SPICE MOSFET Declaration



Similar documents
BJT Ebers-Moll Model and SPICE MOSFET model

California Eastern Laboratories AN1023 Converting GaAs FET Models For Different Nonlinear Simulators

Lecture 090 Large Signal MOSFET Model (3/24/10) Page 090-1

Transmission Gate Characteristics

Transconductance. (Saturated) MOSFET Small-Signal Model. The small-signal drain current due to v gs is therefore given by

Bob York. Transistor Basics - MOSFETs

The MOSFET Transistor

Integrated Circuits & Systems

RESONANT POWER MOSFET DRIVERS FOR LED LIGHTING

Notes about Small Signal Model. for EE 40 Intro to Microelectronic Circuits

Biasing in MOSFET Amplifiers

The MOS Transistor in Weak Inversion

A Review of MOS Device Physics

Application Note AN-1194

CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor

MOS Transistors as Switches

DE N06A RF Power MOSFET

STP80NF55-08 STB80NF55-08 STB80NF N-CHANNEL 55V Ω - 80A D2PAK/I2PAK/TO-220 STripFET II POWER MOSFET

N-Channel 60-V (D-S), 175 C MOSFET

RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM

Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1

Power MOSFET FEATURES. IRFZ44PbF SiHFZ44-E3 IRFZ44 SiHFZ44 T C = 25 C

Power MOSFET FEATURES. IRL540PbF SiHL540-E3 IRL540 SiHL540

Power MOSFET FEATURES. IRF610PbF SiHF610-E3 IRF610 SiHF610. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 200 V Gate-Source Voltage V GS ± 20

Lecture 8 MOSFET(I) MOSFET I-V CHARACTERISTICS

Power MOSFET FEATURES. IRF740PbF SiHF740-E3 IRF740 SiHF740. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 400 V Gate-Source Voltage V GS ± 20

EDC Lesson 12: Transistor and FET Characteristics EDCLesson12- ", Raj Kamal, 1

Application Note. Application Note. 300 Watt Class E Amplifier Using MRF151A AN4001. Figure 1. Class E Amplifier Block Diagram. Rev.

Features. Description. Table 1. Device summary. Order code Marking Package Packing. STP110N8F6 110N8F6 TO-220 Tube

CO2005: Electronics I (FET) Electronics I, Neamen 3th Ed. 1

Field Effect Transistors

CMOS COMPARATOR. 1. Comparator Design Specifications. Figure 1. Comparator Transfer Characteristics.

N-Channel 20-V (D-S) 175 C MOSFET

Lecture 9 MOSFET(II) MOSFET I-V CHARACTERISTICS(contd.)

Power MOSFET. IRF510PbF SiHF510-E3 IRF510 SiHF510. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 100 V Gate-Source Voltage V GS ± 20

STW20NM50 N-CHANNEL Tjmax Ω - 20ATO-247 MDmesh MOSFET

A I DM. W/ C V GS Gate-to-Source Voltage ± 20. Thermal Resistance Symbol Parameter Typ. Max. Units

An Introduction to the EKV Model and a Comparison of EKV to BSIM

Fourth generation MOSFET model and its VHDL-AMS implementation

UNISONIC TECHNOLOGIES CO., LTD 50N06 Power MOSFET

Power MOSFET FEATURES. IRF540PbF SiHF540-E3 IRF540 SiHF540. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 100 V Gate-Source Voltage V GS ± 20

Power MOSFET FEATURES. IRF740PbF SiHF740-E3 IRF740 SiHF740. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 400 V Gate-Source Voltage V GS ± 20

STW34NB20 N-CHANNEL 200V Ω - 34A TO-247 PowerMESH MOSFET

Power MOSFET FEATURES. IRF9640PbF SiHF9640-E3 IRF9640 SiHF9640

Power MOSFET Basics Abdus Sattar, IXYS Corporation

Here we introduced (1) basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices.

A I DM. W/ C V GS Gate-to-Source Voltage ± 12. Thermal Resistance Symbol Parameter Typ. Max. Units

Power MOSFET FEATURES. IRF520PbF SiHF520-E3 IRF520 SiHF520. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 100 V Gate-Source Voltage V GS ± 20

P-Channel 1.25-W, 1.8-V (G-S) MOSFET

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

Power MOSFET. IRF9520PbF SiHF9520-E3 IRF9520 SiHF9520. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS V Gate-Source Voltage V GS ± 20

N-Channel 40-V (D-S) 175 C MOSFET

Introduction to VLSI design (EECS 467)

Features 1.7 A, 20 V. R DS(ON) Symbol Parameter Ratings Units

TSM2N7002K 60V N-Channel MOSFET

IRF740 N-CHANNEL 400V Ω - 10A TO-220 PowerMESH II MOSFET

STN3NF06L. N-channel 60 V, 0.07 Ω, 4 A, SOT-223 STripFET II Power MOSFET. Features. Application. Description

N-Channel 100 V (D-S) MOSFET

Digital Integrated Circuit (IC) Layout and Design - Week 3, Lecture 5

A PHYSICAL MODEL FOR MOSFET OUTPUT RESISTANCE. by J. H. Huang, 2. H. Liu, M. C. Jeng, P. K. KO, C. Hu. Memorandum No.

Features Benefits Applications

N-channel enhancement mode TrenchMOS transistor

LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS

DISSERTATION. submitted to the Combined Faculties for the Natural Sciences and for Mathematics

P-Channel 20 V (D-S) MOSFET

Power MOSFET Basics By Vrej Barkhordarian, International Rectifier, El Segundo, Ca.

OptiMOS 3 Power-Transistor

AN105. Introduction: The Nature of VCRs. Resistance Properties of FETs

QFET TM FQP50N06. Features. TO-220 FQP Series

TSM020N03PQ56 30V N-Channel MOSFET

STP55NF06L STB55NF06L - STB55NF06L-1

IRLR8743PbF IRLU8743PbF HEXFET Power MOSFET

How To Make A Field Effect Transistor (Field Effect Transistor) From Silicon P Channel (Mos) To P Channel Power (Mos) (M2) (Mm2)

CMOS Differential Amplifier

MOSFET N-channel enhancement switching transistor IMPORTANT NOTICE. use

N-Channel 60-V (D-S) MOSFET

DISCRETE SEMICONDUCTORS DATA SHEET. BLF244 VHF power MOS transistor

T A = 25 C (Notes 3 & 5) Product Marking Reel size (inches) Tape width (mm) Quantity per reel DMC4040SSD-13 C4040SD ,500

P-Channel 20-V (D-S) MOSFET

COMMON-SOURCE JFET AMPLIFIER

Automotive P-Channel 60 V (D-S) 175 C MOSFET

TPN4R712MD TPN4R712MD. 1. Applications. 2. Features. 3. Packaging and Internal Circuit Rev.4.0. Silicon P-Channel MOS (U-MOS )

STB4NK60Z, STB4NK60Z-1, STD4NK60Z STD4NK60Z-1, STP4NK60Z,STP4NK60ZFP

Introduction to VLSI Fabrication Technologies. Emanuele Baravelli

STP60NF06. N-channel 60V Ω - 60A TO-220 STripFET II Power MOSFET. General features. Description. Internal schematic diagram.

Field-Effect (FET) transistors

IRFP450. N - CHANNEL 500V Ω - 14A - TO-247 PowerMESH MOSFET

Fig6-22 CB configuration. Z i [6-54] Z o [6-55] A v [6-56] Assuming R E >> r e. A i [6-57]

IRF150 [REF:MIL-PRF-19500/543] 100V, N-CHANNEL. Absolute Maximum Ratings

Small Signal Analysis of a PMOS transistor Consider the following PMOS transistor to be in saturation. Then, 1 2

STP60NF06FP. N-channel 60V Ω - 30A TO-220FP STripFET II Power MOSFET. General features. Description. Internal schematic diagram.

5.11 THE JUNCTION FIELD-EFFECT TRANSISTOR (JFET)

MOSFET DEVICE MODELING FOR ANALOG CIRCUITS DESIGN

OptiMOS 3 Power-Transistor

STP62NS04Z N-CHANNEL CLAMPED 12.5mΩ - 62A TO-220 FULLY PROTECTED MESH OVERLAY MOSFET

V DSS R DS(on) max Qg. 30V 3.2mΩ 36nC

STB75NF75 STP75NF75 - STP75NF75FP

60 V, 360 ma N-channel Trench MOSFET. Symbol Parameter Conditions Min Typ Max Unit V DS drain-source T amb = 25 C V

IRF830. N - CHANNEL 500V Ω - 4.5A - TO-220 PowerMESH MOSFET

IRF5305PbF. HEXFET Power MOSFET V DSS = -55V. R DS(on) = 0.06Ω I D = -31A

Transcription:

SPICE MOSFET Declaration The MOSFET is a 4-terminal device that is specified in the netlist as: Mname ND NG NS NB ModName <Optional para> The optional para are: L= value W= value AD=value AS=value PD=value PS=value NRD=value where: L,W: gate length and width (in m). Default: meter AD,AS: source and drain diffusion (in sq. m). Default: PD, PS: perimeter of the source and drain (in m). Default: meter NRD: number of squares for drain diffusion, for resistance calculations. Default: sq. NG ND NS NB If an optional parameter is omitted the default values are used. Here is an example declaration for the devices at right: 3 M 3 4 MyFet L=u W=u 4 4 3 Additional device para, including whether the device is NMOS or PMOS, are defined in the MODEL declaration for MyFet (next slide!)

SPICE MOS Model The SPICE MOSFET Model is defined in the netlist as.model ModName xmos (para) (xmos is either NMOS or PMOS) Some key para are: Parameter Description Units Default VTO Zero-bias threshold voltage KP Transconductance parameter, μ C ox Amps/ E-5 GAMMA Bulk threshold parameter / PHI Surface potential.6 LAMBDA Channel-length modulation - CGSO Gate-source overlap capacitance/channel width CGDO Gate-drain overlap capacitance/channel width CGBO Gate-bulk overlap capacitance/channel width U Mobility μ cm /V-s 6 TOX Oxide thickness In terms of these para some of the basic device characteristics are: I KP W V VTO LAMBDA V L d gs ds t V VTO GAMMA PHI V PHI sb A simple NMOS device with no capacitances or body effects might be specified as.model MyFet NMOS (VTO= KP=.5) If the user specifies U and TOX, then KP is computed as: KP C Key Device Capacitances: Cgs CoxWLCGSOW Cdg CGDO W 3 ox C ox 3.9 TOX

Level MOS SPICE Para Parameter VTO KP GAMMA PHI LAMBDA LD WD RD RS RG RB RDS RSH IS JS PB CBD CBS CJ CJSW MJ MJSW FC CGSO CGDO CGBO NSUB NSS NFS U TOX TPG KF AF Description Zero-bias threshold voltage Transconductance parameter, μ Cox Bulk threshold parameter Surface potential Channel-length modulation Lateral diffusion length Lateral diffusion width Drain ohmic resistance Source ohmic resistance Gate ohmic resistance Bulk ohmic resistance Drain-source shunt resistance Drain-source diffusion sheet resistance Bulk p-n saturation current Bulk p-n saturation/current area Bulk p-n potential Bulk-drain zero-bias p-n capacitance Bulk-source zero-bias p-n capacitance Bulk p-n zero-bias bottom capacitance/length Bulk p-n zero-bias perimeter capacitance/length Bulk p-n bottom grading coefficient Bulk p-n sidewall grading coefficient Bulk p-n forward-bias capacitance coefficient Gate-source overlap capacitance/channel width Gate-drain overlap capacitance/channel width Gate-bulk overlap capacitance/channel width Substate doping density Surface-state density Fast surface-state density Mobility Oxide thickness Gate material type: + =opposite of substrate, -=same, =Aluminum Flicker noise coefficient Flicker noise exponent Units Amps/ / - /square Amps Amps/ Farads Farads /centimeter 3 /centimeter /centimeter cm /V-s Default E-5.6 E-4.8.5.33.5 6 +

MOS Devices in MultiSim Select Place Component This will appear in the circuit schematic Q6 um um Double-click on the component: This is where we modify the SPICE model para In MultiSim A number of virtual devices to choose from, here we select the 3- terminal enhancement-mode MOSFET Click Edit Model to see SPICE Model declaration

Simple NMOS/PMOS Devices in MultiSim In ECE we will often solve problems assuming a very basic device described by a threshold voltage, transconductance, and output resistance. We can create simple MOS models with these three para as follows: NMOS PMOS I KP W V VTO LAMBDA V L d gs ds Remember: PMOS enhancement devices have a negative VTO! After making desired changes in the model, select Change Part Model. Only use Change All Models if you want the same model to apply to all the FETs in your circuit!

Typical Para (Long and Short).MODEL N7 NMOS (LEVEL=3 RS=.5 NSUB=.E5 DELTA=. +KAPPA=.56 TPG= CGDO=3.76E-9 RD=.39 VTO=. VMAX=.E7 +ETA=.389 NFS=6.6E TOX=.E-7 LD=.698E-9 UO=86.45 +XJ=6.4666E-7 THETA=.E-5 CGSO=9.9E-9 L=.5E-6 W=.8E-)