + 1) = g(h(x)).
CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY
January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.
GRE Prep: Precalculus
GRE Prep: Precalculus Franklin H.J. Kenter 1 Introduction These are the notes for the Precalculus section for the GRE Prep session held at UCSD in August 2011. These notes are in no way intended to teach
I. GROUPS: BASIC DEFINITIONS AND EXAMPLES
I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called
Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics
Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights
Lecture 16 : Relations and Functions DRAFT
CS/Math 240: Introduction to Discrete Mathematics 3/29/2011 Lecture 16 : Relations and Functions Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT In Lecture 3, we described a correspondence
MCS 563 Spring 2014 Analytic Symbolic Computation Wednesday 9 April. Hilbert Polynomials
Hilbert Polynomials For a monomial ideal, we derive the dimension counting the monomials in the complement, arriving at the notion of the Hilbert polynomial. The first half of the note is derived from
Notes on Richard Dedekind s Was sind und was sollen die Zahlen?
Notes on Richard Dedekind s Was sind und was sollen die Zahlen? David E. Joyce, Clark University December 2005 Contents Introduction 2 I. Sets and their elements. 2 II. Functions on a set. 5 III. One-to-one
The Chinese Remainder Theorem
The Chinese Remainder Theorem Evan Chen [email protected] February 3, 2015 The Chinese Remainder Theorem is a theorem only in that it is useful and requires proof. When you ask a capable 15-year-old why
HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!
Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following
Solving Rational Equations
Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,
Algebraic and Transcendental Numbers
Pondicherry University July 2000 Algebraic and Transcendental Numbers Stéphane Fischler This text is meant to be an introduction to algebraic and transcendental numbers. For a detailed (though elementary)
THE DIMENSION OF A VECTOR SPACE
THE DIMENSION OF A VECTOR SPACE KEITH CONRAD This handout is a supplementary discussion leading up to the definition of dimension and some of its basic properties. Let V be a vector space over a field
AN INTRODUCTION TO SET THEORY. Professor William A. R. Weiss
AN INTRODUCTION TO SET THEORY Professor William A. R. Weiss October 2, 2008 2 Contents 0 Introduction 7 1 LOST 11 2 FOUND 19 3 The Axioms of Set Theory 23 4 The Natural Numbers 31 5 The Ordinal Numbers
Introduction to Theory of Computation
Introduction to Theory of Computation Prof. (Dr.) K.R. Chowdhary Email: [email protected] Formerly at department of Computer Science and Engineering MBM Engineering College, Jodhpur Tuesday 28 th
8 Primes and Modular Arithmetic
8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.
CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12
CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.
Today s Topics. Primes & Greatest Common Divisors
Today s Topics Primes & Greatest Common Divisors Prime representations Important theorems about primality Greatest Common Divisors Least Common Multiples Euclid s algorithm Once and for all, what are prime
JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson
JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials
Lemma 5.2. Let S be a set. (1) Let f and g be two permutations of S. Then the composition of f and g is a permutation of S.
Definition 51 Let S be a set bijection f : S S 5 Permutation groups A permutation of S is simply a Lemma 52 Let S be a set (1) Let f and g be two permutations of S Then the composition of f and g is a
11 Multivariate Polynomials
CS 487: Intro. to Symbolic Computation Winter 2009: M. Giesbrecht Script 11 Page 1 (These lecture notes were prepared and presented by Dan Roche.) 11 Multivariate Polynomials References: MC: Section 16.6
Follow links for Class Use and other Permissions. For more information send email to: [email protected]
COPYRIGHT NOTICE: Ariel Rubinstein: Lecture Notes in Microeconomic Theory is published by Princeton University Press and copyrighted, c 2006, by Princeton University Press. All rights reserved. No part
0.8 Rational Expressions and Equations
96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to
Math at a Glance for April
Audience: School Leaders, Regional Teams Math at a Glance for April The Math at a Glance tool has been developed to support school leaders and region teams as they look for evidence of alignment to Common
Orthogonal Diagonalization of Symmetric Matrices
MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding
Perfect! A proper factor of a number is any factor of the number except the number itself. You can use proper factors to classify numbers.
Black Prime Factorization Perfect! A proper factor of a number is any factor of the number except the number itself. You can use proper factors to classify numbers. A number is abundant if the sum of its
The Mean Value Theorem
The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers
We can express this in decimal notation (in contrast to the underline notation we have been using) as follows: 9081 + 900b + 90c = 9001 + 100c + 10b
In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should
Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of.
Polynomial and Rational Functions Outline 3-1 Polynomial Functions 3-2 Finding Rational Zeros of Polynomials 3-3 Approximating Real Zeros of Polynomials 3-4 Rational Functions Chapter 3 Group Activity:
DEGREES OF ORDERS ON TORSION-FREE ABELIAN GROUPS
DEGREES OF ORDERS ON TORSION-FREE ABELIAN GROUPS ASHER M. KACH, KAREN LANGE, AND REED SOLOMON Abstract. We construct two computable presentations of computable torsion-free abelian groups, one of isomorphism
Chapter 11 Number Theory
Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications
Math 115A - Week 1 Textbook sections: 1.1-1.6 Topics covered: What is a vector? What is a vector space? Span, linear dependence, linear independence
Math 115A - Week 1 Textbook sections: 1.1-1.6 Topics covered: What is Linear algebra? Overview of course What is a vector? What is a vector space? Examples of vector spaces Vector subspaces Span, linear
CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.
CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,
Set theory as a foundation for mathematics
V I I I : Set theory as a foundation for mathematics This material is basically supplementary, and it was not covered in the course. In the first section we discuss the basic axioms of set theory and the
