Introduction to Theory of Computation
|
|
|
- Maud Bishop
- 9 years ago
- Views:
Transcription
1 Introduction to Theory of Computation Prof. (Dr.) K.R. Chowdhary Formerly at department of Computer Science and Engineering MBM Engineering College, Jodhpur Tuesday 28 th July, 2015 kr chowdhary TOC 1/ 17
2 Books Introduction to Theory of Computation, by Michael Sipser, Thompson Publication Introduction to Automata Theory, Languages, and Computation, by Hpcroft, motwani, Ullman, Pearson Education Introduction to languages and Theory of computation, Martin, Tata McGrawHill Introduction to formal languages, Automata Theory and Computation, Kamala Krithivasan, Pearson kr chowdhary TOC 2/ 17
3 What is TOC? The TOC is that knowledge of computer science, which does not change with time & technology. The course is divided into: 1 Theory of automata: Every process (including computing) can be divided into discrete sequence of states, where there is always start state, and there is a final state, with in between states. In this category, we may consider the computation, and growth of life, and even the planatary motions. All these systems are automata. The concept of automata was given by Von Neumann, in 1940s, in the form of cellular automata. 2 Theory of languages: Under this comes all types of grammars - computers languages grammars, spoken languages grammars, and yet unknown grammars, and all corresponding languages. The concept of generative grammar was given first time by Prof. Noam Chomsky, in 1956, now a professor of Linguistics at Harvard. 3 Theory of Computation: The contributors are Kurt Godel, Alonzo Church, Alan Turing, Kleene. However, the maximum contribution is due to Alan Turing, who gave the concept of Turing machine in his 1936 paper (much before the computers came into existence). kr chowdhary TOC 3/ 17
4 What is TOC? TOC attempts to establish a theory to all subjects of cs, just like classical dynamics to motion of objects Solvability of a problem existence of algorithm. TOC says that some problems are unsolvable, e.g., Russell s Paradox, given by {x x / x} TOC deals with Physical limits of computing, Methodologies of algorithm design, etc. CS is : Science of algorithm processing, representation, storage, transmission of information Nature of problems we deal with are classified based on their level of difficulty for computer,i.e., complexity Application of computer theory: writing programs to construct compilers, assemblers, OS,..., and languages kr chowdhary TOC 4/ 17
5 Meta-Theory and Proofs Meta Theory: Theory about the theory (mathematics) - Defines what is computable: A thing is computable if it can be representable by an algorithm. - Defines the Limits of computation Proofs: Establishing that a statement is valid. One approach is: a statement is valid if there is no counter example. e.g., All even integers are divisible by 2 is valid. Proof by contradiction: find at least a single case, where this is not true. Other approaches are: 1 Proofs by Deduction: Taking one value, then iterating is proof by induction. 2 Proof by Induction: Execution of a sequence of program statements is deductive proof kr chowdhary TOC 5/ 17
6 Functions f :D R for a,b D,f(a)=f(b) a=b;f is injection or one-to-one mapping. for each b R, there is always a D such that f(a)=b;f is surjection (onto) A relation which is both injection and surjection is called bijection. Defining Natural Numbers 0={}=φ 0 + =1={elements of 0, set 0 as element}={φ} 1 + =2={φ,{φ}} 2 + =3= kr chowdhary TOC 6/ 17
7 Infinite sets Hence, i)0 N ii)if n N, n + N If there is a bijection between any set A and set n N,then A is finite, alternatively, If there is a bijection between any set A and set N, then A is infinite, You can add any thing into an infinite, it results infinite only. Example: Hilbert s Hotel: To accommodate more guests in this hotel, (say 1), push occupant of room 1 into 2, of 2 into room 3, and so on. The room 1 is vacated, and ready for new guest. You can subtract any thing from infinity, it remains infinity. For example, you can map 40 onwards to infinity. For example, 40 1,41 2,43 3,... kr chowdhary TOC 7/ 17
8 Diagonalization Theorem Theorem There is no bijection between infinite sets N and R. Proof. Assume that f :N R is bijection,, N R 0 0.b 00 b 01 b b 10 b 11 b b 20 b 21 b i 0.b i0 b i1 b i2... Therefore this list of R is exhaustive. b ij {0,1} Now consider the number, x =0. b 00 b 11 b 22...Ṡince x is new, hence the list of R is not exhaustive, this contradicts the assumption. Thus, the mapping is not bijection. R is uncountably infinite. kr chowdhary TOC 8/ 17
9 Cantor s Theorem Theorem For f :A (A),f is not surjection. Proof. Assume that f is surjection. Since (A) are all subsets of A, consider B A, as an image of an element of A, which does not include the element itself., B ={a A a / f(a)} Thus, for every a A, we have a B iff a / f(a). B f(a), for all a A. Thus, B is not in the image of f. This contracts our assumption that we considered in the beginning of this proof. Hence, this proves that f is not a surjection, and hence not a bijection also. kr chowdhary TOC 9/ 17
10 Cantor s Theorem for infinite sets Theorem For f :N (N),f is not surjection. Proof. Assume that f is surjection, to ultimately contradict it. Consider now: N (N) 0 {5} 1 {2,3} 2 {1,2,5} 3 {2,4,8} We call the mapping between 2 and {1,2,5} as selfish, and between 1 and {2,3} as nonselfish. Next we build a special set D of nonselfish numbers, to arrive at contradiction. Naturally, D (N). And, D ={d d N,d / f(d)}. D f(d) (i.e., D is not any image!).this is contradiction. This shows that f is not surjection. (Note: Compare this with previous). kr chowdhary TOC 10/ 17
11 Functions f :D R +:int int int :S 1 S 2 {T,F} Total Function: defined over the entire domain f :x 2x,x N,N={0,1,2,...} Partial Function: defined over some domain points only. f :x 2/x,x N A partial function can be used to model an iteration or infinite loops. f(x) : if (x==0) then 1 else f(x) kr chowdhary TOC 11/ 17
12 Strings a,b,c,d,... for individual alphabets x,y,z,w,... for variable names for strings We use symbol Σ for alphabet set for languages, e.g. Σ={a,b}. Set of all strings on the alphabet set Σ are represented by Σ (Kleene Star). Strings have only one operation:concatenation. E.g., x y, ε x =x ε =x Semigraoups are algebraic systems which are closed on some binary operation, and have the property of associativity. For example, S,, such that for a,b S, there is a b S. The semigroup is an algebra. It can be helpful in mapping all the string operations in computer to this algebra so that they can be formally treated, without technology boundaries of computers. Monoid is semigroup with a neutral element. E.g., M,,1 is a Monoid with multiplication operation. kr chowdhary TOC 12/ 17
13 Languages language: set of words (or strings) defined over some alphabet. These words are simpler form of sentences. For example, {aab,bba,abbbb,ε,baaa},{ε,a,bbbb,aaa},φ are the languages over the alphabet set Σ={a,b}. {0,1,00,01,10,11,000,001,...} is an infinite language over Σ={0,1}, which contains all the binary words. L 1 ={w Σ w has property P} L 2 ={}; language with no sentences L ε ={ε}; language with single null sentence Let Σ={a,b}, then Σ ={ε,a,b,aa,ab,ba,bb,aaa,...} L 3 ={a,ab,ba,aaa} is finite language L 4 ={a p p is prime}, L 5 ={a i b i i N} L 3,L 4,L 5 Σ. L 6 ={a i b i c i i N} kr chowdhary TOC 13/ 17
14 Representation of Languages Strings oveer Σ are countably infinite. Say N Languages over Σ are 2 Σ, which is uncountably infinite, say N. Think of the mapping, f :N N. It is not bijection, as N>N., some languages cannot be represented! (what ever tools, and methods may be used. Also, it cannot be possible to design machines to recognize some languages, what ever may be advancement of technology or science!) Algorithmic problems: A:Σ 1 Σ 2 ; A is an algorithm which maps input strings to output, in some complex manner. if x A(x)=B(x), A B, i.e., if two algorithms A and B produce same output for same input, then they are equal. kr chowdhary TOC 14/ 17
15 Operations on Languages Let L 1,L 2 be languages over the same alphabet Σ, then there are following operations on L 1,L 2 : L 1 L 2 ={w w L 1 or w L 2 } L 1 L 2 ={w =xy x L 1,y L 2 } L 1 ={w Σ w / L 1 } L k 1 =(L 1 L 1 )...L 1 } {{ }, k-times, with L0 1 ={ε} L 1 ={w Σ k 0,w L k 1 }. This is called Kleene Star of language L 1. L + 1 ={w Σ k 1,w L k 1 }. kr chowdhary TOC 15/ 17
16 Conclusion By study of theory of computation, we reach to important conclusions in computation, like from thermodynamic we conclude that perpetual machines cannot be made The course gives treatment to the subject, independent of technology. What problems we can solve by computers? 1 Those, that produce a definite output: e.g., sorting the numbers 2 Those that produce Y/N : Called Membership Problem, e.g., Is x A? 3 Another, e.g., given a C program, to determine whether it will halt on so and so given input? (Halting Problem) - unsolvable. kr chowdhary TOC 16/ 17
17 Bibliography John C. Martin, Introduction to Languages and Theory of Computation, McGraw-Hill. Mishra and Chandrashekharan, Theory of Computer Science (Automata, Languages, and Computation),PHI, India Sipster, Introduction to Theory of Computation, Thompson Press. John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Introduction to Automata Theory, Languages, and Computation, Pearson Press, India. Christos H. Papadimitriou and Harry Lewis, Elements of the Theory of Computation (2nd Edition), Pearson Press, India. kr chowdhary TOC 17/ 17
Cardinality. The set of all finite strings over the alphabet of lowercase letters is countable. The set of real numbers R is an uncountable set.
Section 2.5 Cardinality (another) Definition: The cardinality of a set A is equal to the cardinality of a set B, denoted A = B, if and only if there is a bijection from A to B. If there is an injection
2110711 THEORY of COMPUTATION
2110711 THEORY of COMPUTATION ATHASIT SURARERKS ELITE Athasit Surarerks ELITE Engineering Laboratory in Theoretical Enumerable System Computer Engineering, Faculty of Engineering Chulalongkorn University
CS 3719 (Theory of Computation and Algorithms) Lecture 4
CS 3719 (Theory of Computation and Algorithms) Lecture 4 Antonina Kolokolova January 18, 2012 1 Undecidable languages 1.1 Church-Turing thesis Let s recap how it all started. In 1990, Hilbert stated a
Computability Theory
CSC 438F/2404F Notes (S. Cook and T. Pitassi) Fall, 2014 Computability Theory This section is partly inspired by the material in A Course in Mathematical Logic by Bell and Machover, Chap 6, sections 1-10.
Formal Languages and Automata Theory - Regular Expressions and Finite Automata -
Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March
Notes on Complexity Theory Last updated: August, 2011. Lecture 1
Notes on Complexity Theory Last updated: August, 2011 Jonathan Katz Lecture 1 1 Turing Machines I assume that most students have encountered Turing machines before. (Students who have not may want to look
6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008
MIT OpenCourseWare http://ocw.mit.edu 6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
(IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems.
3130CIT: Theory of Computation Turing machines and undecidability (IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems. An undecidable problem
Introduction to Automata Theory. Reading: Chapter 1
Introduction to Automata Theory Reading: Chapter 1 1 What is Automata Theory? Study of abstract computing devices, or machines Automaton = an abstract computing device Note: A device need not even be a
Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi
Automata Theory Automata theory is the study of abstract computing devices. A. M. Turing studied an abstract machine that had all the capabilities of today s computers. Turing s goal was to describe the
Regular Languages and Finite Automata
Regular Languages and Finite Automata 1 Introduction Hing Leung Department of Computer Science New Mexico State University Sep 16, 2010 In 1943, McCulloch and Pitts [4] published a pioneering work on a
Turing Machines, Part I
Turing Machines, Part I Languages The $64,000 Question What is a language? What is a class of languages? Computer Science Theory 2 1 Now our picture looks like Context Free Languages Deterministic Context
Automata and Formal Languages
Automata and Formal Languages Winter 2009-2010 Yacov Hel-Or 1 What this course is all about This course is about mathematical models of computation We ll study different machine models (finite automata,
Computational Models Lecture 8, Spring 2009
Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. p. 1 Computational Models Lecture 8, Spring 2009 Encoding of TMs Universal Turing Machines The Halting/Acceptance
The Halting Problem is Undecidable
185 Corollary G = { M, w w L(M) } is not Turing-recognizable. Proof. = ERR, where ERR is the easy to decide language: ERR = { x { 0, 1 }* x does not have a prefix that is a valid code for a Turing machine
Finite Automata and Formal Languages
Finite Automata and Formal Languages TMV026/DIT321 LP4 2011 Ana Bove Lecture 1 March 21st 2011 Course Organisation Overview of the Course Overview of today s lecture: Course Organisation Level: This course
Chapter 1. Computation theory
Chapter 1. Computation theory In this chapter we will describe computation logic for the machines. This topic is a wide interdisciplinary field, so that the students can work in an interdisciplinary context.
Reading 13 : Finite State Automata and Regular Expressions
CS/Math 24: Introduction to Discrete Mathematics Fall 25 Reading 3 : Finite State Automata and Regular Expressions Instructors: Beck Hasti, Gautam Prakriya In this reading we study a mathematical model
3515ICT Theory of Computation Turing Machines
Griffith University 3515ICT Theory of Computation Turing Machines (Based loosely on slides by Harald Søndergaard of The University of Melbourne) 9-0 Overview Turing machines: a general model of computation
24 Uses of Turing Machines
Formal Language and Automata Theory: CS2004 24 Uses of Turing Machines 24 Introduction We have previously covered the application of Turing Machine as a recognizer and decider In this lecture we will discuss
THE TURING DEGREES AND THEIR LACK OF LINEAR ORDER
THE TURING DEGREES AND THEIR LACK OF LINEAR ORDER JASPER DEANTONIO Abstract. This paper is a study of the Turing Degrees, which are levels of incomputability naturally arising from sets of natural numbers.
Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson
Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement
Turing Machines: An Introduction
CIT 596 Theory of Computation 1 We have seen several abstract models of computing devices: Deterministic Finite Automata, Nondeterministic Finite Automata, Nondeterministic Finite Automata with ɛ-transitions,
Proseminar on Semantic Theory Fall 2013 Ling 720. Problem Set on the Formal Preliminaries : Answers and Notes
1. Notes on the Answers Problem Set on the Formal Preliminaries : Answers and Notes In the pages that follow, I have copied some illustrative answers from the problem sets submitted to me. In this section,
Math 223 Abstract Algebra Lecture Notes
Math 223 Abstract Algebra Lecture Notes Steven Tschantz Spring 2001 (Apr. 23 version) Preamble These notes are intended to supplement the lectures and make up for the lack of a textbook for the course
1 Definition of a Turing machine
Introduction to Algorithms Notes on Turing Machines CS 4820, Spring 2012 April 2-16, 2012 1 Definition of a Turing machine Turing machines are an abstract model of computation. They provide a precise,
Lecture 2: Universality
CS 710: Complexity Theory 1/21/2010 Lecture 2: Universality Instructor: Dieter van Melkebeek Scribe: Tyson Williams In this lecture, we introduce the notion of a universal machine, develop efficient universal
Universal Turing Machine: A Model for all Computational Problems
Universal Turing Machine: A Model for all Computational Problems Edward E. Ogheneovo Lecturer I, Dept of Computer Science, University of Port Harcourt, Port Harcourt Nigeria. ABSTRACT: Turing machines
INTRODUCTORY SET THEORY
M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,
Regular Expressions and Automata using Haskell
Regular Expressions and Automata using Haskell Simon Thompson Computing Laboratory University of Kent at Canterbury January 2000 Contents 1 Introduction 2 2 Regular Expressions 2 3 Matching regular expressions
Today s Topics. Primes & Greatest Common Divisors
Today s Topics Primes & Greatest Common Divisors Prime representations Important theorems about primality Greatest Common Divisors Least Common Multiples Euclid s algorithm Once and for all, what are prime
Kolmogorov Complexity and the Incompressibility Method
Kolmogorov Complexity and the Incompressibility Method Holger Arnold 1. Introduction. What makes one object more complex than another? Kolmogorov complexity, or program-size complexity, provides one of
6.2 Permutations continued
6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of
This asserts two sets are equal iff they have the same elements, that is, a set is determined by its elements.
3. Axioms of Set theory Before presenting the axioms of set theory, we first make a few basic comments about the relevant first order logic. We will give a somewhat more detailed discussion later, but
CSE 135: Introduction to Theory of Computation Decidability and Recognizability
CSE 135: Introduction to Theory of Computation Decidability and Recognizability Sungjin Im University of California, Merced 04-28, 30-2014 High-Level Descriptions of Computation Instead of giving a Turing
This chapter is all about cardinality of sets. At first this looks like a
CHAPTER Cardinality of Sets This chapter is all about cardinality of sets At first this looks like a very simple concept To find the cardinality of a set, just count its elements If A = { a, b, c, d },
On the Structure of Turing Universe: The Non-Linear Ordering of Turing Degrees
On the Structure of Turing Universe: The Non-Linear Ordering of Turing Degrees Yazan Boshmaf November 22, 2010 Abstract Turing Universe: the final frontier. These are the voyages of five mathematicians.
CS154. Turing Machines. Turing Machine. Turing Machines versus DFAs FINITE STATE CONTROL AI N P U T INFINITE TAPE. read write move.
CS54 Turing Machines Turing Machine q 0 AI N P U T IN TAPE read write move read write move Language = {0} q This Turing machine recognizes the language {0} Turing Machines versus DFAs TM can both write
Philadelphia University Faculty of Information Technology Department of Computer Science First Semester, 2007/2008.
Philadelphia University Faculty of Information Technology Department of Computer Science First Semester, 2007/2008 Course Syllabus Course Title: Theory of Computation Course Level: 3 Lecture Time: Course
Mathematical Induction. Lecture 10-11
Mathematical Induction Lecture 10-11 Menu Mathematical Induction Strong Induction Recursive Definitions Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach
Introduction to Turing Machines
Automata Theory, Languages and Computation - Mírian Halfeld-Ferrari p. 1/2 Introduction to Turing Machines SITE : http://www.sir.blois.univ-tours.fr/ mirian/ Automata Theory, Languages and Computation
How To Understand The Theory Of Computer Science
Theory of Computation Lecture Notes Abhijat Vichare August 2005 Contents 1 Introduction 2 What is Computation? 3 The λ Calculus 3.1 Conversions: 3.2 The calculus in use 3.3 Few Important Theorems 3.4 Worked
Some Special Artex Spaces Over Bi-monoids
Some Special Artex Spaces Over Bi-monoids K.Muthukumaran (corresponding auther) Assistant Professor PG and Research Department Of Mathematics, Saraswathi Narayanan College, Perungudi Madurai-625022,Tamil
Regular Languages and Finite State Machines
Regular Languages and Finite State Machines Plan for the Day: Mathematical preliminaries - some review One application formal definition of finite automata Examples 1 Sets A set is an unordered collection
4.6 The Primitive Recursive Functions
4.6. THE PRIMITIVE RECURSIVE FUNCTIONS 309 4.6 The Primitive Recursive Functions The class of primitive recursive functions is defined in terms of base functions and closure operations. Definition 4.6.1
Georg Cantor and Set Theory
Georg Cantor and Set Theory. Life Father, Georg Waldemar Cantor, born in Denmark, successful merchant, and stock broker in St Petersburg. Mother, Maria Anna Böhm, was Russian. In 856, because of father
Pushdown Automata. place the input head on the leftmost input symbol. while symbol read = b and pile contains discs advance head remove disc from pile
Pushdown Automata In the last section we found that restricting the computational power of computing devices produced solvable decision problems for the class of sets accepted by finite automata. But along
Deterministic Finite Automata
1 Deterministic Finite Automata Definition: A deterministic finite automaton (DFA) consists of 1. a finite set of states (often denoted Q) 2. a finite set Σ of symbols (alphabet) 3. a transition function
Models of Sequential Computation
Models of Sequential Computation 13 C H A P T E R Programming is often considered as an art, but it raises mostly practical questions like which language should I choose, which algorithm is adequate, and
CS5236 Advanced Automata Theory
CS5236 Advanced Automata Theory Frank Stephan Semester I, Academic Year 2012-2013 Advanced Automata Theory is a lecture which will first review the basics of formal languages and automata theory and then
Lecture 1. Basic Concepts of Set Theory, Functions and Relations
September 7, 2005 p. 1 Lecture 1. Basic Concepts of Set Theory, Functions and Relations 0. Preliminaries...1 1. Basic Concepts of Set Theory...1 1.1. Sets and elements...1 1.2. Specification of sets...2
Basic Concepts of Set Theory, Functions and Relations
March 1, 2006 p. 1 Basic Concepts of Set Theory, Functions and Relations 1. Basic Concepts of Set Theory...1 1.1. Sets and elements...1 1.2. Specification of sets...2 1.3. Identity and cardinality...3
How To Compare A Markov Algorithm To A Turing Machine
Markov Algorithm CHEN Yuanmi December 18, 2007 1 Abstract Markov Algorithm can be understood as a priority string rewriting system. In this short paper we give the definition of Markov algorithm and also
Georg Cantor (1845-1918):
Georg Cantor (845-98): The man who tamed infinity lecture by Eric Schechter Associate Professor of Mathematics Vanderbilt University http://www.math.vanderbilt.edu/ schectex/ In papers of 873 and 874,
NP-Completeness and Cook s Theorem
NP-Completeness and Cook s Theorem Lecture notes for COM3412 Logic and Computation 15th January 2002 1 NP decision problems The decision problem D L for a formal language L Σ is the computational task:
CS 103X: Discrete Structures Homework Assignment 3 Solutions
CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On well-ordering and induction: (a) Prove the induction principle from the well-ordering principle. (b) Prove the well-ordering
There is no degree invariant half-jump
There is no degree invariant half-jump Rod Downey Mathematics Department Victoria University of Wellington P O Box 600 Wellington New Zealand Richard A. Shore Mathematics Department Cornell University
The Theory of Languages and Computation
The Theory of Languages and Computation Jean Gallier [email protected] Andrew Hicks [email protected] Department of Computer and Information Science University of Pennsylvania Preliminary notes
1. Prove that the empty set is a subset of every set.
1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: [email protected] Proof: For any element x of the empty set, x is also an element of every set since
Lights and Darks of the Star-Free Star
Lights and Darks of the Star-Free Star Edward Ochmański & Krystyna Stawikowska Nicolaus Copernicus University, Toruń, Poland Introduction: star may destroy recognizability In (finitely generated) trace
A Course in Discrete Structures. Rafael Pass Wei-Lung Dustin Tseng
A Course in Discrete Structures Rafael Pass Wei-Lung Dustin Tseng Preface Discrete mathematics deals with objects that come in discrete bundles, e.g., 1 or 2 babies. In contrast, continuous mathematics
Implementation of Recursively Enumerable Languages using Universal Turing Machine in JFLAP
International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 4, Number 1 (2014), pp. 79-84 International Research Publications House http://www. irphouse.com /ijict.htm Implementation
Computer Architecture Syllabus of Qualifying Examination
Computer Architecture Syllabus of Qualifying Examination PhD in Engineering with a focus in Computer Science Reference course: CS 5200 Computer Architecture, College of EAS, UCCS Created by Prof. Xiaobo
Degrees that are not degrees of categoricity
Degrees that are not degrees of categoricity Bernard A. Anderson Department of Mathematics and Physical Sciences Gordon State College [email protected] www.gordonstate.edu/faculty/banderson Barbara
11 Multivariate Polynomials
CS 487: Intro. to Symbolic Computation Winter 2009: M. Giesbrecht Script 11 Page 1 (These lecture notes were prepared and presented by Dan Roche.) 11 Multivariate Polynomials References: MC: Section 16.6
6.080/6.089 GITCS Feb 12, 2008. Lecture 3
6.8/6.89 GITCS Feb 2, 28 Lecturer: Scott Aaronson Lecture 3 Scribe: Adam Rogal Administrivia. Scribe notes The purpose of scribe notes is to transcribe our lectures. Although I have formal notes of my
Handout #1: Mathematical Reasoning
Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or
Model 2.4 Faculty member + student
Model 2.4 Faculty member + student Course syllabus for Formal languages and Automata Theory. Faculty member information: Name of faculty member responsible for the course Office Hours Office Number Email
CS 301 Course Information
CS 301: Languages and Automata January 9, 2009 CS 301 Course Information Prof. Robert H. Sloan Handout 1 Lecture: Tuesday Thursday, 2:00 3:15, LC A5 Weekly Problem Session: Wednesday, 4:00 4:50 p.m., LC
Lecture 13 - Basic Number Theory.
Lecture 13 - Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that A divides B, denoted
God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886)
Chapter 2 Numbers God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886) God created the integers and the rest is the work
Universality in the theory of algorithms and computer science
Universality in the theory of algorithms and computer science Alexander Shen Computational models The notion of computable function was introduced in 1930ies. Simplifying (a rather interesting and puzzling)
Hilberts Entscheidungsproblem, the 10th Problem and Turing Machines
Hilberts Entscheidungsproblem, the 10th Problem and Turing Machines Nitin Saxena (Hausdorff Center for Mathematics, Bonn) [Happy] [100 th ] [Alan] [Mathison] [Turing!][][][]... **all pictures are works
Basic Proof Techniques
Basic Proof Techniques David Ferry [email protected] September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document
An algorithmic classification of open surfaces
An algorithmic classification of open surfaces Sylvain Maillot January 8, 2013 Abstract We propose a formulation for the homeomorphism problem for open n-dimensional manifolds and use the Kerekjarto classification
CMPSCI 250: Introduction to Computation. Lecture #19: Regular Expressions and Their Languages David Mix Barrington 11 April 2013
CMPSCI 250: Introduction to Computation Lecture #19: Regular Expressions and Their Languages David Mix Barrington 11 April 2013 Regular Expressions and Their Languages Alphabets, Strings and Languages
1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
Solutions Q1, Q3, Q4.(a), Q5, Q6 to INTLOGS16 Test 1
Solutions Q1, Q3, Q4.(a), Q5, Q6 to INTLOGS16 Test 1 Prof S Bringsjord 0317161200NY Contents I Problems 1 II Solutions 3 Solution to Q1 3 Solutions to Q3 4 Solutions to Q4.(a) (i) 4 Solution to Q4.(a)........................................
BANACH AND HILBERT SPACE REVIEW
BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but
GENERIC COMPUTABILITY, TURING DEGREES, AND ASYMPTOTIC DENSITY
GENERIC COMPUTABILITY, TURING DEGREES, AND ASYMPTOTIC DENSITY CARL G. JOCKUSCH, JR. AND PAUL E. SCHUPP Abstract. Generic decidability has been extensively studied in group theory, and we now study it in
Informatique Fondamentale IMA S8
Informatique Fondamentale IMA S8 Cours 1 - Intro + schedule + finite state machines Laure Gonnord http://laure.gonnord.org/pro/teaching/ [email protected] Université Lille 1 - Polytech Lille
Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.
Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole
Representing Reversible Cellular Automata with Reversible Block Cellular Automata
Discrete Mathematics and Theoretical Computer Science Proceedings AA (DM-CCG), 2001, 145 154 Representing Reversible Cellular Automata with Reversible Block Cellular Automata Jérôme Durand-Lose Laboratoire
Local periods and binary partial words: An algorithm
Local periods and binary partial words: An algorithm F. Blanchet-Sadri and Ajay Chriscoe Department of Mathematical Sciences University of North Carolina P.O. Box 26170 Greensboro, NC 27402 6170, USA E-mail:
Regular Expressions with Nested Levels of Back Referencing Form a Hierarchy
Regular Expressions with Nested Levels of Back Referencing Form a Hierarchy Kim S. Larsen Odense University Abstract For many years, regular expressions with back referencing have been used in a variety
Introduction to Topology
Introduction to Topology Tomoo Matsumura November 30, 2010 Contents 1 Topological spaces 3 1.1 Basis of a Topology......................................... 3 1.2 Comparing Topologies.......................................
Cartesian Products and Relations
Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special
Matrix Representations of Linear Transformations and Changes of Coordinates
Matrix Representations of Linear Transformations and Changes of Coordinates 01 Subspaces and Bases 011 Definitions A subspace V of R n is a subset of R n that contains the zero element and is closed under
Notes on Complexity Theory Last updated: August, 2011. Lecture 1
Notes on Complexity Theory Last updated: August, 2011 Jonathan Katz Lecture 1 1 Turing Machines I assume that most students have encountered Turing machines before. (Students who have not may want to look
SRM UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY SCHOOL OF COMPUTING DEPARTMENT OF SOFTWARE ENGINEERING COURSE PLAN
Course Code : CS0355 SRM UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY SCHOOL OF COMPUTING DEPARTMENT OF SOFTWARE ENGINEERING COURSE PLAN Course Title : THEORY OF COMPUTATION Semester : VI Course : June
THE SEARCH FOR NATURAL DEFINABILITY IN THE TURING DEGREES
THE SEARCH FOR NATURAL DEFINABILITY IN THE TURING DEGREES ANDREW E.M. LEWIS 1. Introduction This will be a course on the Turing degrees. We shall assume very little background knowledge: familiarity with
The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.
The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,
Chapter 7 Uncomputability
Chapter 7 Uncomputability 190 7.1 Introduction Undecidability of concrete problems. First undecidable problem obtained by diagonalisation. Other undecidable problems obtained by means of the reduction
The Little Man Computer
The Little Man Computer The Little Man Computer - an instructional model of von Neuman computer architecture John von Neuman (1903-1957) and Alan Turing (1912-1954) each independently laid foundation for
Lecture I FINITE AUTOMATA
1. Regular Sets and DFA Lecture I Page 1 Lecture I FINITE AUTOMATA Lecture 1: Honors Theory, Spring 02, Yap We introduce finite automata (deterministic and nondeterministic) and regular languages. Some
The P versus NP Solution
The P versus NP Solution Frank Vega To cite this version: Frank Vega. The P versus NP Solution. 2015. HAL Id: hal-01143424 https://hal.archives-ouvertes.fr/hal-01143424 Submitted on 17 Apr
