cmn_lecture.2 CAD OF DOUBLE PIPE HEAT EXCHANGERS
|
|
|
- Alban Parks
- 9 years ago
- Views:
Transcription
1 cmn_lecture.2 CAD OF DOUBLE PIPE HEAT EXCHANGERS A double pipe heat exchanger, in essence, consists of two concentric pipes, one fluid flowing through the inner pipe and the outer fluid flowing countercurrently through the annular space between the two pipes. These exchangers are usually constructed in the form of hairpins. A hairpin consists of two sets of concentric pipes, the inner pipes being connected through a return bend (as shown in figure-2.1). A number of such hairpins can be connected in series. Figure (2.1) shows two such hairpins connected in series. Figure (2.1) Apart from heat transfer surface, the pressure drop through the exchanger is equally important design parameter since this decides the operating cost of the exchanger. In the case of double pipe heat exchangers, the pressure drop in the inner pipe, (-ΔP t ), can be estimated from the modified form of Fanning s equation:... (2.1) where, (-ΔP r ) = additional pressure drop due to flow reversal in return bends (taken equal to one velocity head per return bend) G t = mass velocity of inner pipe fluid, kg/m 2.s... (2.2)
2 ... (2.3) m = mass flow rate of inner pipe fluid, kg/s N rb = number of return bends... (2.4) It can be seen from figure (2.1) that when N hp = 2 (number of hairpins in series is two), the number of return bends (N rb ) is three. Therefore, if the number of hairpins used in series is N hp, then, the number of return bends N rb = (2N hp -1). The friction factor (f) depends on the Reynolds number (Re t ) and is given by,... (2.5) where,... (2.6) For nonisothermal flow through commercial pipes that have a given degree of roughness inside, the correlation constants (K and n) are given below in Table (2.1). TABLE 2.1 Correlation constants of Equation (2.5) for Nonisothermal flow through Rough commercial pipes Reynolds number K n In equation (2.1), L e is the total effective length of the exchanger. If L hp is the effective length of each hairpin, then... (2.7) By effective length, we mean the total pipe length used for constructing the hairpin, but excluding the return bend.
3 The annulus side pressure drop (pressure drop for flow of annulus fluid) may be estimated from a correlation similar to equation (2.1): where, G a = mass velocity of annulus fluid, kg/m 2.s... (2.8) m a = mass flow rate of annulus fluid, kg/s... (2.9)... (2.10) μ fa, μ wa = viscosity of annulus fluid at bulk temperature (T am or T cm ) and that at outer surface temperature (t wo ) of inner pipe respectively. D e = equivalent diameter of annulus ( for fluid flow ) The above equivalent diameter (D e ) differs from D e defined in equation (1.28) since D e is based on total wetted perimeter, whereas D e was based on wetted (and also heated) perimeter. Total wetted perimeter includes inside wetted perimeter of outer pipe as well. Thus,... (2.11)... (2.12)... (2.13) The annulus friction factor (f a ) depends on annulus Reynolds number (Re a ), as... (2.14) where,... (2.15) The values of correlation constants (K,n) can be obtained from Table (2.1) itself, but based on the magnitude of annulus Reynolds number, Re a.
4 If the inner pipe pressure drop happens to exceeds the maximum permissible limit, then a series-parallel arrangement of hairpins may be employed. A typical case is illustrated in figure (2.2). Here, the inner pipe fluid is divided into two streams (n t = 2) and each stream traverses only (N hp /n t ) number of hairpins. Here, (N hp /n t ) = (2/2) = 1.0. To note that though the heat transfer surface is halved, since the flow rate of the stream is also halved (equal to m/2), the outlet temperature of each stream shall be t 2 itself. In other words, the inner pipe fluid gets heated / cooled to the same temperature as in the series arrangement. However, since the flow rate (and thereby the mass velocity) of the fluid is halved, the pressure drop (see equation 2.1) becomes one-fourth. Also, since the total length of the travel of the fluid (L e ) is also halved, the pressure drop reduces to almost one-eighth of that in series arrangement. Figure 2.2 : Series parallel Arrangement of Hairpins However, unlike in series arrangement, the effective temperature difference, (-ΔT)(eff), shall not be equal to the logarithmic mean temperature difference, (-ΔT) ln, in a series-parallel arrangement. If the inner pipe fluid is the cold fluid and it is divided into n t streams, then (- T ) (eff) = ( 1 K P )( K R 1) ( T 1 t 1 ) / ( DIN )... (2.16) DIN = n t K R ln [ {(K R 1)/K R } ( 1/ K P ) n + ( 1/K R )] (2.16a) where,... (2.17)
5 ... (2.18)... (2.19) ΔT c = temperature difference between fluids at the cold end of the exchanger (see equation 1.37) ΔT(max) = maximum temperature difference... (2.20) Δt c, Δt h = temperature difference of cold fluid and that of hot fluid respectively. In the present case,... (2.21)... (2.22) If the inner pipe fluid is the hot fluid and that is divided into n t streams, then (- T ) (eff) = ( 1 K P ) ( 1 - K R ) ( T 1 t 1 ) / ( DIN )..(2.23) DIN = n t ln [ (1 - K R ) ( 1/ K P ) n + K R ] (2.23a) where,... (2.24)... (2.25) ΔT H = temperature difference between fluids at the hot end of the heat transfer surface (see equation 1.38) To note that in this case,... (2.26)... (2.27)
6 It is important to note that K P and K R are defined differently in equations (2.16) and (2.23). Also, the definition of K R is different from that given in equation (1.36).
Sizing of triple concentric pipe heat exchanger
Sizing of triple concentric pipe heat exchanger 1 Tejas M. Ghiwala, 2 Dr. V.K. Matawala 1 Post Graduate Student, 2 Head of Department 1 Thermal Engineering, SVMIT, Bharuch-392001, Gujarat, INDIA, 2 Department
Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati
Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 04 Convective Heat Transfer Lecture No. # 03 Heat Transfer Correlation
ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts
ME 305 Fluid Mechanics I Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Mechanical Engineering Department Middle East Technical University Ankara, Turkey [email protected]
Battery Thermal Management System Design Modeling
Battery Thermal Management System Design Modeling Gi-Heon Kim, Ph.D Ahmad Pesaran, Ph.D ([email protected]) National Renewable Energy Laboratory, Golden, Colorado, U.S.A. EVS October -8, 8, 006 Yokohama,
Heat Exchangers - Introduction
Heat Exchangers - Introduction Concentric Pipe Heat Exchange T h1 T c1 T c2 T h1 Energy Balance on Cold Stream (differential) dq C = wc p C dt C = C C dt C Energy Balance on Hot Stream (differential) dq
Natural Convection. Buoyancy force
Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient
ME 315 - Heat Transfer Laboratory. Experiment No. 7 ANALYSIS OF ENHANCED CONCENTRIC TUBE AND SHELL AND TUBE HEAT EXCHANGERS
ME 315 - Heat Transfer Laboratory Nomenclature Experiment No. 7 ANALYSIS OF ENHANCED CONCENTRIC TUBE AND SHELL AND TUBE HEAT EXCHANGERS A heat exchange area, m 2 C max maximum specific heat rate, J/(s
A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW. 1998 ASME Fluids Engineering Division Summer Meeting
TELEDYNE HASTINGS TECHNICAL PAPERS INSTRUMENTS A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW Proceedings of FEDSM 98: June -5, 998, Washington, DC FEDSM98 49 ABSTRACT The pressure
Heat Exchangers. Heat Exchanger Types. Heat Exchanger Types. Applied Heat Transfer Part Two. Topics of This chapter
Applied Heat Transfer Part Two Heat Excangers Dr. Amad RAMAZANI S.A. Associate Professor Sarif University of Tecnology انتقال حرارت کاربردی احمد رمضانی سعادت ا بادی Autumn, 1385 (2006) Ramazani, Heat Excangers
Chapter 8: Flow in Pipes
Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks
Shell and Tube Heat Exchanger
Sell and Tube Heat Excanger MECH595 Introduction to Heat Transfer Professor M. Zenouzi Prepared by: Andrew Demedeiros, Ryan Ferguson, Bradford Powers November 19, 2009 1 Abstract 2 Contents Discussion
Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids
Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction Last lab you investigated flow loss in a pipe due to the roughness
EXPERIMENTAL ANALYSIS OF HEAT TRANSFER ENHANCEMENT IN A CIRCULAR TUBE WITH DIFFERENT TWIST RATIO OF TWISTED TAPE INSERTS
INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY Vol.33 (2015), No.3, pp.158-162 http://dx.doi.org/10.18280/ijht.330324 EXPERIMENTAL ANALYSIS OF HEAT TRANSFER ENHANCEMENT IN A CIRCULAR TUBE WITH DIFFERENT
Theoretical and Numerical Analysis of Heat Transfer in Pipeline System
APCOM & ISCM -4 th December, 20, Singapore Theoretical and Numerical Analysis of Heat Transfer in Pipeline System Xiaowei Zhu, Hui Tang, *Hua Li, Jiahua Hong, Songyuan Yang School of Mechanical & Aerospace
Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation
Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of
Design,Development and Comparison of Double Pipe Heat Exchanger with Conventional and Annular Baffles
Design,Development and Comparison of Double Pipe Heat Exchanger with and Annular Baffles Mukund B Pandya Asst. Professor, Department of Mechanical Engineering, Babaria Institute of Technology, Varnama-
International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.6, pp 2580-2587, 2014-2015
International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.6, pp 2580-2587, 2014-2015 Performance Analysis of Heat Transfer and Effectiveness on Laminar Flow with Effect of
Heat Transfer Enhancement in a Heat Exchanger using Punched and V-cut Twisted Tape Inserts
Heat Transfer Enhancement in a Heat Exchanger using Punched and V-cut Twisted Tape Inserts Imran Quazi#1, Prof. V.R.Mohite#2 #1DPCOE-Mechanical Department, SPP University Pune, India imranqu azi198 [email protected]
Steady Heat Conduction
Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another. hermodynamics gives no indication of how long
Exergy Analysis of a Water Heat Storage Tank
Exergy Analysis of a Water Heat Storage Tank F. Dammel *1, J. Winterling 1, K.-J. Langeheinecke 3, and P. Stephan 1,2 1 Institute of Technical Thermodynamics, Technische Universität Darmstadt, 2 Center
Comparison of Heat Transfer between a Helical and Straight Tube Heat Exchanger
International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 1 (2013), pp. 33-40 International Research Publication House http://www.irphouse.com Comparison of Heat Transfer
Fluid Mechanics: Static s Kinematics Dynamics Fluid
Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three
FREESTUDY HEAT TRANSFER TUTORIAL 3 ADVANCED STUDIES
FREESTUDY HEAT TRANSFER TUTORIAL ADVANCED STUDIES This is the third tutorial in the series on heat transfer and covers some of the advanced theory of convection. The tutorials are designed to bring the
FLUID FLOW Introduction General Description
FLUID FLOW Introduction Fluid flow is an important part of many processes, including transporting materials from one point to another, mixing of materials, and chemical reactions. In this experiment, you
Mathematical Modelling and Design of an Advanced Once-Through Heat Recovery Steam Generator
Mathematical Modelling and Design of an Advanced Once-Through Heat Recovery Steam Generator Abstract Marie-Noëlle Dumont, Georges Heyen LASSC, University of Liège, Sart Tilman B6A, B-4000 Liège (Belgium)
HEAT TRANSFER ENHANCEMENT ON DOUBLE PIPE HEAT EXCHANGER BY WIRE COILED AND TAPER WIRE COILED TURBULATOR INSERTS
HEAT TRANSFER ENHANCEMENT ON DOUBLE PIPE HEAT EXCHANGER BY WIRE COILED AND TAPER WIRE COILED TURBULATOR INSERTS J.Kalil basha 1,G.Karthikeyan 2, S.Karuppusamy 3 1,2 Assistant Professor, Dhanalakshmi Srinivasan
Verification and Validation of a Single-Phase Natural Circulation Loop Model in RELAP5-3D. Nicolas Zweibaum, Raluca O. Scarlat and Per F.
Verification and Validation of a Single-Phase Natural Circulation Loop Model in RELAP5-3D Nicolas Zweibaum, Raluca O. Scarlat and Per F. Peterson University of California, Berkeley, 4118 Etcheverry Hall,
Design of heat exchangers
Design of heat exchangers Exchanger Design Methodology The problem of heat exchanger design is complex and multidisciplinary. The major design considerations for a new heat exchanger include: process/design
Experimental investigation of heat transfer and flow friction in a circular tube fitted with regularly spaced twisted tape elements
Experimental investigation of heat transfer and flow friction in a circular tube fitted with regularly spaced twisted tape elements Smith Eiamsa-ard a, Chinaruk Thianpong b, Pongjet Promvonge b, a Department
EXAMPLE: Water Flow in a Pipe
EXAMPLE: Water Flow in a Pipe P 1 > P 2 Velocity profile is parabolic (we will learn why it is parabolic later, but since friction comes from walls the shape is intuitive) The pressure drops linearly along
du u U 0 U dy y b 0 b
BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:
Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any
Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass
L r = L m /L p. L r = L p /L m
NOTE: In the set of lectures 19/20 I defined the length ratio as L r = L m /L p The textbook by Finnermore & Franzini defines it as L r = L p /L m To avoid confusion let's keep the textbook definition,
International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015
International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 EXPERIMENTAL STUDY
The Effect of Mass Flow Rate on the Enhanced Heat Transfer Charactristics in A Corrugated Plate Type Heat Exchanger
Research Journal of Engineering Sciences ISSN 2278 9472 The Effect of Mass Flow Rate on the Enhanced Heat Transfer Charactristics in A Corrugated Plate Type Heat Exchanger Abstract Murugesan M.P. and Balasubramanian
Heat transfer in Flow Through Conduits
Heat transfer in Flow Through Conduits R. Shankar Suramanian Department of Chemical and Biomolecular Engineering Clarkson University A common situation encountered y the chemical engineer is heat transfer
Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India
Experimental Thermal and Fluid Science 32 (2007) 92 97 www.elsevier.com/locate/etfs Studies on heat transfer and friction factor characteristics of laminar flow through a circular tube fitted with right
Practice Problems on Pumps. Answer(s): Q 2 = 1850 gpm H 2 = 41.7 ft W = 24.1 hp. C. Wassgren, Purdue University Page 1 of 16 Last Updated: 2010 Oct 29
_02 A centrifugal with a 12 in. diameter impeller requires a power input of 60 hp when the flowrate is 3200 gpm against a 60 ft head. The impeller is changed to one with a 10 in. diameter. Determine the
For Water to Move a driving force is needed
RECALL FIRST CLASS: Q K Head Difference Area Distance between Heads Q 0.01 cm 0.19 m 6cm 0.75cm 1 liter 86400sec 1.17 liter ~ 1 liter sec 0.63 m 1000cm 3 day day day constant head 0.4 m 0.1 m FINE SAND
Thermodynamics AP Physics B. Multiple Choice Questions
Thermodynamics AP Physics B Name Multiple Choice Questions 1. What is the name of the following statement: When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium
FLUID MECHANICS. TUTORIAL No.7 FLUID FORCES. When you have completed this tutorial you should be able to. Solve forces due to pressure difference.
FLUID MECHANICS TUTORIAL No.7 FLUID FORCES When you have completed this tutorial you should be able to Solve forces due to pressure difference. Solve problems due to momentum changes. Solve problems involving
Radial-axial Radial mixing is based on the premise that the fluids to be mixed enter the mixer in the correct proportions simultaneously
Brochure E-0501 1 Introduction. Static mixers are used for a wide range of applications including mixing, heat exchange and dispersion, due to numerous unique innovations our products are especially suitable
Pump Formulas Imperial and SI Units
Pump Formulas Imperial and Pressure to Head H = head, ft P = pressure, psi H = head, m P = pressure, bar Mass Flow to Volumetric Flow ṁ = mass flow, lbm/h ρ = fluid density, lbm/ft 3 ṁ = mass flow, kg/h
Performance of the Boiler and To Improving the Boiler Efficiency Using Cfd Modeling
IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 8, Issue 6 (Sep. - Oct. 2013), PP 25-29 Performance of the Boiler and To Improving the Boiler Efficiency
A heat pipe heat recovery heat exchanger for a mini-drier
A heat pipe heat recovery heat exchanger for a mini-drier A Meyer Department of Mechanical Engineering, University of Stellenbosch, Stellenbosch R T Dobson Department of Mechanical Engineering, University
Heat exchangers are devices that facilitate the exchange of heat between
cen5426_ch23.qxd /26/04 9:42 AM Page 03 HEAT EXCHANGERS CHAPTER 23 Heat exchangers are devices that facilitate the exchange of heat between two fluids that are at different temperatures while keeping them
A basic introduction to steam
A basic introduction to steam FOR HOT, COLD, MOIST AND DRY, FOUR CHAMPIONS FIERCE. STRIVE HERE FOR MASTERY Milton 1666 Steam Wonderful Steam Very high heat content Recyclable Clean, non toxic Biodegradable
Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction
Module 1 : Conduction Lecture 5 : 1D conduction example problems. 2D conduction Objectives In this class: An example of optimization for insulation thickness is solved. The 1D conduction is considered
Unsteady State Relief Valve Evaluation. External Pool Fire Scenario
Unsteady State Relief Valve Evaluation External Pool Fire Scenario By Rame Sulaiman Process Engineer Process Engineering Associates, LLC Copyright 2009 Process Engineering Associates, LLC. All rights reserved.
This will also provide you with the knowledge to insure long life for your Investment
CONDUIT PIPE DRYING This Presentation will guide you to why systems fail! This will also provide you with the knowledge to insure long life for your Investment Drainable and Dryable System Design Trough
Corrugated Tubular Heat Exchangers
Corrugated Tubular Heat Exchangers HEAT EXCHANGERS for the 21st CENTURY Corrugated Tubular Heat Exchangers (CTHE) Corrugated Tube Heat Exchangers are shell and tube heat exchangers which use corrugated
Chapter 8: Heat Exchangers
Chapter 8: Heat Exchangers Section 8.1: Introduction to Heat Exchangers 8.1-1 (8-1 in text) Dry air at T a,in = 30 C, and atmospheric pressure is blown at V a = 1.0 m 3 /s through a cross-flow heat exchanger
Turbulent Flow Through a Shell-and-Tube Heat Exchanger
Turbulent Flow Through a Shell-and-Tube Heat Exchanger Introduction This model describes a part of a shell-and-tube heat exchanger (see Figure 1), where hot water enters from above. The cooling medium,
OUTCOME 1 STATIC FLUID SYSTEMS TUTORIAL 1 - HYDROSTATICS
Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 1 STATIC FLUID SYSTEMS TUTORIAL 1 - HYDROSTATICS 1. Be able to determine the behavioural characteristics and parameters
Journal bearings/sliding bearings
Journal bearings/sliding bearings Operating conditions: Advantages: - Vibration damping, impact damping, noise damping - not sensitive for vibrations, low operating noise level - dust tight (if lubricated
Machine Design II Prof. K.Gopinath & Prof. M.M.Mayuram. Module 2 - GEARS. Lecture 17 DESIGN OF GEARBOX
Module 2 - GEARS Lecture 17 DESIGN OF GEARBOX Contents 17.1 Commercial gearboxes 17.2 Gearbox design. 17.1 COMMERCIAL GEARBOXES Various commercial gearbox designs are depicted in Fig. 17.1 to 17.10. These
Dynamic Process Modeling. Process Dynamics and Control
Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits
Prediction of Pressure Drop in Chilled Water Piping System Using Theoretical and CFD Analysis
Shirish P. Patil et.al / International Journal o Engineering and Technology (IJET) Prediction o Pressure Drop in Chilled Water Piping System Using Theoretical and CFD Analysis Shirish P. Patil #1, Abhijeet
The Three Heat Transfer Modes in Reflow Soldering
Section 5: Reflow Oven Heat Transfer The Three Heat Transfer Modes in Reflow Soldering There are three different heating modes involved with most SMT reflow processes: conduction, convection, and infrared
Open channel flow Basic principle
Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure
Learning Module 4 - Thermal Fluid Analysis Note: LM4 is still in progress. This version contains only 3 tutorials.
Learning Module 4 - Thermal Fluid Analysis Note: LM4 is still in progress. This version contains only 3 tutorials. Attachment C1. SolidWorks-Specific FEM Tutorial 1... 2 Attachment C2. SolidWorks-Specific
Pressure Locking & Thermal Binding In Wedge Gate & Parallel Slide Gate Valves
Pressure Locking & Thermal Binding In Wedge Gate & Parallel Slide Gate Valves CRANE Energy Flow Solutions TM Donald H. Johnson Crane Energy Flow Solutions 1 Crane Co. Resolution Made By Richard Teller
Contents. Microfluidics - Jens Ducrée Physics: Fluid Dynamics 1
Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors
FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions
FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or
MEASUREMENT OF VISCOSITY OF LIQUIDS BY THE STOKE S METHOD
130 Experiment-366 F MEASUREMENT OF VISCOSITY OF LIQUIDS BY THE STOKE S METHOD Jeethendra Kumar P K, Ajeya PadmaJeeth and Santhosh K KamalJeeth Instrumentation & Service Unit, No-610, Tata Nagar, Bengaluru-560092.
NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES
Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: [email protected] Research field: Statics and Dynamics Fluids mechanics
Heat transfer in Rotating Fluidized Beds in a Static Geometry: A CFD study
Heat transfer in Rotating Fluidized Beds in a Static Geometry: A CFD study Nicolas Staudt, Juray De Wilde* * Université catholique de Louvain MAPR / IMAP Réaumur, Place Sainte Barbe 2 1348 Louvain-la-Neuve
Commissioning - Construction Documents (Page 1 of 6)
Commissioning - Construction Documents (Page 1 of 6) A. General Information Climate Zone: Building Type: Conditioned Area (sf): Reviewer's Name: Reviewer's Agency: Note: Design Review for each system/subsystem
Correlations for Convective Heat Transfer
In many cases it's convenient to have simple equations for estimation of heat transfer coefficients. Below is a collection of recommended correlations for single-phase convective flow in different geometries
w o r k o G f E A x - p r S i t n c e Elegance and Strength BBR HiAm CONA Strand Stay Cable Damping Systems
e o b a l N e t w o r k l o G f E A x - p r S i t n c e 1 9 4 4 - s Elegance and Strength BBR HiAm CONA Strand Stay Cable Damping Systems 1 Cable vibration and damping Despite the wide use of cable-stayed
Approved: Ernesto Gutierrez-Miravete, Engineering Project Adviser
A Design Study of the Heat Removal System for the Propulsion Machinery of a Nuclear Powered Ship by Scott E. Misiaszek An Engineering Project Submitted to the Graduate Faculty of Rensselaer Polytechnic
Understanding Plastics Engineering Calculations
Natti S. Rao Nick R. Schott Understanding Plastics Engineering Calculations Hands-on Examples and Case Studies Sample Pages from Chapters 4 and 6 ISBNs 978--56990-509-8-56990-509-6 HANSER Hanser Publishers,
REASONING AND SOLUTION
39. REASONING AND SOLUTION The heat released by the blood is given by Q cm T, in which the specific heat capacity c of the blood (water) is given in Table 12.2. Then Therefore, T Q cm 2000 J 0.8 C [4186
INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING
ISSN (ONLINE): 2321-3051 INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING Study of forced convection heat transfer With DAQ & ANSYS First Authors Moopanar karthikeyan 1, Raote
XI / PHYSICS FLUIDS IN MOTION 11/PA
Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A
Enhancement of heat transfer of solar air heater roughened with circular transverse RIB
Enhancement of heat transfer of solar air heater roughened with circular transverse RIB Gurpreet Singh 1, Dr. G. S. Sidhu 2 Lala Lajpat Rai Institute of Engineering and Technology, Moga Punjab, India 1,2
MATLAB AS A PROTOTYPING TOOL FOR HYDRONIC NETWORKS BALANCING
MATLAB AS A PROTOTYPING TOOL FOR HYDRONIC NETWORKS BALANCING J. Pekař, P. Trnka, V. Havlena* Abstract The objective of this note is to describe the prototyping stage of development of a system that is
Design of Cold Storage Structure For Thousand Tonne Potatoes
International Journal of Agriculture and Food Science Technology. ISSN 2249-3050 Volume 5, Number 3 (2014), pp. 171-178 Research India Publications http://www.ripublication.com Design of Cold Storage Structure
Computational Fluid Dynamic Investigation of Liquid Rack Cooling in Data Centres
School of something School of Mechanical Engineering FACULTY OF OTHER ENGINEERING Computational Fluid Dynamic Investigation of Liquid Rack Cooling in Data Centres A. Almoli 1, A. Thompson 1, N. Kapur 1,
Diffusion and Fluid Flow
Diffusion and Fluid Flow What determines the diffusion coefficient? What determines fluid flow? 1. Diffusion: Diffusion refers to the transport of substance against a concentration gradient. ΔS>0 Mass
CEE 370 Fall 2015. Laboratory #3 Open Channel Flow
CEE 70 Fall 015 Laboratory # Open Channel Flow Objective: The objective of this experiment is to measure the flow of fluid through open channels using a V-notch weir and a hydraulic jump. Introduction:
ENHANCEMENT OF HEAT TRANSFER USING WIRE COIL INSERTS WITH CHORD RIBS
ENHANCEMENT OF HEAT TRANSFER USING WIRE COIL INSERTS WITH CHORD RIBS 1 P.S.Desale, 2 N.C.Ghuge 1 PG Student, Heat Power, MCERC, Nasik (India) 2 Asst. Prof., Mech. Dept., MCERC,Nasik(India) ABSTRACT From
SECTION 5 COMMERCIAL REFRIGERATION UNIT 22 CONDENSERS
SECTION 5 COMMERCIAL REFRIGERATION UNIT 22 CONDENSERS UNIT OBJECTIVES After studying this unit, the reader should be able to explain the purpose of the condenser in a refrigeration system. describe differences
Earth-Air Heat Exchanger Design for Achieve Energy Saving in HVAC System
Earth-Air Heat Exchanger Design for Achieve Energy Saving in HVAC System Farivar Fazelpour (1), Reza Asnaashari (2) (1) Department of Energy System Engineering Faculty of Engineering, Islamic Azad University
Verizon SMARTS Data Center Design Phase 1 Conceptual Study Report Ms. Leah Zabarenko Verizon Business 2606A Carsins Run Road Aberdeen, MD 21001
Verizon SMARTS Data Center Design Phase 1 Conceptual Study Report Ms. Leah Zabarenko Verizon Business 2606A Carsins Run Road Aberdeen, MD 21001 Presented by: Liberty Engineering, LLP 1609 Connecticut Avenue
Pressure drop in pipes...
Pressure drop in pipes... PRESSURE DROP CALCULATIONS Pressure drop or head loss, occurs in all piping systems because of elevation changes, turbulence caused by abrupt changes in direction, and friction
SURFACE TENSION. Definition
SURFACE TENSION Definition In the fall a fisherman s boat is often surrounded by fallen leaves that are lying on the water. The boat floats, because it is partially immersed in the water and the resulting
Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)
Ch 2 Properties of Fluids - II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)
Problem Set 4 Solutions
Chemistry 360 Dr Jean M Standard Problem Set 4 Solutions 1 Two moles of an ideal gas are compressed isothermally and reversibly at 98 K from 1 atm to 00 atm Calculate q, w, ΔU, and ΔH For an isothermal
THERMAL STRATIFICATION IN A HOT WATER TANK ESTABLISHED BY HEAT LOSS FROM THE TANK
THERMAL STRATIFICATION IN A HOT WATER TANK ESTABLISHED BY HEAT LOSS FROM THE TANK J. Fan and S. Furbo Abstract Department of Civil Engineering, Technical University of Denmark, Brovej, Building 118, DK-28
Sheet 5:Chapter 5 5 1C Name four physical quantities that are conserved and two quantities that are not conserved during a process.
Thermo 1 (MEP 261) Thermodynamics An Engineering Approach Yunus A. Cengel & Michael A. Boles 7 th Edition, McGraw-Hill Companies, ISBN-978-0-07-352932-5, 2008 Sheet 5:Chapter 5 5 1C Name four physical
Problem Statement In order to satisfy production and storage requirements, small and medium-scale industrial
Problem Statement In order to satisfy production and storage requirements, small and medium-scale industrial facilities commonly occupy spaces with ceilings ranging between twenty and thirty feet in height.
INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING
ISSN (ONLINE): 2321-3051 INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING MINIMIZATION OF HEAT TRANSFER AREA OF AN AIR COMPRESSOR INTERCOOLER USING MATLAB Pawan Kumar Gupta
Paul Clements, SpR in Anaesthetics, Hope Hospital, Salford, UK. Carl Gwinnutt, Consultant Anaesthetist, Hope Hospital, Salford, UK.
The Physics of Flow Paul Clements, SpR in Anaesthetics, Hope Hospital, Salford, UK. Carl Gwinnutt, Consultant Anaesthetist, Hope Hospital, Salford, UK. Introduction Flow is defined as the quantity of fluid
Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla
Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications Steam Boiler Technology ebook Espoo 2002 Boiler Calculations Sebastian
