Optical Microscope; Scanning Electron Microscope (SEM); Transmission Electron Microscope (TEM);



Similar documents
View of ΣIGMA TM (Ref. 1)

Scanning Electron Microscopy: an overview on application and perspective

Electron Microscopy 3. SEM. Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts

Ion Beam Sputtering: Practical Applications to Electron Microscopy

The Basics of Scanning Electron Microscopy

Microscopy. MICROSCOPY Light Electron Tunnelling Atomic Force RESOLVE: => INCREASE CONTRAST BIODIVERSITY I BIOL1051 MAJOR FUNCTIONS OF MICROSCOPES

7. advanced SEM. Latest generation of SEM SEM

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture

Preface Light Microscopy X-ray Diffraction Methods

Usage of Carbon Nanotubes in Scanning Probe Microscopes as Probe. Keywords: Carbon Nanotube, Scanning Probe Microscope

Physics 441/2: Transmission Electron Microscope

Lecture 4 Scanning Probe Microscopy (SPM)

Electron Microscopy SEM and TEM

Basic principles and mechanisms of NSOM; Different scanning modes and systems of NSOM; General applications and advantages of NSOM.

Nanometer-scale imaging and metrology, nano-fabrication with the Orion Helium Ion Microscope

Raman spectroscopy Lecture

Near-field scanning optical microscopy (SNOM)

Microscopy: Principles and Advances

Chapter 4. Microscopy, Staining, and Classification. Lecture prepared by Mindy Miller-Kittrell North Carolina State University

Lenses and Apertures of A TEM

Cathode Ray Tube. Introduction. Functional principle

Forensic Science: The Basics. Microscopy

Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe.

CSCI 4974 / 6974 Hardware Reverse Engineering. Lecture 8: Microscopy and Imaging

Scanning Electron Microscopy Primer

Experiment #5: Qualitative Absorption Spectroscopy

Electromagnetic Radiation (EMR) and Remote Sensing

STM and AFM Tutorial. Katie Mitchell January 20, 2010

CREOL, College of Optics & Photonics, University of Central Florida

Scanning Probe Microscopy

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier

Micro-CT for SEM Non-destructive Measurement and Volume Visualization of Specimens Internal Microstructure in SEM Micro-CT Innovation with Integrity

Usage of AFM, SEM and TEM for the research of carbon nanotubes

Graphical displays are generally of two types: vector displays and raster displays. Vector displays

Use the BET (after Brunauer, Emmett and Teller) equation is used to give specific surface area from the adsorption

Detailed Alignment Procedure for the JEOL 2010F Transmission Electron Microscope

Synthetic Sensing: Proximity / Distance Sensors

Sensors & Instruments for station. returned samples. Chun Chia Tan

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing

It has long been a goal to achieve higher spatial resolution in optical imaging and

X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US. Hanno zur Loye

Displays. Cathode Ray Tube. Semiconductor Elements. Basic applications. Oscilloscope TV Old monitors. 2009, Associate Professor PhD. T.

for Low power Energy Harvesting Sun to fiber' Solar Devices

Supporting Information

Lecture 20: Scanning Confocal Microscopy (SCM) Rationale for SCM. Principles and major components of SCM. Advantages and major applications of SCM.

Keywords: Planar waveguides, sol-gel technology, transmission electron microscopy

Electron Microscopy 3. SEM. Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts

Name: Due: September 21 st Physics 7230 Laboratory 3: High Resolution SEM Imaging

Microscope Lab Introduction to the Microscope Lab Activity

Introduction to microstructure

P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours)

Reflection Electron Microscopy and Spectroscopy for Surface Analysis

How To Understand Light And Color

Scanning Electron Microscopy Services for Pharmaceutical Manufacturers

Mass production, R&D Failure analysis. Fault site pin-pointing (EM, OBIRCH, FIB, etc. ) Bottleneck Physical science analysis (SEM, TEM, Auger, etc.

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

Theremino System Theremino Spectrometer Technology

CHAPTER 2 EXPERIMENTAL. g/mol, Sigma-Aldrich, Germany Magnesium acetate tetrahydrate (C 4 H 6 MgO. 4 4H 2 O), assay 99.0%,

Lectures about XRF (X-Ray Fluorescence)

5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy

The Focused Ion Beam Scanning Electron Microscope: A tool for sample preparation, two and three dimensional imaging. Jacob R.

Vacuum Evaporation Recap

Information about the T9 beam line and experimental facilities

Nano-Spectroscopy. Solutions AFM-Raman, TERS, NSOM Chemical imaging at the nanoscale

SEM/FIB Workbench. Klocke Nanotechnik. Microtechnology Network. Motion from the Nanoworld. One of 279 members in a. Pascalstr. 17 Aachen, Germany

Fundamentals of Scanning Electron Microscopy

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

Nanoscale Resolution Options for Optical Localization Techniques. C. Boit TU Berlin Chair of Semiconductor Devices

Phase Characterization of TiO 2 Powder by XRD and TEM

CS257 Introduction to Nanocomputing

h e l p s y o u C O N T R O L

Fundamentals of modern UV-visible spectroscopy. Presentation Materials

Laue lens for Nuclear Medicine

ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = = = 25 or 2

Tuesday 20 May 2014 Morning

Revision problem. Chapter 18 problem 37 page 612. Suppose you point a pinhole camera at a 15m tall tree that is 75m away.

Blackbody Radiation References INTRODUCTION

Microscopic Techniques

Introduction to the Scanning Electron Microscope

Nanoscience Course Descriptions

SILA Sistema Integrato di Laboratori per l Ambiente. CENTRE FOR MICROSCOPY AND MICROANALYSIS Scientific coordinator: Prof.ssa Rosanna De Rosa

Secondary Ion Mass Spectrometry

Infrared Viewers. Manual

Advancements in High Frequency, High Resolution Acoustic Micro Imaging for Thin Silicon Applications

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

5.3 Cell Phone Camera

NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY WITH STM AND AFM PROBES

Atomic Force Microscopy. Long Phan Nanotechnology Summer Series May 15, 2013

Infrared Thermometry. Introduction, History, and Applications. Optical Pyrometry. Jason Mershon, Advanced Energy Industries, Inc

Fiber Optics: Engineering from Global to Nanometer Dimensions

1. Photon Beam Damage and Charging at Solid Surfaces John H. Thomas III

The photoionization detector (PID) utilizes ultraviolet

Time out states and transitions

CONFOCAL LASER SCANNING MICROSCOPY TUTORIAL

The microscope is an important tool.

Bio 321 Lightmicroscopy Electronmicrosopy Image Processing

1 st Edition Nanotechnology Measurement Handbook A Guide to Electrical Measurements for Nanoscience Applications

Physics 30 Worksheet # 14: Michelson Experiment

ATOMS: ATOMIC STRUCTURE QUESTIONS AND ANSWERS

Copyright by Mark Brandt, Ph.D. 12

Transcription:

Lecture 3 Brief Overview of Traditional Microscopes Optical Microscope; Scanning Electron Microscope (SEM); Transmission Electron Microscope (TEM); Comparison with scanning probe microscope (SPM)

General philosophy Human beings use two kinds of means to gauge objectives: Seeing --- through eyes (light) optical microscope electronic microscope (higher resolution due to short wavelength); Touching --- through hands (probe) SPM. Converting wavelength (nm) to electron energy (ev): 1240.7/λ(nm), for example, a 500 nm light corresponds to 1240.7/500 = 2.48 ev

Principles of an optical microscope

Development of microscope takes us back to 400 years ago Robert Hooke s "Micrographia" (1665)

A hair knot

Room dusts

Red blood cell

Flu virus

Organic nanobelts with strong emission

Advantages and Disadvantages of Optical Microscope Advantages: Direct imaging with no need of sample pre-treatment, the only microscopy for real color imaging. Fast, and adaptable to all kinds of sample systems, from gas, to liquid, and to solid sample systems, in any shapes or geometries. Easy to be integrated with digital camera systems for data storage and analysis. Disadvantages: Low resolution, usually down to only sub-micron or a few hundreds of nanometers, mainly due to the light diffraction limit.

Electronic Microscope for higher resolution Resolution limit of optical microscopes is due to the light diffraction; roughly optical resolution can be estimated as wavelength λ/2na (NA is the numerical aperture of lens, usually ~ 1.0): for white light, average wavelength is around 500 nm, the best resolution is thus a few hundreds nm. Decreasing the wavelength is the way to improve the resolution, though nobody would deal with UV light. Electron wave is a unique medium that can be used in imaging. By accelerating the electrons into high energy beam (via high voltage), the wavelength thus created is far shorter than white light. For example, for an electron beam produced from a 20 kv gun, the wavelength is only 1240.7/20,000 (ev) = 0.06 nm = 0.6 Å, corresponding to a resolution limit of λ/2 = 0.3 Å --- theoretically, it can be used to image a species as small as 0.3 Å. Most atoms are in size of 2-3 Å.

History of Electronic Microscope The first electromagnetic lens was developed in 1926 by Hans Busch. According to Dennis Gabor, the physicist Leó Szilárd tried in 1928 to convince Busch to build an electron microscope, for which he had filed a patent. The German physicist Ernst Ruska and the electrical engineer Max Knoll constructed the prototype electron microscope in 1931, capable of four-hundred-power magnification; the apparatus was the first demonstration of the principles of electron microscopy. Two years later, in 1933, Ruska built an electron microscope that exceeded the resolution attainable with an optical (light) microscope. Moreover, Reinhold Rudenberg, the scientific director of Siemens-Schuckertwerke, obtained the patent for the electron microscope in May 1931. In 1932, Ernst Lubcke of Siemens & Halske built and obtained images from a prototype electron microscope, applying concepts described in the Rudenberg patent applications. Five years later (1937), the firm financed the work of Ernst Ruska and Bodo von Borries, and employed Helmut Ruska (Ernst s brother) to develop applications for the microscope, especially with biological specimens. Also in 1937, Manfred von Ardenne pioneered the scanning electron microscope. The first practical electron microscope was constructed in 1938, at the University of Toronto, by Eli Franklin Burton and students Cecil Hall, James Hillier, and Albert Prebus; and Siemens produced the first commercial transmission electron microscope (TEM) in 1939. Although contemporary electron microscopes are capable of two million-power magnification, as scientific instruments, they remain based upon Ruska s prototype. http://en.wikipedia.org/wiki/electron_microscope

History of Electronic Microscope The Nobel Prize in Physics 1986 "for his fundamental work in electron optics, and for the design of the first electron microscope" Ernst Ruska Born: 25 December 1906, Heidelberg, Germany Died: 27 May 1988, West Berlin, Germany Affiliation at the time of the award: Fritz-Haber-Institut der Max-Planck- Gesellschaft, Berlin, Federal Republic of Germany

What is SEM? In scanning electron microscopy (SEM) an electron beam is focused into a small probe and is rastered across the surface of a specimen. Several interactions with the sample that result in the emission of electrons or photons occur as the electrons penetrate the surface. These emitted particles can be collected with the appropriate detector to yield valuable information about the material. The most immediate result of observation in the scanning electron microscope is that it displays the shape of the sample. The resolution is determined by beam diameter.

Scanning Electron Microscope (SEM) Electron microscope follows the same ideas of optical microscope, but uses electrons instead of light; Lens here are not the optical materials (like glass), but electrical field.

Detailed working diagram of SEM

Basic components of SEM Electron optics: 1. condenser lens --- focusing the electron beam to the objective lens. 2. objective lens --- responsible for the size of electron beam impinging on sample surface 3. electromagnetic coils --- responsible for driving the raster scanning by deflecting the electron beam. Sample and sample holder: 1. size --- centimeters. 2. rotation --- sample can be rotated freely at three dimensions, x, y, z, to achieve imaging at all directions. 3. conductivity --- required for sample to be measured. For non-conducting samples, like biological specimens, metallic coating is required. Transducers (detectors): 1. scintillation device --- doped glass or plastic target that emits a cascade of visible photons when struck by electrons. 2. semiconductor transducers --- when struck by electrons, electron-hole pairs are generated, thus increasing the conductivity.

Basic signals of SEM The electrons interact with the atoms at or close to sample surface produces signals that contain information about the sample's surface topography, composition, and other properties such as electrical conductivity. The types of signals produced by an SEM include secondary electrons, back-scattered electrons (BSE), characteristic X-rays, light (cathodoluminescence), specimen current and transmitted electrons. Secondary electrons: they are electrons generated as ionization products. They are called 'secondary' because they are generated by other radiation (the primary radiation). This radiation can be in the form of ions, electrons, or photons with sufficiently high energy, i.e. exceeding the ionization potential. Secondary electron detectors are common in all SEMs. A SEM with secondary electron imaging or SEI can produce very high-resolution images of a sample surface, revealing details less than 1 nm in size. Back-scattered electrons (BSE): they are beam electrons that are reflected from the sample by elastic scattering. BSE are often used in analytical SEM along with the spectra made from the characteristic X-rays. Because the intensity of the BSE signal is strongly related to the atomic number (Z) of the specimen, BSE images can provide information about the distribution of different elements in the sample. Characteristic X-rays: they are emitted when the electron beam removes an inner shell electron from the sample, causing a higher energy electron to fill the shell and release energy. These characteristic X-rays are used to identify the composition and measure the abundance of elements in the sample.

Brief schemes showing how SEM works

Brief schemes showing how SEM works

Scanning Electron Microscope (SEM) Electron microscope constructed by Ernst Ruska in 1933

Advantages and Disadvantages of SEM Advantages: Almost all kinds of samples, conducting and non-conducting (stain coating needed); Based on surface interaction --- no requirement of electron-transparent sample. Imaging at all directions through x-y-z (3D) rotation of sample. Disadvantages: Low resolution, usually above a few tens of nanometers. Usually required surface stain-coating with metals for electron conducting.

Note: Specialized SEM works directly on non-conductive samples Nonconductive specimens tend to charge when scanned by the electron beam, and especially in secondary electron imaging mode, this causes scanning faults and other image artifacts. So, for usual SEM imaging, the samples must be coated with an ultrathin coating of electrically-conducting material, commonly gold. However, nonconducting specimens may be imaged uncoated using specialized SEM instrumentation such as the "Environmental SEM" (ESEM) or field emission gun (FEG) SEMs operated at low voltage, and low vacuum. field emission guns (FEG) is capable of producing high primary electron brightness and small spot size even at low accelerating potentials. In a regular SEM, the electron source (gun) is a tungsten filament cathode. At the Physics Department of UU, there is a FEI NanoNova SEM, with a field emitter electron source. Feature sizes of 2nm can be resolved. There is a low vacuum feature which allows imaging of non-conducting samples (biological samples need no special preparation).

SEM images conducting and semiconducting materials ZnO nano-wires Carbon nano-tubes

TEM principle Nanobelts SEM images of (a) ZnO nanobelts and (b) the ZnS nanobelts converted through chemical reaction with H 2 S. Z. L. Wang, Annual Review of Physical Chemistry, 2004, Vol. 55: 159-196

Nanosprings Nanosprings and nanorings of piezoelectric nanobelts. (a c) SEM images of the as-synthesized single-crystal ZnO nanobelts, showing helical nanosprings. The typical width of the nanobelt is 30 nm, and pitch distance is rather uniform. (d) TEM image of a helical nanospring made of a single-crystal ZnO nanobelt. (e) The structure model of the ZnO nanobelt. Z. L. Wang, Annual Review of Physical Chemistry, 2004, Vol. 55: 159-196

Nanosaw SEM image of comb-like nanostructure of ZnO, which is the result of surface polarization induced growth. Z. L. Wang, Annual Review of Physical Chemistry, 2004, Vol. 55: 159-196

Fabrication by simple injection into a poor solvent O O O N O N O O Kaushik Balakrishnan, et al. J. Am. Chem. Soc. 127(2005) 10496-10497

Twisted Nanobelts Kaushik Balakrishnan, et al. J. Am. Chem. Soc. 127(2005) 10496-10497

Seeded growth of ultralong nanobelts O O O O O N O N O O Yanke Che et al. J. Am. Chem. Soc. 129 (2007) 7234-7235

Nanofiber Technology 10- μm Nanofiber Net Dogs Nose

Video of nanofiber sensor response to 10 ug Meth simulant disperse in a filter paper

Video of nanofiber sensor response to 10 ug Meth simulant disperse in a filter paper

Nanofibers fabricated from an amphiphilic molecules O N O 1 O O O Nanofibers with anhydride moieties dominant on surface

Efficient fluorescence sensing of amines vapor O N O O amine O 1 O NH 3 Nano Lett., 8 (2008) 2219-2223

SEM images of bio-species The head of a mosquito is mostly eye. The eyes are compound eyes, made up of many tiny lenses. Claw of a Black Widow spider. The claw has three hooks, the middle one used to work the silk.

Walking on water The non-wetting leg of a water strider. a, Typical side view of a maximal-depth dimple (4.38+/- 0.02 mm) just before the leg pierces the water surface. Inset, water droplet on a leg; this makes a contact angle of 167.6 +/- 4.4. b, c, Scanning electron microscope images of a leg showing numerous oriented spindly micro-setae (b) and the fine nanoscale grooved structures on a seta (c). Scale bars: b, 20 µm; c, 200 nm. Lei Jiang, Nature 432, p36.

Transmission electron microscopy (TEM) Hitachi H9000 UHR TEM: a dedicated HREM TEM, capable of 0.18nm point resolution operating at 300kV Detector: CCD (2D imaging)

What is TEM? In transmission electron microscopy (TEM), a beam of highly focused electrons are directed toward a thinned sample (<200 nm). Normally no scanning required --- helps the high resolution, compared to SEM. These highly energetic incident electrons interact with the atoms in the sample producing characteristic radiation and particles providing information for materials characterization. Information is obtained from both deflected and non-deflected transmitted electrons, backscattered and secondary electrons, and emitted photons.

Advantages and Disadvantages of TEM Advantages: High resolution, as small as 0.2 nm. Direct imaging of crystalline lattice. Delineate the defects inside the sample. No metallic stain-coating needed, thus convenient for strucutral imaging of organic materials, Electron diffraction technique: phase identification, structure and symmetry determination, lattice parameter measurement, disorder and defect identification Disadvantages: To prepare an electron-transparent sample from the bulk is difficult (due to the conductivity or electron density, and sample thickness).

TEM images: nanobelt (a) Transmission electron microscopy (TEM) image of the as-synthesized ZnO nanobelts. (b) High-resolution TEM image recorded with the incident electron perpendicular to the top surface of the nanobelt. Z. L. Wang, Annual Review of Physical Chemistry, Vol. 55: 159-196

TEM images: nanobelt (a) Transmission electron microscopy (TEM) image of the as-synthesized SnO2 nanobelts. (b) High-resolution TEM image recorded with the incident electron perpendicular to the top surface of the nanobelt. Z. L. Wang, Annual Review of Physical Chemistry, Vol. 55: 159-196

TEM images: nanobelt (a) Transmission electron microscopy (TEM) image of the as-synthesized l- shaped In2O3 nanobelts. The inset is the electron diffraction pattern recorded from the nanobelt. (b) Highresolution TEM image recorded with the incident electron perpendicular to the top surface of the nanobelt. Z. L. Wang, Annual Review of Physical Chemistry, Vol. 55: 159-196

TEM images: nanotube Imaging single-wall carbon nanotube Jim Zuo s lab at UIUC Science, 300, 1419-1421 (2003)

TEM imaging of graphene http://www.popsci.com/gadgets/article/2010-01/graphene-breakthrough-could-usher-future-electronics

Highly Uniform Nanobelts by TEM Kaushik Balakrishnan, et al. J. Am. Chem. Soc. 127(2005) 10496-10497

E-diffraction reveals stacking conformation Kaushik Balakrishnan, et al. J. Am. Chem. Soc. 127(2005) 10496-10497

Improved fabrication of single, uniform nanofibrils: deposited from hot toluene solution ~ 5 nm Parallel alignment forms fibril arrays.

Scanning Probe Microscopy (SPM) Double functions: scanning and probing. Scanning: piezo raster 2D (X-Y) scanning; Probing: sharp tip mounted to a Z-scanner.

Comparison between traditional optical and electron microscopes and SPM probe Mechanism Sample Resolution Traditional Light/electron Using properties of waves: diffraction, deflection, scattering High vacuum chamber, Strict sample pretreatment (e.g. conducting stain) required Å µm, good for X-Y lateral imaging SPM Tip Using interaction between tip and sample: mechanic, electrostatic, meganetic. Usually under ambient conditions, Highly flexible with other techniques Å nm, good for Z-height measurement, thus topography imaging Note: SPM cannot replace electron microscopes, but complementary each other.