High Resolution Modeling, Clouds, Precipitation and Climate
|
|
|
- Chrystal Barnett
- 10 years ago
- Views:
Transcription
1 High Resolution Modeling, Clouds, Precipitation and Climate Pier Siebesma, Ramon Mendez Gomez, Jerome Schalkwijk, Stephan de Roode Jisk Attema, Jessica Loreaux, Geert Lenderink, Harm Jonker 1. Precipitation and High Resolution Modeling 2. Extreme Precipitation 3. Ultra-High Resolution
2 Atmospheric Models at KNMI mm 10 m 100 m 1 km 10 km 100 km 1000 km km Cloud microphysics DNS turbulence Cumulus clouds Cumulonimbus clouds Mesoscale Convective systems Extratropical Cyclones Planetary waves Large Eddy Simulation (LES) Model (GALES, DALES) HARMONIE RACMO EC-Earth
3 1. Precipitation Ramon Mendez Gomez, Pier Siebesma, Jisk Attema, Stephan de Roode
4 Climatology Figure: 20-year moving average of mean, coastal and inland precipitation for summer in the Netherlands (Lenderink et al. 2008).
5 Climatology Trend in the growth of the inland-coastal precipitation difference. Hypothesis: Due to warmer sea surface temperatures Test in August 2006 case (record wet month with a record warm North Sea) Figure: 20-year moving average of mean, coastal and inland precipitation for summer in the Netherlands (Lenderink et al. 2008).
6 High Resolution Climate Simulations Geert Lenderink, Erik van Meijgaard and Frank Selten: Climate Dynamics (2008) Obs RACMO (6km) Using observed SST RACMO (6km) Using SSTclimatology Strong effect of SST on precip. Effect limited to the coastal areas (Calls for high resolution!!) Mind you: High resolution RACMO but still hydrostatic model!! How does HARMONIE perform?
7 RACMO(173mm) HARMONIE (224mm) RADAR (194 mm) Harmonie: picks up better the higher rain intensities underestimates overall precipitation amount
8 Precipitation as a function of distance to the coast HARMONIE: 280 HARMONIE Right position of the maximum Precipitation (mm/month) HARM_HD RADAR GROUND OBS RACMO_HD_CTL HARM_CL RACMO obs Overestimation of the total amount Working on the why Distance to coastline (km) Overprediction of precip not uncommon for models operating in the Grey Zone (1~5 km)
9 2. Precipitation Extremes Jessica Loreaux, Geert Lenderink, Pier Siebesma, Stephan de Roode
10 observaties Neem de 90%, 99%, 99,9% percentielen van de meest extreme neerslag sommen: groepeer ze als functie van de (dauwpunts) temperatuur gebruik deze (dauwpunts) temperatuur als proxy voor hoe extreme neerslag veranderd in een opwarmend klimaat.
11 observaties Neem de 90%, 99%, 99,9% percentielen van de meest extreme neerslag sommen: groepeer ze als functie van de (dauwpunts) temperatuur gebruik deze (dauwpunts) temperatuur als proxy voor hoe extreme neerslag veranderd in een opwarmend klimaat. dagsom Precip intensity (mm/day) Td 7% toename per graad
12 observaties Neem de 90%, 99%, 99,9% percentielen van de meest extreme neerslag sommen: groepeer ze als functie van de (dauwpunts) temperatuur gebruik deze (dauwpunts) temperatuur als proxy voor hoe extreme neerslag veranderd in een opwarmend klimaat. dagsom 10 minuten som 7% toename per graad Frontaal 14% toename per graad!! Convectieve buien
13 Vervolgstappen: kunnen we deze toename verklaren? Kunnen we de geobserveerde schaling op deze manier aan thermodynamica & dynamica koppelen? Conceptueel model Large Eddy Simulatie model (temp laten toenemen, RH constant) Hoe relateert gevonden schaling in het huidig klimaat tot schaling door veranderend klimaat? Harmonie
14 3. Ultra-High Resolution Modelling Jerome Schalkwijk, Harm Jonker, Pier Siebesma
15 .History LES at KNMI 1992 : 40X40X40 grid points Dutch Atmospheric Large Eddy Simulations(DALES) State of the art supercomputer: 1024X1024X512 gridpoints
16 Does not come for free... Disruptive technology
17 GPU for general purpose Graphical Processing Unit video card Navier Stokes
18 Performance of GALES (GPU Atmospheric Large Eddy Simulations) Performance of DALES on Huygens (SARA) on a single node (32 processors) Wall clock time per time step per grid point 2 hour of simulation on 128^3 grid points in 3 minutes. Drawback: maximum on the amount of gridpoints ~ 512^3 at present
19 Applications
20 Climate Monitoring and Evaluation Tool for the Cabauw Site The KNMI testbed Neggers, Siebesma & Heus, accepted for BAMS 2012 φ φ φ φ φ" true state" = + + t t t τ LS LES, SCM
21 Climate Monitoring and Evaluation Tool for the Cabauw Site The KNMI testbed Neggers, Siebesma & Heus, accepted for BAMS 2012 GALES Gridpoints: 256X256X200 Resolution: Δx=Δy=100m Δz=40~100m Domain: 25X25X12km φ φ φ φ φ" true state" = + + t t t τ LS LES, SCM
22
23
24
25 Year of Gales; March 2011 March 2012; Evaluation Still early days. GALES obs Cloud fraction as seen by the Lidar versus simulated lidar at a single gridpoint in GALES
26 Year of Gales; March 2011 March 2012 Low clouds BL-clouds High clouds
27 Outlook Easy to implement at other locations (Schiphol) Relatively cheap (hardware costs ~5 Keuro) Many applications (local weather, impact weather on pollution, etc, etc) Performance depends on Quality of the model in which it is embedded in (HARMONIE, RACMO?) Initialisation (obs, obs & obs)
28 Multiple GPU s?
29 Nesting it into a regional model (RACMO) 25km 25km 100m How to couple the GPU s?
30 GALES as a NWP model Couple 16X16 GPU s of each 25 km^2 at 100 m resolution Allows for a 400X400 km domain First try: Boundary GPU s are nudged toward host model (RACMO) Fully interactive interaction between the ïnner GPU s First realistic LES on such a domain Supported by Bull, Paris : massive parallel GPU machine Hardware price ~ 250 Keuro
31 July 6, 2004
32 Temperature at 200 m clouds
33 Conclusions and Outlook GPU is a extremely suitable vehicle for fluid dynamics problems especially as a additional evaluation tool around supersites. Many applications Education, Evaluation, Monitoring, NWP, impact studies (what if scenario s on local scale), apps To be done: Mature Interactive radiation in CUDA Improved microphysics Albedo maps Vegetation maps Creation of structures (buildings etc, rather than rougness lengths) Fully compressible (to make the system more local) Comprehensive evaluation
KfC report number 83/2012
KfC report number 83/2012 Copyright 2012 National Research Programme Knowledge for Climate/Nationaal Onderzoekprogramma Kennis voor Klimaat (KvK) All rights reserved. Nothing in this publication may be
An economical scale-aware parameterization for representing subgrid-scale clouds and turbulence in cloud-resolving models and global models
An economical scale-aware parameterization for representing subgrid-scale clouds and turbulence in cloud-resolving models and global models Steven Krueger1 and Peter Bogenschutz2 1University of Utah, 2National
Large Eddy Simulation (LES) & Cloud Resolving Model (CRM) Françoise Guichard and Fleur Couvreux
Large Eddy Simulation (LES) & Cloud Resolving Model (CRM) Françoise Guichard and Fleur Couvreux Cloud-resolving modelling : perspectives Improvement of models, new ways of using them, renewed views And
Towards an NWP-testbed
Towards an NWP-testbed Ewan O Connor and Robin Hogan University of Reading, UK Overview Cloud schemes in NWP models are basically the same as in climate models, but easier to evaluate using ARM because:
Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2) CGILS-S11 results
Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2) CGILS-S11 results Stephan de Roode Delft University of Technology (TUD), Delft, Netherlands Mixed-layer model analysis: Melchior van Wessem (student,
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper IPCC Cloud feedbacks remain the largest source of uncertainty. Roadmap 1. Low cloud primer 2. Radiation and low
EC-Earth: new global earth system model
EC-Earth: new global earth system model Wilco Hazeleger Vincent v Gogh Global Climate Division/EC-Earth program KNMI, The Netherlands Amsterdam, December 2008 1 Amsterdam, December 2008 2 Observed climate
A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands
Supplementary Material to A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands G. Lenderink and J. Attema Extreme precipitation during 26/27 th August
Application of Numerical Weather Prediction Models for Drought Monitoring. Gregor Gregorič Jožef Roškar Environmental Agency of Slovenia
Application of Numerical Weather Prediction Models for Drought Monitoring Gregor Gregorič Jožef Roškar Environmental Agency of Slovenia Contents 1. Introduction 2. Numerical Weather Prediction Models -
IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS
IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS M. J. Mueller, R. W. Pasken, W. Dannevik, T. P. Eichler Saint Louis University Department of Earth and
GCMs with Implicit and Explicit cloudrain processes for simulation of extreme precipitation frequency
GCMs with Implicit and Explicit cloudrain processes for simulation of extreme precipitation frequency In Sik Kang Seoul National University Young Min Yang (UH) and Wei Kuo Tao (GSFC) Content 1. Conventional
Titelmasterformat durch Klicken. bearbeiten
Evaluation of a Fully Coupled Atmospheric Hydrological Modeling System for the Sissili Watershed in the West African Sudanian Savannah Titelmasterformat durch Klicken June, 11, 2014 1 st European Fully
Development of an Integrated Data Product for Hawaii Climate
Development of an Integrated Data Product for Hawaii Climate Jan Hafner, Shang-Ping Xie (PI)(IPRC/SOEST U. of Hawaii) Yi-Leng Chen (Co-I) (Meteorology Dept. Univ. of Hawaii) contribution Georgette Holmes
A new positive cloud feedback?
A new positive cloud feedback? Bjorn Stevens Max-Planck-Institut für Meteorologie KlimaCampus, Hamburg (Based on joint work with Louise Nuijens and Malte Rieck) Slide 1/31 Prehistory [W]ater vapor, confessedly
REGIONAL CLIMATE AND DOWNSCALING
REGIONAL CLIMATE AND DOWNSCALING Regional Climate Modelling at the Hungarian Meteorological Service ANDRÁS HORÁNYI (horanyi( [email protected]@met.hu) Special thanks: : Gabriella Csima,, Péter Szabó, Gabriella
MSG-SEVIRI cloud physical properties for model evaluations
Rob Roebeling Weather Research Thanks to: Hartwig Deneke, Bastiaan Jonkheid, Wouter Greuell, Jan Fokke Meirink and Erwin Wolters (KNMI) MSG-SEVIRI cloud physical properties for model evaluations Cloud
Fog and low cloud ceilings in the northeastern US: climatology and dedicated field study
Fog and low cloud ceilings in the northeastern US: climatology and dedicated field study Robert Tardif National Center for Atmospheric Research Research Applications Laboratory 1 Overview of project Objectives:
Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data
Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data Kate Thayer-Calder and Dave Randall Colorado State University October 24, 2012 NOAA's 37th Climate Diagnostics and Prediction Workshop Convective
Ruimtelijke planning in tijden van klimaatsverandering
Ruimtelijke planning in tijden van klimaatsverandering Eric Koomen Vrije Universiteit Amsterdam/ Geodan Next Nascholingscursus Water, rivieren en GIS' 3 april 2008 Outline Climate change climate and land
Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models Yefim L. Kogan Cooperative Institute
Chapter 7 Stability and Cloud Development. Atmospheric Stability
Chapter 7 Stability and Cloud Development Atmospheric Stability 1 Cloud Development - stable environment Stable air (parcel) - vertical motion is inhibited if clouds form, they will be shallow, layered
Sub-grid cloud parametrization issues in Met Office Unified Model
Sub-grid cloud parametrization issues in Met Office Unified Model Cyril Morcrette Workshop on Parametrization of clouds and precipitation across model resolutions, ECMWF, Reading, November 2012 Table of
Ocean and climate research at KNMI. Andreas Sterl KNMI
Ocean and climate research at KNMI Andreas Sterl KNMI Ocean and climate research at KNMI global and regional modelling EC-Earth RACMO Harmonie ocean observations/monitoring Argo sea level rise climate
Evaluating the Impact of Cloud-Aerosol- Precipitation Interaction (CAPI) Schemes on Rainfall Forecast in the NGGPS
Introduction Evaluating the Impact of Cloud-Aerosol- Precipitation Interaction (CAPI) Schemes on Rainfall Forecast in the NGGPS Zhanqing Li and Seoung-Soo Lee University of Maryland NOAA/NCEP/EMC Collaborators
IBM Big Green Innovations Environmental R&D and Services
IBM Big Green Innovations Environmental R&D and Services Smart Weather Modelling Local Area Precision Forecasting for Weather-Sensitive Business Operations (e.g. Smart Grids) Lloyd A. Treinish Project
Klimaatverandering. IPCC (2013) & KNMI klimaatscenario s (2014) Rob van Dorland. GroenLinks, Utrecht 4 november 2014
Klimaatverandering IPCC (2013) & KNMI klimaatscenario s (2014) Rob van Dorland KNMI GroenLinks, Utrecht 4 november 2014 Intergovernmental Panel on Climate Change, 2013 Detection observation Attribution
South Africa. General Climate. UNDP Climate Change Country Profiles. A. Karmalkar 1, C. McSweeney 1, M. New 1,2 and G. Lizcano 1
UNDP Climate Change Country Profiles South Africa A. Karmalkar 1, C. McSweeney 1, M. New 1,2 and G. Lizcano 1 1. School of Geography and Environment, University of Oxford. 2. Tyndall Centre for Climate
KNMI 14: Climate Change scenarios for the 21st Century A Netherlands perspective
KNMI 14: Climate Change scenarios for the 21st Century A Netherlands perspective Bart van den Hurk, Peter Siegmund, Albert Klein Tank (Eds) De Bilt, 2014 KNMI scientific report WR 2014-01 KNMI 14 Climate
Long-term Observations of the Convective Boundary Layer (CBL) and Shallow cumulus Clouds using Cloud Radar at the SGP ARM Climate Research Facility
Long-term Observations of the Convective Boundary Layer (CBL) and Shallow cumulus Clouds using Cloud Radar at the SGP ARM Climate Research Facility Arunchandra S. Chandra Pavlos Kollias Department of Atmospheric
Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches Joao Teixeira
THE CURIOUS CASE OF THE PLIOCENE CLIMATE. Chris Brierley, Alexey Fedorov and Zhonghui Lui
THE CURIOUS CASE OF THE PLIOCENE CLIMATE Chris Brierley, Alexey Fedorov and Zhonghui Lui Outline Introduce the warm early Pliocene Recent Discoveries in the Tropics Reconstructing the early Pliocene SSTs
Clouds and Convection
Max-Planck-Institut Clouds and Convection Cathy Hohenegger, Axel Seifert, Bjorn Stevens, Verena Grützun, Thijs Heus, Linda Schlemmer, Malte Rieck Max-Planck-Institut Shallow convection Deep convection
Very High Resolution Arctic System Reanalysis for 2000-2011
Very High Resolution Arctic System Reanalysis for 2000-2011 David H. Bromwich, Lesheng Bai,, Keith Hines, and Sheng-Hung Wang Polar Meteorology Group, Byrd Polar Research Center The Ohio State University
Cloud-Resolving Simulations of Convection during DYNAMO
Cloud-Resolving Simulations of Convection during DYNAMO Matthew A. Janiga and Chidong Zhang University of Miami, RSMAS 2013 Fall ASR Workshop Outline Overview of observations. Methodology. Simulation results.
Ecosystem-land-surface-BL-cloud coupling as climate changes
Ecosystem-land-surface-BL-cloud coupling as climate changes Alan K. Betts Atmospheric Research, [email protected] CMMAP August 19, 2009 Outline of Talk Land-surface climate: - surface, BL & cloud coupling
Project Title: Quantifying Uncertainties of High-Resolution WRF Modeling on Downslope Wind Forecasts in the Las Vegas Valley
University: Florida Institute of Technology Name of University Researcher Preparing Report: Sen Chiao NWS Office: Las Vegas Name of NWS Researcher Preparing Report: Stanley Czyzyk Type of Project (Partners
Improving Hydrological Predictions
Improving Hydrological Predictions Catherine Senior MOSAC, November 10th, 2011 How well do we simulate the water cycle? GPCP 10 years of Day 1 forecast Equatorial Variability on Synoptic scales (2-6 days)
How To Model An Ac Cloud
Development of an Elevated Mixed Layer Model for Parameterizing Altocumulus Cloud Layers S. Liu and S. K. Krueger Department of Meteorology University of Utah, Salt Lake City, Utah Introduction Altocumulus
Investigations on COSMO 2.8Km precipitation forecast
Investigations on COSMO 2.8Km precipitation forecast Federico Grazzini, ARPA-SIMC Emilia-Romagna Coordinator of physical aspects group of COSMO Outline Brief description of the COSMO-HR operational suites
Climatology and Monitoring of Dust and Sand Storms in the Arabian Peninsula
Climatology and Monitoring of Dust and Sand Storms in the Arabian Peninsula Mansour Almazroui Center of Excellence for Climate Change Research (CECCR) King Abdulaziz University, Jeddah, Saudi Arabia E-mail:
TOPIC: CLOUD CLASSIFICATION
INDIAN INSTITUTE OF TECHNOLOGY, DELHI DEPARTMENT OF ATMOSPHERIC SCIENCE ASL720: Satellite Meteorology and Remote Sensing TERM PAPER TOPIC: CLOUD CLASSIFICATION Group Members: Anil Kumar (2010ME10649) Mayank
Assessing the performance of a prognostic and a diagnostic cloud scheme using single column model simulations of TWP ICE
Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 138: 734 754, April 2012 A Assessing the performance of a prognostic and a diagnostic cloud scheme using single column model
Impact of microphysics on cloud-system resolving model simulations of deep convection and SpCAM
Impact of microphysics on cloud-system resolving model simulations of deep convection and SpCAM Hugh Morrison and Wojciech Grabowski NCAR* (MMM Division, NESL) Marat Khairoutdinov Stony Brook University
Stability and Cloud Development. Stability in the atmosphere AT350. Why did this cloud form, whereas the sky was clear 4 hours ago?
Stability and Cloud Development AT350 Why did this cloud form, whereas the sky was clear 4 hours ago? Stability in the atmosphere An Initial Perturbation Stable Unstable Neutral If an air parcel is displaced
Malcolm L. Spaulding Professor Emeritus, Ocean Engineering University of Rhode Island Narragansett, RI 02881
Malcolm L. Spaulding Professor Emeritus, Ocean Engineering University of Rhode Island Narragansett, RI 02881 USACE Coastal and Hydraulics Laboratory(CHL) Data Infrastructure Workshop January 23, 2014 Overview
A Review on the Uses of Cloud-(System-)Resolving Models
A Review on the Uses of Cloud-(System-)Resolving Models Jeffrey D. Duda Since their advent into the meteorological modeling world, cloud-(system)-resolving models (CRMs or CSRMs) have become very important
Fundamentals of Climate Change (PCC 587): Water Vapor
Fundamentals of Climate Change (PCC 587): Water Vapor DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 2: 9/30/13 Water Water is a remarkable molecule Water vapor
Flood Modelling for Cities using Cloud Computing FINAL REPORT. Vassilis Glenis, Vedrana Kutija, Stephen McGough, Simon Woodman, Chris Kilsby
Summary Flood Modelling for Cities using Cloud Computing FINAL REPORT Vassilis Glenis, Vedrana Kutija, Stephen McGough, Simon Woodman, Chris Kilsby Assessment of pluvial flood risk is particularly difficult
Coupling micro-scale CFD simulations to meso-scale models
Coupling micro-scale CFD simulations to meso-scale models IB Fischer CFD+engineering GmbH Fabien Farella Michael Ehlen Achim Fischer Vortex Factoria de Càlculs SL Gil Lizcano Outline Introduction O.F.Wind
Convective Clouds. Convective clouds 1
Convective clouds 1 Convective Clouds Introduction Convective clouds are formed in vertical motions that result from the instability of the atmosphere. This instability can be caused by: a. heating at
Model predicted low-level cloud parameters Part I: Comparison with observations from the BALTEX Bridge Campaigns
Atmospheric Research 82 (2006) 55 82 www.elsevier.com/locate/atmos Model predicted low-level cloud parameters Part I: Comparison with observations from the BALTEX Bridge Campaigns Nicole P.M. van Lipzig
Interactive Simulation and Visualization of Atmospheric Large-Eddy Simulations
Interactive Simulation and Visualization of Atmospheric Large-Eddy Simulations E. J. Griffith 1, F. H. Post 1, T. Heus 2, H.J.J. Jonker 2 Technical Report VIS 2009-02 1 Data Visualization Group, Delft
Performance Analysis of a Numerical Weather Prediction Application in Microsoft Azure
Performance Analysis of a Numerical Weather Prediction Application in Microsoft Azure Emmanuell D Carreño, Eduardo Roloff, Jimmy V. Sanchez, and Philippe O. A. Navaux WSPPD 2015 - XIII Workshop de Processamento
Turbulence-microphysics interactions in boundary layer clouds
Turbulence-microphysics interactions in boundary layer clouds Wojciech W. Grabowski 1 with contributions from D. Jarecka 2, H. Morrison 1, H. Pawlowska 2, J.Slawinska 3, L.-P. Wang 4 A. A. Wyszogrodzki
Weather patterns for sailing in Weymouth Bay & Portland Harbour:
Weather patterns for sailing in Weymouth Bay & Portland Harbour: Analysis for the 2012 Olympic Games Louisa Ververs Institute for Atmospheric & Climate Science (IACETH) ETH Zürich [email protected]
Convective Vertical Velocities in GFDL AM3, Cloud Resolving Models, and Radar Retrievals
Convective Vertical Velocities in GFDL AM3, Cloud Resolving Models, and Radar Retrievals Leo Donner and Will Cooke GFDL/NOAA, Princeton University DOE ASR Meeting, Potomac, MD, 10-13 March 2013 Motivation
The impact of parametrized convection on cloud feedback.
The impact of parametrized convection on cloud feedback. Mark Webb, Adrian Lock (Met Office) Thanks also to Chris Bretherton (UW), Sandrine Bony (IPSL),Jason Cole (CCCma), Abderrahmane Idelkadi (IPSL),
Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model
Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model H. Guo, J. E. Penner, M. Herzog, and X. Liu Department of Atmospheric,
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations S. C. Xie, R. T. Cederwall, and J. J. Yio Lawrence Livermore National Laboratory Livermore, California M. H. Zhang
CCI-HYDR Perturbation Tool. A climate change tool for generating perturbed time series for the Belgian climate MANUAL, JANUARY 2009
CCI-HYDR project (contract SD/CP/03A) for: Programme SSD «Science for a Sustainable Development» MANUAL, JANUARY 2009 CCI-HYDR Perturbation Tool A climate change tool for generating perturbed time series
Observed Cloud Cover Trends and Global Climate Change. Joel Norris Scripps Institution of Oceanography
Observed Cloud Cover Trends and Global Climate Change Joel Norris Scripps Institution of Oceanography Increasing Global Temperature from www.giss.nasa.gov Increasing Greenhouse Gases from ess.geology.ufl.edu
Cloud Development and Forms. LIFTING MECHANISMS 1. Orographic 2. Frontal 3. Convergence 4. Convection. Orographic Cloud. The Orographic Cloud
Introduction to Climatology GEOGRAPHY 300 Cloud Development and Forms Tom Giambelluca University of Hawai i at Mānoa LIFTING MECHANISMS 1. Orographic 2. Frontal 3. Convergence 4. Convection Cloud Development
Atmospheric Processes
Atmospheric Processes Steven Sherwood Climate Change Research Centre, UNSW Yann Arthus-Bertrand / Altitude Where do atmospheric processes come into AR5 WGI? 1. The main feedbacks that control equilibrium
Water & Climate Review
Water & Climate Review 1. The cross section below shows the direction of air flowing over a mountain. Points A and B are at the same elevation on opposite sides of the mountain. 4. The graph below shows
I. Cloud Physics Application Open Questions. II. Algorithm Open Issues. III. Computer Science / Engineering Open issues
I. Cloud Physics Application Open Questions II. Algorithm Open Issues III. Computer Science / Engineering Open issues 1 Part I. Cloud Physics Application Open Questions 2 Open mul)scale problems relevant
Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parameterizations in Large-Scale Models
Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parameterizations in Large-Scale Models S. A. Klein National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics
SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations
SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations 22 September 2011 Hervé LE GLEAU, Marcel DERRIEN Centre de météorologie Spatiale. Lannion Météo-France 1 Fog or low level clouds?
Physical properties of mesoscale high-level cloud systems in relation to their atmospheric environment deduced from Sounders
Physical properties of mesoscale high-level cloud systems in relation to their atmospheric environment deduced from Sounders Claudia Stubenrauch, Sofia Protopapadaki, Artem Feofilov, Theodore Nicolas &
RADIATION IN THE TROPICAL ATMOSPHERE and the SAHEL SURFACE HEAT BALANCE. Peter J. Lamb. Cooperative Institute for Mesoscale Meteorological Studies
RADIATION IN THE TROPICAL ATMOSPHERE and the SAHEL SURFACE HEAT BALANCE by Peter J. Lamb Cooperative Institute for Mesoscale Meteorological Studies and School of Meteorology The University of Oklahoma
Continental and Marine Low-level Cloud Processes and Properties (ARM SGP and AZORES) Xiquan Dong University of North Dakota
Continental and Marine Low-level Cloud Processes and Properties (ARM SGP and AZORES) Xiquan Dong University of North Dakota Outline 1) Statistical results from SGP and AZORES 2) Challenge and Difficult
Citrix Access Gateway: Implementing Enterprise Edition Feature 9.0
coursemonstercom/uk Citrix Access Gateway: Implementing Enterprise Edition Feature 90 View training dates» Overview Nederlands Deze cursus behandelt informatie die beheerders en andere IT-professionals
Monsoon Variability and Extreme Weather Events
Monsoon Variability and Extreme Weather Events M Rajeevan National Climate Centre India Meteorological Department Pune 411 005 [email protected] Outline of the presentation Monsoon rainfall Variability
Dear Editor. Answer to the General Comments of Reviewer # 1:
Dear Editor The paper has been fully rewritten and the title changed accordingly to Referee 1. Figures have been updated in order to answer to the well-posed questions of the reviewers. The general structure
SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES
SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF SIXTH GRADE WATER WEEK 1. PRE: Evaluating components of the water cycle. LAB: Experimenting with porosity and permeability.
Advanced tools in water management in The Netherlands
Advanced tools in water management in The Netherlands Modelling for system knowledge, effective operational management, and policy making Gé van den Eertwegh Rivierenland Water Board The Netherlands PR
Reply to No evidence for iris
Reply to No evidence for iris Richard S. Lindzen +, Ming-Dah Chou *, and Arthur Y. Hou * March 2002 To appear in Bulletin of the American Meteorological Society +Department of Earth, Atmospheric, and Planetary
Highly Scalable Dynamic Load Balancing in the Atmospheric Modeling System COSMO-SPECS+FD4
Center for Information Services and High Performance Computing (ZIH) Highly Scalable Dynamic Load Balancing in the Atmospheric Modeling System COSMO-SPECS+FD4 PARA 2010, June 9, Reykjavík, Iceland Matthias
NATHAN world map of natural hazards. 2011 version
world map of natural hazards 2011 version World Map of Natural Hazards Geointelligence for your business A new name but the recipe for success is the same: In the 2011 version, we are offering both proven
Product Description KNMI14 Daily Grids
Product Description KNMI14 Daily Grids Dr. R. Sluiter De Bilt, July 2014 Technical report; TR-346 Product Description KNMI14 Daily Grids Version 1.0 Date July 2014 Status Final Colofon Title Product Description
Nowcasting: analysis and up to 6 hours forecast
Nowcasting: analysis and up to 6 hours forecast Very high resoultion in time and space Better than NWP Rapid update Application oriented NWP problems for 0 6 forecast: Incomplete physics Resolution space
Name Period 4 th Six Weeks Notes 2015 Weather
Name Period 4 th Six Weeks Notes 2015 Weather Radiation Convection Currents Winds Jet Streams Energy from the Sun reaches Earth as electromagnetic waves This energy fuels all life on Earth including the
Chapter 6 - Cloud Development and Forms. Interesting Cloud
Chapter 6 - Cloud Development and Forms Understanding Weather and Climate Aguado and Burt Interesting Cloud 1 Mechanisms that Lift Air Orographic lifting Frontal Lifting Convergence Localized convective
