A model to observation approach to evaluating cloud microphysical parameterisations using polarimetric radar
|
|
|
- Ronald Wheeler
- 10 years ago
- Views:
Transcription
1 A model to observation approach to evaluating cloud microphysical parameterisations using polarimetric radar Monika Pfeifer G. Craig, M. Hagen, C. Keil
2 Polarisation Doppler Radar POLDIRAD Rain Graupel Hail 2
3 Synthetic Polarimetric Radar: SynPolRad? Reflectivity, LDR, ZDR Polar Coordinates Specific water content of hydrometeors Model Grid 3
4 Synthetic Polarimetric Radar: SynPolRad? Reflectivity, LDR, ZDR Polar Coordinates Specific water content of hydrometeors Model Grid Polarimetric Radar Forward Operator: SynPolRad Reflectivity, LDR, ZDR, Model Grid Synthetic Reflectivity, LDR, ZDR, Model Grid 4
5 Link Mesoscale Model - SynPolRad Output parameters of the mesoscale model Bulk water quantities of cloud ice and water, rain, snow and graupel Assumptions of the NWP model (density, For everyhydrometeor type type) Assumed Free Sensitivity Studies DSD Parameters Tuning of the free parameters against the hydrometeor DSD classification Waterportion in Falling behaviour scheme (Höller Density 1994) Shape (Do, No) melting ice (canting angle) Input parameters of SynPolRad Reflectivity Dielectric Constant LDR, ZDR 5
6 Case Study : 5th of July 2005 Comparison of 6 LMK runs: (dx = 2.8 km) 2 different versions, and 3 different microphysical paramet. Schemes: 2 component scheme (rain, snow) 3 component scheme (rain, snow, graupel) Thompson (rain, snow, graupel) 6
7 8 UTC 2 PPI Observations LMK 2 comp. LMK: 3 comp. LMK: Thompson Scheme 7
8 8 UTC: 2 PPI Scan - Mean over azimuth angles Poldirad Thompson Thompson-N LMK, 3 comp LMK-N, 3 comp LMK, 2 comp LMK-N, 2 comp Poldirad Thompson Thompson-N LMK, 3 comp LMK-N, 3 comp LMK, 2 comp LMK-N, 2 comp Reflectivity [dbz] ZDR [db] 8
9 6 UTC : 2 PPI Scan - Mean over azimuth angles For all schemes: Poldirad Thompson Thompson-N LMK, 3 comp LMK-N, 3 comp LMK, 2 comp LMK-N, 2 comp ZDR is too small for the simulated reflectivity. Poldirad Thompson Thompson-N LMK, 3 comp LMK-N, 3 comp LMK, 2 comp LMK-N, 2 comp The slope of the DSD is too steep; there are not enough large drops present. Reflectivity ZDR 9
10 1 PPI 10 UTC Observations LMK:2-comp. LMK 3 comp. LMK: Thompson 10
11 0.157 omparison: 3-comp. - Thompson scheme Mixing Ratio [g/kg]:
12 Case Study: 12th August 2004, 15 to 20 UTC LMK 3.16: 2 component 3 component Thompson MesoNH 12
13 MK 3.17: 9:00 UTC Observation MesoNH LMK, 2 comp. LMK, 3 comp. LMK, Thompson 13
14 RHI Reflectivity Observation 19:23 UTC MesoNH LMK: 2 comp. LMK:3 comp. LMK:Thompson 14
15 Hydrometeor Classification Observation 19:23 UTC LMK :2 comp. LMK :3 comp. LMK: Thompson MesoNH LMK 19 UTC 3 comp. 15
16 Conclusion and Outlook Polarimetric Radar together with the polarimetric radar forward operator SynPolRad provide a novel tool to validate cloud microphysics. Stratiform case study: The DSD of rain is not represented well in the sense that large drops are underestimated. Differences between the Thompson and LMK schemes in rain can be traced back to the cloud ice. Convective case study: The number of ice hydrometeors and the assumptions regarding density and DSD are essential for the representation of convective events. Outlook: Long term evaluation within the project QUEST (Poster by Crewell et al.) Expansion of SynPolRad to cloud radar Model intercomparison including LMK, MM5, MesoNH,??? 16
17 8 UTC: 2 PPI Scan - Mean over azimuth angles Poldirad Thompson Thompson-N LMK, 3 comp LMK-N, 3 comp LMK, 2 comp LMK-N, 2 comp Poldirad Thompson Thompson-N LMK, 3 comp LMK-N, 3 comp LMK, 2 comp LMK-N, 2 comp Reflectivity [dbz] LDR [db] ZDR [db] 17
18 Beam Propagation 18
Roelof Bruintjes, Sarah Tessendorf, Jim Wilson, Rita Roberts, Courtney Weeks and Duncan Axisa WMA Annual meeting 26 April 2012
Aerosol affects on the microphysics of precipitation development in tropical and sub-tropical convective clouds using dual-polarization radar and airborne measurements. Roelof Bruintjes, Sarah Tessendorf,
MICROPHYSICS COMPLEXITY EFFECTS ON STORM EVOLUTION AND ELECTRIFICATION
MICROPHYSICS COMPLEXITY EFFECTS ON STORM EVOLUTION AND ELECTRIFICATION Blake J. Allen National Weather Center Research Experience For Undergraduates, Norman, Oklahoma and Pittsburg State University, Pittsburg,
Weather Radar Basics
Weather Radar Basics RADAR: Radio Detection And Ranging Developed during World War II as a method to detect the presence of ships and aircraft (the military considered weather targets as noise) Since WW
DETAILED STORM SIMULATIONS BY A NUMERICAL CLOUD MODEL WITH ELECTRIFICATION AND LIGHTNING PARAMETERIZATIONS
DETAILED STORM SIMULATIONS BY A NUMERICAL CLOUD MODEL WITH ELECTRIFICATION AND LIGHTNING PARAMETERIZATIONS Don MacGorman 1, Ted Mansell 1,2, Conrad Ziegler 1, Jerry Straka 3, and Eric C. Bruning 1,3 1
1. Specific Differential Phase (KDP)
1. Specific Differential Phase (KDP) Instructor Notes: Welcome to the dual polarization radar course. I am Clark Payne with the Warning Decision Training Branch. This lesson is part of the dual-pol products
Cloud-Resolving Simulations of Convection during DYNAMO
Cloud-Resolving Simulations of Convection during DYNAMO Matthew A. Janiga and Chidong Zhang University of Miami, RSMAS 2013 Fall ASR Workshop Outline Overview of observations. Methodology. Simulation results.
Cloud/Hydrometeor Initialization in the 20-km RUC Using GOES Data
WORLD METEOROLOGICAL ORGANIZATION COMMISSION FOR BASIC SYSTEMS OPEN PROGRAMMME AREA GROUP ON INTEGRATED OBSERVING SYSTEMS EXPERT TEAM ON OBSERVATIONAL DATA REQUIREMENTS AND REDESIGN OF THE GLOBAL OBSERVING
How To Understand And Understand The Physics Of Clouds And Precipitation
Deutscher Wetterdienst Research and Development Physical Parameterizations: Cloud Microphysics and Subgrid-Scale Cloudiness Axel Seifert Deutscher Wetterdienst, Offenbach Deutscher Wetterdienst Research
GCMs with Implicit and Explicit cloudrain processes for simulation of extreme precipitation frequency
GCMs with Implicit and Explicit cloudrain processes for simulation of extreme precipitation frequency In Sik Kang Seoul National University Young Min Yang (UH) and Wei Kuo Tao (GSFC) Content 1. Conventional
3.5 THREE-DIMENSIONAL HIGH-RESOLUTION NATIONAL RADAR MOSAIC
3.5 THREE-DIMENSIONAL HIGH-RESOLUTION NATIONAL RADAR MOSAIC Jian Zhang 1, Kenneth Howard 2, Wenwu Xia 1, Carrie Langston 1, Shunxin Wang 1, and Yuxin Qin 1 1 Cooperative Institute for Mesoscale Meteorological
WxFUSION. A. Tafferner. Folie 1. iport Meeting 13.10.2010 @ DLR OP
WxFUSION A. Tafferner iport Meeting 13.10.2010 @ DLR OP Folie 1 Upper Danube Catchment MUC DLR Andechs Munich Vienna Folie 2 Local and propagating thunderstorms in the Upper Danube Catchment B. Barternschlager,
Since launch in April of 2006, CloudSat has provided
A Multipurpose Radar Simulation Package: QuickBeam BY J. M. HAYNES, R. T. MARCHAND, Z. LUO, A. BODAS-SALCEDO, AND G. L. STEPHENS Since launch in April of 2006, CloudSat has provided the first near-global
1. Introduction. 2. AP Clutter Mitigation Scheme 14.13
14.13 itigating Ground Clutter Contamination in the WSR-88D Scott Ellis 1, Cathy Kessinger 1, Timothy D. O Bannon 2 and Joseph VanAndel 1 1. National Center for Atmospheric Research, Boulder, CO. 2. National
Convective Vertical Velocities in GFDL AM3, Cloud Resolving Models, and Radar Retrievals
Convective Vertical Velocities in GFDL AM3, Cloud Resolving Models, and Radar Retrievals Leo Donner and Will Cooke GFDL/NOAA, Princeton University DOE ASR Meeting, Potomac, MD, 10-13 March 2013 Motivation
Towards an NWP-testbed
Towards an NWP-testbed Ewan O Connor and Robin Hogan University of Reading, UK Overview Cloud schemes in NWP models are basically the same as in climate models, but easier to evaluate using ARM because:
Polarimetric attenuation correction and rainfall estimation at C band for an extreme rain event
_ Polarimetric attenuation correction and rainfall estimation at C band for an extreme rain event J-Y. Gu Department of Environmental and Atmospheric Sciences, Pukyong National University, Busan, South
2.4 Nowcasting Winter Weather at Munich Airport (Tafferner, Keis) Final Report
2.4 Nowcasting Winter Weather at Munich Airport (Tafferner, Keis) Final Report 2.4 Nowcasting Winter Weather at Munich Airport Arnold Tafferner, Felix Keis Institute of Atmospheric Physics The WxFUSION
Combining Satellite High Frequency Microwave Radiometer & Surface Cloud Radar Data for Determination of Large Scale 3 D Cloud IWC 서은경
11/21/2008 제9회 기상레이더 워크숍 Combining Satellite High Frequency Microwave Radiometer & Surface Cloud Radar Data for Determination of Large Scale 3 D Cloud IWC 서은경 공주대학교 지구과학교육과 Objective: To retrieve large
Cloud Profiling at the Lindenberg Observatory
Cloud Profiling at the Lindenberg Observatory Ulrich Görsdorf DWD, Cloud Profiling with a Ka-Band radar at the Lindenberg Observatory Ulrich Görsdorf DWD, MIRA 35.5 GHz (8 mm) Radar (Ka-Band) Coherent
MCMC-Based Assessment of the Error Characteristics of a Surface-Based Combined Radar - Passive Microwave Cloud Property Retrieval
MCMC-Based Assessment of the Error Characteristics of a Surface-Based Combined Radar - Passive Microwave Cloud Property Retrieval Derek J. Posselt University of Michigan Jay G. Mace University of Utah
Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models Yefim L. Kogan Cooperative Institute
EXPERIMENTS WITH THE MESONH-AROME MICROPHYSICAL SCHEME AND EVALUATION BY REMOTE SENSING TOOLS
EXPERIMENTS WITH THE MESONH-AROME MICROPHYSICAL SCHEME AND EVALUATION BY REMOTE SENSING TOOLS Jean-Pierre Pinty( ), Jean-Pierre Chaboureau( ), Evelyne Richard( ), Frank Lascaux( ) and Yann Seity( ) ( )
How To Calculate Turbulent Collision
Impact of turbulent collisions on cloud development Ryo Onishi and Keiko Takahashi Earth Simulator Center (ESC), Japan Agency of Marine-Earth Science and Technology (JAMSTEC) Turbulent collision kernel
A Microwave Retrieval Algorithm of Above-Cloud Electric Fields
A Microwave Retrieval Algorithm of Above-Cloud Electric Fields Michael J. Peterson The University of Utah Chuntao Liu Texas A & M University Corpus Christi Douglas Mach Global Hydrology and Climate Center
WSR - Weather Surveillance Radar
1 of 7 Radar by Paul Sirvatka College of DuPage Meteorology WSR - Weather Surveillance Radar It was learned during World War II that electromagnetic radiation could be sent out, bounced off an object and
RIEGL VZ-400 NEW. Laser Scanners. Latest News March 2009
Latest News March 2009 NEW RIEGL VZ-400 Laser Scanners The following document details some of the excellent results acquired with the new RIEGL VZ-400 scanners, including: Time-optimised fine-scans The
How To Use A Karlsruhe Doppler Lidar
Andreas Wieser Institut für Meteorologie und Klimaforschung Forschungsbereich Troposphäre (IMK-TRO) First measurements with the new Karlsruhe Doppler Lidar June 03, 2004 Forschungszentrum Karlsruhe we
Microwave observations in the presence of cloud and precipitation
Microwave observations in the presence of cloud and precipitation Alan Geer Thanks to: Bill Bell, Peter Bauer, Fabrizio Baordo, Niels Bormann Slide 1 ECMWF/EUMETSAT satellite course 2015: Microwave 2 Slide
Selex Systems Integration GmbH Company Presentation
Selex Systems Integration GmbH Company Presentation Dr. Monika Pfeifer Manager Marketing&Sales Leader in Weather Radar Technology and Meteorological Systems Key Figures Turnover: ~ 30 Mio. > 90% export
The formation of wider and deeper clouds through cold-pool dynamics
The formation of wider and deeper clouds through cold-pool dynamics Linda Schlemmer, Cathy Hohenegger e for Meteorology, Hamburg 2013-09-03 Bergen COST Meeting Linda Schlemmer 1 / 27 1 Motivation 2 Simulations
6A.2 The testing of NSSL multi-sensor applications and data from prototype platforms in NWS forecast operations
6A.2 The testing of NSSL multi-sensor applications and data from prototype platforms in NWS forecast operations Kevin A. Scharfenberg* and Travis M. Smith Cooperative Institute for Mesoscale Meteorology
Impact of microphysics on cloud-system resolving model simulations of deep convection and SpCAM
Impact of microphysics on cloud-system resolving model simulations of deep convection and SpCAM Hugh Morrison and Wojciech Grabowski NCAR* (MMM Division, NESL) Marat Khairoutdinov Stony Brook University
Regional mesoscale models are becoming increasingly IMPROVEMENT OF MICROPHYSICAL PARAMETERIZATION THROUGH OBSERVATIONAL VERIFICATION EXPERIMENT
IMPROVEMENT OF MICROPHYSICAL PARAMETERIZATION THROUGH OBSERVATIONAL VERIFICATION EXPERIMENT BY MARK T. STOELINGA, PETER V. HOBBS, CLIFFORD F. MASS, JOHN D. LOCATELLI, BRIAN A. COLLE, ROBERT A. HOUZE JR.,
RADAR-DISDROMETER COMPARISON TO REVEAL ATTENUATION EFFECTS ON CASA RADAR DATA. and ABSTRACT
RADAR-DISDROMETER COMPARISON TO REVEAL ATTENUATION EFFECTS ON CASA RADAR DATA Christopher Kerr 1,2, Guifu Zhang 3,4, and Petar Bukovcic 3,4 1 National Weather Center Research Experience for Undergraduates
4.12 Improving wind profiler data recovery in non-uniform precipitation using a modified consensus algorithm
4.12 Improving wind profiler data recovery in non-uniform precipitation using a modified consensus algorithm Raisa Lehtinen 1, Daniel Gottas 2, Jim Jordan 3, Allen White 2 1 Vaisala Inc, Boulder, Colorado,
Deployment of the X-band dual polarization phased array radar in the Dallas-Forth Worth Urban Demonstration Network
ERAD 2014 - THE EIGHTH EUROPEAN CONFERENCE ON RADAR IN METEOROLOGY AND HYDROLOGY Deployment of the X-band dual polarization phased array radar in the Dallas-Forth Worth Urban Demonstration Network Krzysztof
Model predicted low-level cloud parameters Part I: Comparison with observations from the BALTEX Bridge Campaigns
Atmospheric Research 82 (2006) 55 82 www.elsevier.com/locate/atmos Model predicted low-level cloud parameters Part I: Comparison with observations from the BALTEX Bridge Campaigns Nicole P.M. van Lipzig
Mixed-phase layer clouds
Mixed-phase layer clouds Chris Westbrook and Andrew Barrett Thanks to Anthony Illingworth, Robin Hogan, Andrew Heymsfield and all at the Chilbolton Observatory What is a mixed-phase cloud? Cloud below
MountainZebra: Real-Time Archival and 4D Visualization of Radar Volumes Over Complex Terrain
MountainZebra: Real-Time Archival and D Visualization of Radar Volumes Over Complex Terrain Curtis James, Stacy Brodzik, Harry Edmon, Robert Houze, and Sandra Yuter Department of Atmospheric Sciences,
Regional Forecast Center Timişoara 15. Gh. Adam St., Timişoara, Romania, e-mail: [email protected]
Analele UniversităŃii din Oradea Seria Geografie Tom XX, no. 2/2010 (December), pp 197-203 ISSN 1221-1273, E-ISSN 2065-3409 Article no. 202106-492 SOME DOPPLER RADAR FEATURES OF SEVERE WEATHER IN SUPERCELLS
SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations
SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations 22 September 2011 Hervé LE GLEAU, Marcel DERRIEN Centre de météorologie Spatiale. Lannion Météo-France 1 Fog or low level clouds?
Enhanced Stripline Scanning Array B.M. Cahill and J.C. Batchelor
Enhanced Stripline Scanning Array B.M. Cahill and J.C. Batchelor This paper is a postprint of a paper submitted to and accepted for publication in IET Microwaves, Antennas and Propagation and is subject
In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. aero quarterly qtr_01 10
In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. 22 avoiding convective Weather linked to Ice-crystal Icing engine events understanding
A comparison of simulated cloud radar output from the multiscale modeling framework global climate model with CloudSat cloud radar observations
Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2008jd009790, 2009 A comparison of simulated cloud radar output from the multiscale modeling framework global climate
ICAO Developments (Hazardous Weather Information)
ICAO Developments (Hazardous Weather Information) USER NEEDS AND EXPECTATION IATA s viewpoint Harmonized information about hazardous meteorological conditions that may constrain operations along intended
Lecture 7a: Cloud Development and Forms
Lecture 7a: Cloud Development and Forms Why Clouds Form Cloud Types (from The Blue Planet ) Why Clouds Form? Clouds form when air rises and becomes saturated in response to adiabatic cooling. Four Ways
A Real Case Study of Using Cloud Analysis in Grid-point Statistical Interpolation Analysis and Advanced Research WRF Forecast System
A Real Case Study of Using Cloud Analysis in Grid-point Statistical Interpolation Analysis and Advanced Research WRF Forecast System Ming Hu 1 and Ming Xue 1, 1 Center for Analysis and Prediction of Storms,
Remote Sensing of Clouds from Polarization
Remote Sensing of Clouds from Polarization What polarization can tell us about clouds... and what not? J. Riedi Laboratoire d'optique Atmosphérique University of Science and Technology Lille / CNRS FRANCE
Monitoring of Arctic Conditions from a Virtual Constellation of Synthetic Aperture Radar Satellites
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Monitoring of Arctic Conditions from a Virtual Constellation of Synthetic Aperture Radar Satellites Hans C. Graber RSMAS
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations S. C. Xie, R. T. Cederwall, and J. J. Yio Lawrence Livermore National Laboratory Livermore, California M. H. Zhang
Nowcasting: analysis and up to 6 hours forecast
Nowcasting: analysis and up to 6 hours forecast Very high resoultion in time and space Better than NWP Rapid update Application oriented NWP problems for 0 6 forecast: Incomplete physics Resolution space
OPERATIONAL USE OF TOTAL LIGHTNING INFORMATION FOR WEATHER AND AVIATION AT DALLAS-FORT WORTH
7.4 OPERATIONAL USE OF TOTAL LIGHTNING INFORMATION FOR WEATHER AND AVIATION AT DALLAS-FORT WORTH Martin J. Murphy*, Ronald L. Holle, and Nicholas W.S. Demetriades Vaisala Inc., Tucson, Arizona 1. INTRODUCTION
Wind Field Observations with a Monostatic and Bistatic C-band Doppler Radar Network
Wind Field Observations with a Monostatic and Bistatic C-band Doppler Radar Network Martin Hagen, DLR Oberpfaffenhofen Wind field and Doppler radar Doppler radar (and lidar) can only measure one component
Large Eddy Simulation (LES) & Cloud Resolving Model (CRM) Françoise Guichard and Fleur Couvreux
Large Eddy Simulation (LES) & Cloud Resolving Model (CRM) Françoise Guichard and Fleur Couvreux Cloud-resolving modelling : perspectives Improvement of models, new ways of using them, renewed views And
How To Find Out How Much Cloud Fraction Is Underestimated
Parameterizing the difference in cloud fraction defined by area and by volume as observed with radar and lidar MALCOLM E. BROOKS 1 2, ROBIN J. HOGAN, AND ANTHONY J. ILLINGWORTH Department of Meteorology,
Investigations on COSMO 2.8Km precipitation forecast
Investigations on COSMO 2.8Km precipitation forecast Federico Grazzini, ARPA-SIMC Emilia-Romagna Coordinator of physical aspects group of COSMO Outline Brief description of the COSMO-HR operational suites
Understanding three dimensional effects in polarized observations with the ground based ADMIRARI radiometer during the CHUVA campaign
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2010jd015335, 2011 Understanding three dimensional effects in polarized observations with the ground based ADMIRARI radiometer during the CHUVA campaign
Weather Help - NEXRAD Radar Maps. Base Reflectivity
Weather Help - NEXRAD Radar Maps Base Reflectivity Base Reflectivity Severe Thunderstorm/Torna do Watch Areas 16 levels depicted with colors from dark green (very light) to red (extreme) that indicate
The APOLLO cloud product statistics Web service The APOLLO cloud product statistics Web service
The APOLLO cloud product statistics Web service Introduction DLR and Transvalor are preparing a new Web service to disseminate the statistics of the APOLLO cloud physical parameters as a further help in
RAPIDS Operational Blending of Nowcasting and NWP QPF
RAPIDS Operational Blending of Nowcasting and NWP QPF Wai-kin Wong and Edwin ST Lai Hong Kong Observatory The Second International Symposium on Quantitative Precipitation Forecasting and Hydrology 5-8
IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS
IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS M. J. Mueller, R. W. Pasken, W. Dannevik, T. P. Eichler Saint Louis University Department of Earth and
Arctic Cloud Microphysics Retrievals from Surface-Based Remote Sensors at SHEBA
1544 J O U R N A L O F A P P L I E D M E T E O R O L O G Y VOLUME 44 Arctic Cloud Microphysics Retrievals from Surface-Based Remote Sensors at SHEBA MATTHEW D. SHUPE Cooperative Institute for Research
