BLAST. Anders Gorm Pedersen & Rasmus Wernersson
|
|
|
- Blaze Thomas
- 10 years ago
- Views:
Transcription
1 BLAST Anders Gorm Pedersen & Rasmus Wernersson
2 Database searching Using pairwise alignments to search databases for similar sequences Query sequence Database
3 Database searching Most common use of pairwise sequence alignments is to search databases for related sequences. For instance: find probable function of newly isolated protein by identifying similar proteins with known function. Most often, local alignment ( Smith-Waterman ) is used for database searching: you are interested in finding out if ANY domain in your protein looks like something that is known. Often, full Smith-Waterman is too time-consuming for searching large databases, so heuristic methods are used (fasta, BLAST).
4 Database searching: heuristic search algorithms FASTA (Pearson 1995) Uses heuristics to avoid calculating the full dynamic programming matrix Speed up searches by an order of magnitude compared to full Smith-Waterman The statistical side of FASTA is still stronger than BLAST BLAST (Altschul 1990, 1997) Uses rapid word lookup methods to completely skip most of the database entries Extremely fast One order of magnitude faster than FASTA Two orders of magnitude faster than Smith- Waterman Almost as sensitive as FASTA
5 BLAST flavors BLASTN BLASTP Protein query sequence Protein database BLASTX Protein database Compares all six reading frames with the database TBLASTN Protein query sequence On the fly six frame translation of database TBLASTX Compares all reading frames of query with all reading frames of the database
6 BLAST flavors BLASTN BLASTP Protein query sequence Protein database BLASTX Protein database Compares all six reading frames with the database TBLASTN Protein query sequence On the fly six frame translation of database TBLASTX Compares all reading frames of query with all reading frames of the database
7 BLAST flavors BLASTN BLASTP Protein query sequence Protein database BLASTX Protein database Compares all six reading frames with the database TBLASTN Protein query sequence On the fly six frame translation of database TBLASTX Compares all reading frames of query with all reading frames of the database
8 Searching on the web: BLAST at NCBI Very fast computer dedicated to running BLAST searches Many databases that are always up to date (e.g. NR and Human Genome Nice simple web interface But you still need knowledge about BLAST to use it properly
9 When is a database hit significant? Problem: Even unrelated sequences can be aligned (yielding a low score) How do we know if a database hit is meaningful? When is an alignment score sufficiently high? Solution: Determine the range of alignment scores you would expect to get for random reasons (i.e., when aligning unrelated sequences). Compare actual scores to the distribution of random scores. Is the real score much higher than you d expect by chance?
10 Distribution of random alignment scores Software simulation
11 Random alignment scores follow extreme value distributions Searching a database of unrelated sequences result in scores following an extreme value distribution The exact shape and location of the distribution depends on the exact nature of the database and the query sequence
12 Significance of a hit: one possible solution (1) Align query sequence to all sequences in database, note scores (2) Fit actual scores to a mixture of two sub-distributions: (a) an extreme value distribution and (b) a normal distribution (3) Use fitted extreme-value distribution to predict how many random hits to expect for any given score (the E-value )
13 Database searching: E-values in BLAST BLAST uses precomputed extreme value distributions to calculate E- values from alignment scores For this reason BLAST only allows certain combinations of substitution matrices and gap penalties This also means that the fit is based on a different data set than the one you are working on A word of caution: BLAST tends to overestimate the significance of its matches E-values from BLAST are fine for identifying sure hits One should be careful using BLAST s E-values to judge if a marginal hit can be trusted (e.g., you may want to use E-values of 10-4 to 10-5 ).
14 BLAST heuristics Best possible search: Do full pairwise alignment (Smith-Watermann) between the query sequence and all sequences in the database. ( ssearch does this). BLAST speeds up the search by at least two orders of magnitude, by prescreening the database sequences and only performing the full Dynamic Programming on promising sequences. This is done by indexing all databases sequences in a so-called suffix-tree which makes it very fast to search for perfect matching sub-strings. A suffix tree is the quickest possible way (so far) to search for the longest matching sub-string between two strings. When a BLAST search is run, candidate sequences from the database is picked based on perfect matches to small sub-sequences in the query sequence. (BLASTN and BLASTP does this differently - more about this in a moment). Full Smith-Waterman is then performed on these sequences.
15 BLASTN Alignment matrix: Perfect match: 1 Mismatch: -3 Match => word size Potential matched of length < word size (not seen by BLAST) Notice: All mismatched are equally penalized: E.g. A:G == A:C == A:A More advanced models for DNA evolution does exist. Heuristics: Perfect match word of the size: 7, 11 (default) or 15. All sequences Subset to align
16 BLASTP Alignment matrix: PAM and BLOSUM-series (default: BLOSUM 62) 40 aa Match => word size Notice: These alignment matrices incorporates knowledge about protein evolution. Heuristics: 2 x Near match within a windows. Default word length: 3 aa Default window length: 40 aa All sequences Subset to align
Pairwise Sequence Alignment
Pairwise Sequence Alignment [email protected] SS 2013 Outline Pairwise sequence alignment global - Needleman Wunsch Gotoh algorithm local - Smith Waterman algorithm BLAST - heuristics What
Similarity Searches on Sequence Databases: BLAST, FASTA. Lorenza Bordoli Swiss Institute of Bioinformatics EMBnet Course, Basel, October 2003
Similarity Searches on Sequence Databases: BLAST, FASTA Lorenza Bordoli Swiss Institute of Bioinformatics EMBnet Course, Basel, October 2003 Outline Importance of Similarity Heuristic Sequence Alignment:
RETRIEVING SEQUENCE INFORMATION. Nucleotide sequence databases. Database search. Sequence alignment and comparison
RETRIEVING SEQUENCE INFORMATION Nucleotide sequence databases Database search Sequence alignment and comparison Biological sequence databases Originally just a storage place for sequences. Currently the
Algorithms in Bioinformatics I, WS06/07, C.Dieterich 47. This lecture is based on the following, which are all recommended reading:
Algorithms in Bioinformatics I, WS06/07, C.Dieterich 47 5 BLAST and FASTA This lecture is based on the following, which are all recommended reading: D.J. Lipman and W.R. Pearson, Rapid and Sensitive Protein
Protein & DNA Sequence Analysis. Bobbie-Jo Webb-Robertson May 3, 2004
Protein & DNA Sequence Analysis Bobbie-Jo Webb-Robertson May 3, 2004 Sequence Analysis Anything connected to identifying higher biological meaning out of raw sequence data. 2 Genomic & Proteomic Data Sequence
Bio-Informatics Lectures. A Short Introduction
Bio-Informatics Lectures A Short Introduction The History of Bioinformatics Sanger Sequencing PCR in presence of fluorescent, chain-terminating dideoxynucleotides Massively Parallel Sequencing Massively
Welcome to the Plant Breeding and Genomics Webinar Series
Welcome to the Plant Breeding and Genomics Webinar Series Today s Presenter: Dr. Candice Hansey Presentation: http://www.extension.org/pages/ 60428 Host: Heather Merk Technical Production: John McQueen
Bioinformatics Resources at a Glance
Bioinformatics Resources at a Glance A Note about FASTA Format There are MANY free bioinformatics tools available online. Bioinformaticists have developed a standard format for nucleotide and protein sequences
Design Style of BLAST and FASTA and Their Importance in Human Genome.
Design Style of BLAST and FASTA and Their Importance in Human Genome. Saba Khalid 1 and Najam-ul-haq 2 SZABIST Karachi, Pakistan Abstract: This subjected study will discuss the concept of BLAST and FASTA.BLAST
Biological Databases and Protein Sequence Analysis
Biological Databases and Protein Sequence Analysis Introduction M. Madan Babu, Center for Biotechnology, Anna University, Chennai 25, India Bioinformatics is the application of Information technology to
Rapid alignment methods: FASTA and BLAST. p The biological problem p Search strategies p FASTA p BLAST
Rapid alignment methods: FASTA and BLAST p The biological problem p Search strategies p FASTA p BLAST 257 BLAST: Basic Local Alignment Search Tool p BLAST (Altschul et al., 1990) and its variants are some
A Tutorial in Genetic Sequence Classification Tools and Techniques
A Tutorial in Genetic Sequence Classification Tools and Techniques Jake Drew Data Mining CSE 8331 Southern Methodist University [email protected] www.jakemdrew.com Sequence Characters IUPAC nucleotide
Bioinformática BLAST. Blast information guide. Buscas de sequências semelhantes. Search for Homologies BLAST
BLAST Bioinformática Search for Homologies BLAST BLAST - Basic Local Alignment Search Tool http://blastncbinlmnihgov/blastcgi 1 2 Blast information guide Buscas de sequências semelhantes http://blastncbinlmnihgov/blastcgi?cmd=web&page_type=blastdocs
Apply PERL to BioInformatics (II)
Apply PERL to BioInformatics (II) Lecture Note for Computational Biology 1 (LSM 5191) Jiren Wang http://www.bii.a-star.edu.sg/~jiren BioInformatics Institute Singapore Outline Some examples for manipulating
BIOINFORMATICS TUTORIAL
Bio 242 BIOINFORMATICS TUTORIAL Bio 242 α Amylase Lab Sequence Sequence Searches: BLAST Sequence Alignment: Clustal Omega 3d Structure & 3d Alignments DO NOT REMOVE FROM LAB. DO NOT WRITE IN THIS DOCUMENT.
Choices, choices, choices... Which sequence database? Which modifications? What mass tolerance?
Optimization 1 Choices, choices, choices... Which sequence database? Which modifications? What mass tolerance? Where to begin? 2 Sequence Databases Swiss-prot MSDB, NCBI nr dbest Species specific ORFS
BIO 3350: ELEMENTS OF BIOINFORMATICS PARTIALLY ONLINE SYLLABUS
BIO 3350: ELEMENTS OF BIOINFORMATICS PARTIALLY ONLINE SYLLABUS NEW YORK CITY COLLEGE OF TECHNOLOGY The City University Of New York School of Arts and Sciences Biological Sciences Department Course title:
Laboratorio di Bioinformatica
Laboratorio di Bioinformatica Lezione #2 Dr. Marco Fondi Contact: [email protected] www.unifi.it/dblemm/ tel. 0552288308 Dip.to di Biologia Evoluzionistica Laboratorio di Evoluzione Microbica e Molecolare,
Analyzing A DNA Sequence Chromatogram
LESSON 9 HANDOUT Analyzing A DNA Sequence Chromatogram Student Researcher Background: DNA Analysis and FinchTV DNA sequence data can be used to answer many types of questions. Because DNA sequences differ
SGI. High Throughput Computing (HTC) Wrapper Program for Bioinformatics on SGI ICE and SGI UV Systems. January, 2012. Abstract. Haruna Cofer*, PhD
White Paper SGI High Throughput Computing (HTC) Wrapper Program for Bioinformatics on SGI ICE and SGI UV Systems Haruna Cofer*, PhD January, 2012 Abstract The SGI High Throughput Computing (HTC) Wrapper
PROC. CAIRO INTERNATIONAL BIOMEDICAL ENGINEERING CONFERENCE 2006 1. E-mail: [email protected]
BIOINFTool: Bioinformatics and sequence data analysis in molecular biology using Matlab Mai S. Mabrouk 1, Marwa Hamdy 2, Marwa Mamdouh 2, Marwa Aboelfotoh 2,Yasser M. Kadah 2 1 Biomedical Engineering Department,
Lecture 4: Exact string searching algorithms. Exact string search algorithms. Definitions. Exact string searching or matching
COSC 348: Computing for Bioinformatics Definitions A pattern (keyword) is an ordered sequence of symbols. Lecture 4: Exact string searching algorithms Lubica Benuskova http://www.cs.otago.ac.nz/cosc348/
Network Protocol Analysis using Bioinformatics Algorithms
Network Protocol Analysis using Bioinformatics Algorithms Marshall A. Beddoe [email protected] ABSTRACT Network protocol analysis is currently performed by hand using only intuition and a protocol
Clone Manager. Getting Started
Clone Manager for Windows Professional Edition Volume 2 Alignment, Primer Operations Version 9.5 Getting Started Copyright 1994-2015 Scientific & Educational Software. All rights reserved. The software
3. About R2oDNA Designer
3. About R2oDNA Designer Please read these publications for more details: Casini A, Christodoulou G, Freemont PS, Baldwin GS, Ellis T, MacDonald JT. R2oDNA Designer: Computational design of biologically-neutral
When you install Mascot, it includes a copy of the Swiss-Prot protein database. However, it is almost certain that you and your colleagues will want
1 When you install Mascot, it includes a copy of the Swiss-Prot protein database. However, it is almost certain that you and your colleagues will want to search other databases as well. There are very
Module 1. Sequence Formats and Retrieval. Charles Steward
The Open Door Workshop Module 1 Sequence Formats and Retrieval Charles Steward 1 Aims Acquaint you with different file formats and associated annotations. Introduce different nucleotide and protein databases.
Molecular Databases and Tools
NWeHealth, The University of Manchester Molecular Databases and Tools Afternoon Session: NCBI/EBI resources, pairwise alignment, BLAST, multiple sequence alignment and primer finding. Dr. Georgina Moulton
Error Tolerant Searching of Uninterpreted MS/MS Data
Error Tolerant Searching of Uninterpreted MS/MS Data 1 In any search of a large LC-MS/MS dataset 2 There are always a number of spectra which get poor scores, or even no match at all. 3 Sometimes, this
Bioinformatics Grid - Enabled Tools For Biologists.
Bioinformatics Grid - Enabled Tools For Biologists. What is Grid-Enabled Tools (GET)? As number of data from the genomics and proteomics experiment increases. Problems arise for the current sequence analysis
DNA Sequencing Overview
DNA Sequencing Overview DNA sequencing involves the determination of the sequence of nucleotides in a sample of DNA. It is presently conducted using a modified PCR reaction where both normal and labeled
Databases and mapping BWA. Samtools
Databases and mapping BWA Samtools FASTQ, SFF, bax.h5 ACE, FASTG FASTA BAM/SAM GFF, BED GenBank/Embl/DDJB many more File formats FASTQ Output format from Illumina and IonTorrent sequencers. Quality scores:
Sequence Analysis 15: lecture 5. Substitution matrices Multiple sequence alignment
Sequence Analysis 15: lecture 5 Substitution matrices Multiple sequence alignment A teacher's dilemma To understand... Multiple sequence alignment Substitution matrices Phylogenetic trees You first need
CD-HIT User s Guide. Last updated: April 5, 2010. http://cd-hit.org http://bioinformatics.org/cd-hit/
CD-HIT User s Guide Last updated: April 5, 2010 http://cd-hit.org http://bioinformatics.org/cd-hit/ Program developed by Weizhong Li s lab at UCSD http://weizhong-lab.ucsd.edu [email protected] 1. Introduction
Sequence homology search tools on the world wide web
44 Sequence Homology Search Tools Sequence homology search tools on the world wide web Ian Holmes Berkeley Drosophila Genome Project, Berkeley, CA email: [email protected] Introduction Sequence homology
Core Bioinformatics. Degree Type Year Semester. 4313473 Bioinformàtica/Bioinformatics OB 0 1
Core Bioinformatics 2014/2015 Code: 42397 ECTS Credits: 12 Degree Type Year Semester 4313473 Bioinformàtica/Bioinformatics OB 0 1 Contact Name: Sònia Casillas Viladerrams Email: [email protected]
Using MATLAB: Bioinformatics Toolbox for Life Sciences
Using MATLAB: Bioinformatics Toolbox for Life Sciences MR. SARAWUT WONGPHAYAK BIOINFORMATICS PROGRAM, SCHOOL OF BIORESOURCES AND TECHNOLOGY, AND SCHOOL OF INFORMATION TECHNOLOGY, KING MONGKUT S UNIVERSITY
GenBank: A Database of Genetic Sequence Data
GenBank: A Database of Genetic Sequence Data Computer Science 105 Boston University David G. Sullivan, Ph.D. An Explosion of Scientific Data Scientists are generating ever increasing amounts of data. Relevant
Module 10: Bioinformatics
Module 10: Bioinformatics 1.) Goal: To understand the general approaches for basic in silico (computer) analysis of DNA- and protein sequences. We are going to discuss sequence formatting required prior
Introduction to Bioinformatics AS 250.265 Laboratory Assignment 6
Introduction to Bioinformatics AS 250.265 Laboratory Assignment 6 In the last lab, you learned how to perform basic multiple sequence alignments. While useful in themselves for determining conserved residues
Genome Explorer For Comparative Genome Analysis
Genome Explorer For Comparative Genome Analysis Jenn Conn 1, Jo L. Dicks 1 and Ian N. Roberts 2 Abstract Genome Explorer brings together the tools required to build and compare phylogenies from both sequence
Geospiza s Finch-Server: A Complete Data Management System for DNA Sequencing
KOO10 5/31/04 12:17 PM Page 131 10 Geospiza s Finch-Server: A Complete Data Management System for DNA Sequencing Sandra Porter, Joe Slagel, and Todd Smith Geospiza, Inc., Seattle, WA Introduction The increased
Amino Acids and Their Properties
Amino Acids and Their Properties Recap: ss-rrna and mutations Ribosomal RNA (rrna) evolves very slowly Much slower than proteins ss-rrna is typically used So by aligning ss-rrna of one organism with that
Approximate String Matching in DNA Sequences
Approximate String Matching in DNA Sequences Lok-Lam Cheng David W. Cheung Siu-Ming Yiu Department of Computer Science and Infomation Systems, The University of Hong Kong, Pokflum Road, Hong Kong {llcheng,dcheung,smyiu}@csis.hku.hk
Efficient Parallel Execution of Sequence Similarity Analysis Via Dynamic Load Balancing
Efficient Parallel Execution of Sequence Similarity Analysis Via Dynamic Load Balancing James D. Jackson Philip J. Hatcher Department of Computer Science Kingsbury Hall University of New Hampshire Durham,
MORPHEUS. http://biodev.cea.fr/morpheus/ Prediction of Transcription Factors Binding Sites based on Position Weight Matrix.
MORPHEUS http://biodev.cea.fr/morpheus/ Prediction of Transcription Factors Binding Sites based on Position Weight Matrix. Reference: MORPHEUS, a Webtool for Transcripton Factor Binding Analysis Using
Introduction to Bioinformatics 3. DNA editing and contig assembly
Introduction to Bioinformatics 3. DNA editing and contig assembly Benjamin F. Matthews United States Department of Agriculture Soybean Genomics and Improvement Laboratory Beltsville, MD 20708 [email protected]
Searching Nucleotide Databases
Searching Nucleotide Databases 1 When we search a nucleic acid databases, Mascot always performs a 6 frame translation on the fly. That is, 3 reading frames from the forward strand and 3 reading frames
Sequence information - lectures
Sequence information - lectures Pairwise alignment Alignments in database searches Multiple alignments Profiles Patterns RNA secondary structure / Transformational grammars Genome organisation / Gene prediction
Library page. SRS first view. Different types of database in SRS. Standard query form
SRS & Entrez SRS Sequence Retrieval System Bengt Persson Whatis SRS? Sequence Retrieval System User-friendly interface to databases http://srs.ebi.ac.uk Developed by Thure Etzold and co-workers EMBL/EBI
A greedy algorithm for the DNA sequencing by hybridization with positive and negative errors and information about repetitions
BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, Vol. 59, No. 1, 2011 DOI: 10.2478/v10175-011-0015-0 Varia A greedy algorithm for the DNA sequencing by hybridization with positive and negative
Linear Sequence Analysis. 3-D Structure Analysis
Linear Sequence Analysis What can you learn from a (single) protein sequence? Calculate it s physical properties Molecular weight (MW), isoelectric point (pi), amino acid content, hydropathy (hydrophilic
Guide for Bioinformatics Project Module 3
Structure- Based Evidence and Multiple Sequence Alignment In this module we will revisit some topics we started to look at while performing our BLAST search and looking at the CDD database in the first
Sequencing the Human Genome
Revised and Updated Edvo-Kit #339 Sequencing the Human Genome 339 Experiment Objective: In this experiment, students will read DNA sequences obtained from automated DNA sequencing techniques. The data
fasta-36.3.8 July 28, 2015
The FASTA program package Introduction This documentation describes the version 36 of the FASTA program package (see W. R. Pearson and D. J. Lipman (1988), Improved Tools for Biological Sequence Analysis,
Fast string matching
Fast string matching This exposition is based on earlier versions of this lecture and the following sources, which are all recommended reading: Shift-And/Shift-Or 1. Flexible Pattern Matching in Strings,
T cell Epitope Prediction
Institute for Immunology and Informatics T cell Epitope Prediction EpiMatrix Eric Gustafson January 6, 2011 Overview Gathering raw data Popular sources Data Management Conservation Analysis Multiple Alignments
Sequence Formats and Sequence Database Searches. Gloria Rendon SC11 Education June, 2011
Sequence Formats and Sequence Database Searches Gloria Rendon SC11 Education June, 2011 Sequence A is the primary structure of a biological molecule. It is a chain of residues that form a precise linear
Databases indexation
Databases indexation Laurent Falquet, Basel October, 2006 Swiss Institute of Bioinformatics Swiss EMBnet node Overview Data access concept sequential direct Indexing EMBOSS Fetch Other BLAST Why indexing?
When you install Mascot, it includes a copy of the Swiss-Prot protein database. However, it is almost certain that you and your colleagues will want
1 When you install Mascot, it includes a copy of the Swiss-Prot protein database. However, it is almost certain that you and your colleagues will want to search other databases as well. There are very
A Complete Example of Next- Gen DNA Sequencing Read Alignment. Presentation Title Goes Here
A Complete Example of Next- Gen DNA Sequencing Read Alignment Presentation Title Goes Here 1 FASTQ Format: The de- facto file format for sharing sequence read data Sequence and a per- base quality score
2.3 Identify rrna sequences in DNA
2.3 Identify rrna sequences in DNA For identifying rrna sequences in DNA we will use rnammer, a program that implements an algorithm designed to find rrna sequences in DNA [5]. The program was made by
CS 2112 Spring 2014. 0 Instructions. Assignment 3 Data Structures and Web Filtering. 0.1 Grading. 0.2 Partners. 0.3 Restrictions
CS 2112 Spring 2014 Assignment 3 Data Structures and Web Filtering Due: March 4, 2014 11:59 PM Implementing spam blacklists and web filters requires matching candidate domain names and URLs very rapidly
Version 5.0 Release Notes
Version 5.0 Release Notes 2011 Gene Codes Corporation Gene Codes Corporation 775 Technology Drive, Ann Arbor, MI 48108 USA 1.800.497.4939 (USA) +1.734.769.7249 (elsewhere) +1.734.769.7074 (fax) www.genecodes.com
UCHIME in practice Single-region sequencing Reference database mode
UCHIME in practice Single-region sequencing UCHIME is designed for experiments that perform community sequencing of a single region such as the 16S rrna gene or fungal ITS region. While UCHIME may prove
Daniel H. Huson. January 21, 2016. Contents 1. 1 Introduction 3. 2 Getting Started 5. 4 Licensing 6. 5 Program Overview 7. 7 Taxonomic Binning 9
User Manual for MEGAN V5.11.3 Daniel H. Huson January 21, 2016 Contents Contents 1 1 Introduction 3 2 Getting Started 5 3 Obtaining and Installing the Program 5 4 Licensing 6 5 Program Overview 7 6 Importing,
DNA Mapping/Alignment. Team: I Thought You GNU? Lars Olsen, Venkata Aditya Kovuri, Nick Merowsky
DNA Mapping/Alignment Team: I Thought You GNU? Lars Olsen, Venkata Aditya Kovuri, Nick Merowsky Overview Summary Research Paper 1 Research Paper 2 Research Paper 3 Current Progress Software Designs to
Gerry Hobbs, Department of Statistics, West Virginia University
Decision Trees as a Predictive Modeling Method Gerry Hobbs, Department of Statistics, West Virginia University Abstract Predictive modeling has become an important area of interest in tasks such as credit
BlastReduce: High Performance Short Read Mapping with MapReduce
BlastReduce: High Performance Short Read Mapping with MapReduce Michael C. Schatz University of Maryland Center for Bioinformatics and Computational Biology [email protected] Abstract Next-generation
GenBank, Entrez, & FASTA
GenBank, Entrez, & FASTA Nucleotide Sequence Databases First generation GenBank is a representative example started as sort of a museum to preserve knowledge of a sequence from first discovery great repositories,
BIOLOMICS SOFTWARE & SERVICES GENERAL INFORMATION DOCUMENT
BIOLOMICS SOFTWARE & SERVICES GENERAL INFORMATION DOCUMENT BIOAWARE SA NV - VERSION 2.0 - AUGUST 2013 BIOLOMICS SOFTWARE DYNAMIC CREATION AND MODIFICATION OF DATABASES Create simple or complex databases
(A GUIDE for the Graphical User Interface (GUI) GDE)
The Genetic Data Environment: A User Modifiable and Expandable Multiple Sequence Analysis Package (A GUIDE for the Graphical User Interface (GUI) GDE) Jonathan A. Eisen Department of Biological Sciences
MASCOT Search Results Interpretation
The Mascot protein identification program (Matrix Science, Ltd.) uses statistical methods to assess the validity of a match. MS/MS data is not ideal. That is, there are unassignable peaks (noise) and usually
A Multiple DNA Sequence Translation Tool Incorporating Web Robot and Intelligent Recommendation Techniques
Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 402 A Multiple DNA Sequence Translation Tool Incorporating Web
An agent-based layered middleware as tool integration
An agent-based layered middleware as tool integration Flavio Corradini Leonardo Mariani Emanuela Merelli University of L Aquila University of Milano University of Camerino ITALY ITALY ITALY Helsinki FSE/ESEC
THREE DIMENSIONAL REPRESENTATION OF AMINO ACID CHARAC- TERISTICS
THREE DIMENSIONAL REPRESENTATION OF AMINO ACID CHARAC- TERISTICS O.U. Sezerman 1, R. Islamaj 2, E. Alpaydin 2 1 Laborotory of Computational Biology, Sabancı University, Istanbul, Turkey. 2 Computer Engineering
