# ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts

Size: px
Start display at page:

Download "ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts"

Transcription

1 ME 305 Fluid Mechanics I Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Mechanical Engineering Department Middle East Technical University Ankara, Turkey Please ask for permission before using them. You are NOT allowed to modify them. 8-1

2 Flow in Pipes and Ducts Flow in closed conduits (circular pipes and non-circular ducts) are very common. 8-2

3 Flow in Pipes and Ducts (cont d) We assume that pipes/ducts are completely filled with fluid. Other case is known as open channel flow. Typical systems involve pipes/ducts of various sizes connected to each other by various fittings, elbows, tees, etc. Valves are used to control flow rate. Fluid is usually forced to flow by a fan or pump. We need to perform frictional head loss (pressure drop) calculations. They mostly depend on experimental results and empirical relations. First we need to be able to differentiate between laminar and turbulent flows. 8-3

4 Laminar vs. Turbulent Flows Laminar flow is characterized by smooth streamlines and highly ordered motion. Fluid flows as if there are immiscible layers of fluid. Turbulent flow is highly disordered. Usually there are unsteady, random fluctuations on top of a mean flow. Most flows encountered in practice are turbulent. Laminar flows occur in small pipes (tubes) and with viscous fluids. Laminar Movies Reynolds Experiment Pipe D Transitional Q = VA ν Re D = VD ν = ρvd μ Turbulent Laminar vs. Turbulent Velocity Profiles 8-4

5 Laminar vs. Turbulent Flows (cont d) For pipe flow transition from laminar to turbulent flow occurs at a critical Reynolds number of Re = Re D < 2300 : Laminar Re D > 2300 : Turbulent Inertial forces Viscous forces = ρv2 L 2 μvl = ρvl μ = VL ν Characteristic velocity Characteristic length At large Reynolds numbers inertial forces, which are proportional to fluid s density and square of its velocity, are much higher than the viscous forces. Viscous forces can not regularize random fluctuations. At small Reynolds numbers viscous forces are high enough to suppress random fluctuations and keep the flow in order. Exercise : Estimate the typical range of Reynolds numbers of the flow inside the pipe that supplies water to your shower. 8-5

6 Pressure Loss (Pressure Drop, Head Loss) in Pipe Flow As a fluid flows in a straight, constant diameter pipe its pressure drops due to viscous effects, known as major pressure loss. Additional pressure drops occur due to other components such as valves, bends, tees, sudden expansions, sudden contractions, etc. These are known as minor pressure losses. In Chapter 6 we studied analytical solution of Hagen-Poiseuille flow, which is the steady, fully-developed, laminar flow in a circular pipe. Rate of pressure drop for this flow was shown to be constant. Pressure drop over a pipe section of length L is given by Δp = f L D ρv 2 2 Darcy friction factor Dynamic pressure where f = 64/Re D for laminar flow. 8-6

7 Major Pressure Loss in Laminar Pipe Flow 1 2 L flow D Δp = f L D ρv 2 2 Consider the EBE between sections 1 and 2. p 1 ρg + V 2 1 2g + z 1 = p 2 ρg + V 2 2 2g + z 2 + h f Friction head is related to the pressure drop as h f = Δp ρg = f L D V 2 2g The above important equation is known as the Darcy-Weisbach equation. 8-7

8 Major Pressure Loss in Turbulent Pipe Flow Analytical solution of Hagen-Poiseuille flow is valid for laminar flows. It is not possible to solve Navier-Stokes equations analytically for turbulent flows. Instead we need to determine pressure drop values experimentally. For a turbulent pipe flow pressure drop depends on Δp = Δp L, D, V, ε, μ, ρ A Buckingham-Pi analysis yields the following relation New parameter : Surface roughness Δp ρv 2 /2 = F L D, Re D, ε D which is usually expressed as Δp = f Re D, ε D L D ρv

9 Major Pressure Loss in Turbulent Pipe Flow (cont d) For turbulent pipe flows friction factor is a function of Reynolds number and relative surface roughness. f Re D, ε D Relative surface roughness In 1933 Nikuradse performed very detailed experiments to determine friction factor for turbulent flows. Later Colebrook presented this experimental data as the following equation Colebrook Formula 1f ε/d = 2 log Re D f An easy to use graphical representation of this equation is known as the Moody diagram, given in the next slide). Be careful in reading the logarithmic horizontal and vertical axes of the Moody diagram. 8-9

10 Moody Diagram to Read Friction Factor for Pipe Flows Right of this line is known as wholly turbulent flow, where f is no longer a function of Re D 0.05 f Laminar flow Laminar to turbulent transition Smooth pipe (ε = 0) Re D ε/d 8-10

11 Moody Diagram (cont d) To use the Moody diagram first we read the roughness of the pipe of interest from a table (see the next slide). Next we calculate the relative roughness (ε/d) and Reynolds number, and read the friction factor value f. f = 64/Re D relation for laminar flows appears in the Moody diagram as a straight line. Even for smooth pipes (ε = 0) friction factor is not zero, as expected. For high Re D values f becomes independent of Re D. This region is known as wholly turbulent flow. Between the laminar and turbulent regions, there is a transition region (2100 < Re D < 4000), where the data is not very reliable. We do not expect to read f with more than 10 % accuracy from the Moody diagram. 8-11

12 Moody Diagram (cont d) For pipes which are in service for a long time, roughness values given in tables for new pipes should be used with caution. As an alternative to the Moody diagram, following explicit formula can be used to calculate f. 1f = 1.8 log ε/d Re D 8-12

13 Minor Head Losses Pressure drops due to the flow through valves, bends, tees, sudden area changes, etc. are known as minor losses. Minor head losses can be calculated as h f = k V2 2g Head loss coefficient Head loss coefficient is usually obtained from a figure or table, similar to the ones given in the textbooks. For certain piping system elements minor losses are given in terms of an equivalent length h f = f L e V 2 D 2g where L e is the length of a straight pipe section that would create a major loss equal to the minor loss created by the element. f is obtained from the Moody diagram. 8-13

14 Examples A loss calculation in a pipe problem can be of three types Type 1: L and D of the pipe are known. Find p (or h f ) for a specified Q. Type 2: L and D of the pipe are known. Find Q for a specified p. Type 3: L of the pipe is known. Find D for a specified Q and p. Type 1 problems are easy. But Type 2 and Type 3 problems require an iterative solution because Re D and f cannot be computed directly. Solution starts with an initial guess for f and/or D. Usually couple of iterations are enough. Exercise : (Type 3 problem) Heated air at 1 atm and 35 is to be transported in a 150 m long plastic pipe at a rate of 0.35 m 3 /s. If the head loss in the pipe is not to exceed 20 m, determine the minimum diameter of the duct. Exercise : (Type 2 problem) Reconsider the previous example. Now the duct length is doubled while its diameter is maintained constant. If the total head loss is to remain constant, determine the new flow rate through the duct. 8-14

15 Examples (cont d) Exercise : The pump shown below is used to deliver water to a distribution system. There is no flow to or from reservoir A, but it is used to damp the pressure oscillations and protect the pump. The length of the suction and dischage pipes are 100 m and 150 m, respectively. The diameter and roughness of all pipes are 0.1 m and 0.5 mm, respectively. Head loss coefficient for the inlet to the pipe is 0.5. Gate valves are fully open and 90 o standard elbows are used. Volumetric flow rate of water to reservoir B is 0.02 m 3 /s. Determine a) head of the pump, b) height of the water level h in reservoir B. 20 m Elbow Pump Reservoir A Reservoir B h 3 m Gate valves Elbow Water 8-15

16 Examples (cont d) Exercise : Sketch of the warm water heating system of a studio apartment is shown in the figure. Volumetric flow rate of water through the piping system with a diameter of 1.25 cm is 0.2 L/s. Friction factor is Head loss coefficients for the elbow piece, heater valve, radiator, gate valve and boiler are 2.0, 5.0, 3.0, 1.0 and 3.0, respectively. Determine the power required to drive the circulation pump, which has an efficiency of 75%. 10 m Elbow 1 m Radiator Heater valve Gate valves Elbow Boiler Pump 8 m Elbow 8-16

### Hydraulic losses in pipes

Hydraulic losses in pipes Henryk Kudela Contents 1 Viscous flows in pipes 1 1.1 Moody Chart.................................... 2 1.2 Types of Fluid Flow Problems........................... 5 1.3 Minor

### Chapter 8: Flow in Pipes

Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

### FLUID FLOW Introduction General Description

FLUID FLOW Introduction Fluid flow is an important part of many processes, including transporting materials from one point to another, mixing of materials, and chemical reactions. In this experiment, you

### Experiment 3 Pipe Friction

EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional

### Pipe Flow-Friction Factor Calculations with Excel

Pipe Flow-Friction Factor Calculations with Excel Course No: C03-022 Credit: 3 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980

### Pressure drop in pipes...

Pressure drop in pipes... PRESSURE DROP CALCULATIONS Pressure drop or head loss, occurs in all piping systems because of elevation changes, turbulence caused by abrupt changes in direction, and friction

### Darcy Friction Factor Formulae in Turbulent Pipe Flow

Darcy Friction Factor Formulae in Turbulent Pipe Flow Jukka Kiijärvi Lunowa Fluid Mechanics Paper 110727 July 29, 2011 Abstract The Darcy riction actor in turbulent pipe low must be solved rom the Colebrook

### 4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re.

CHAPTER 08 1. What is most likely to be the main driving force in pipe flow? A. Gravity B. A pressure gradient C. Vacuum 2.What is a general description of the flow rate in laminar flow? A. Small B. Large

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 04 Convective Heat Transfer Lecture No. # 03 Heat Transfer Correlation

### Experiment (13): Flow channel

Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface is therefore constant and

### Open Channel Flow. M. Siavashi. School of Mechanical Engineering Iran University of Science and Technology

M. Siavashi School of Mechanical Engineering Iran University of Science and Technology W ebpage: webpages.iust.ac.ir/msiavashi Email: msiavashi@iust.ac.ir Landline: +98 21 77240391 Fall 2013 Introduction

### MATLAB AS A PROTOTYPING TOOL FOR HYDRONIC NETWORKS BALANCING

MATLAB AS A PROTOTYPING TOOL FOR HYDRONIC NETWORKS BALANCING J. Pekař, P. Trnka, V. Havlena* Abstract The objective of this note is to describe the prototyping stage of development of a system that is

### Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction Last lab you investigated flow loss in a pipe due to the roughness

### Open channel flow Basic principle

Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure

### Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity

1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood

### Urban Hydraulics. 2.1 Basic Fluid Mechanics

Urban Hydraulics Learning objectives: After completing this section, the student should understand basic concepts of fluid flow and how to analyze conduit flows and free surface flows. They should be able

### Experiment # 3: Pipe Flow

ME 05 Mechanical Engineering Lab Page ME 05 Mechanical Engineering Laboratory Spring Quarter 00 Experiment # 3: Pipe Flow Objectives: a) Calibrate a pressure transducer and two different flowmeters (paddlewheel

### FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER

VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER? What type of fluid flow is observed? The above pictures show how the effect

### For Water to Move a driving force is needed

RECALL FIRST CLASS: Q K Head Difference Area Distance between Heads Q 0.01 cm 0.19 m 6cm 0.75cm 1 liter 86400sec 1.17 liter ~ 1 liter sec 0.63 m 1000cm 3 day day day constant head 0.4 m 0.1 m FINE SAND

### XI / PHYSICS FLUIDS IN MOTION 11/PA

Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

### Pipe Flow Experiments

Pipe Flow Experiments Group: Day: Week: Library Card Number of Your Group Members -1- University of Warwick School of Engineering ESA7 laboratory Exercises Section I Theoretical Preparation 1. Introduction

### Applied Fluid Mechanics

Applied Fluid Mechanics Sixth Edition Robert L. Mott University of Dayton PEARSON Prentkv Pearson Education International CHAPTER 1 THE NATURE OF FLUIDS AND THE STUDY OF FLUID MECHANICS 1.1 The Big Picture

### INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

### Calculating resistance to flow in open channels

Alternative Hydraulics Paper 2, 5 April 2010 Calculating resistance to flow in open channels http://johndfenton.com/alternative-hydraulics.html johndfenton@gmail.com Abstract The Darcy-Weisbach formulation

### LECTURE 1: Review of pipe flow: Darcy-Weisbach, Manning, Hazen-Williams equations, Moody diagram

LECTURE 1: Review of pipe flow: Darcy-Weisbach, Manning, Hazen-Williams equations, Moody diagram 1.1. Important Definitions Pressure Pipe Flow: Refers to full water flow in closed conduits of circular

### Diffusion and Fluid Flow

Diffusion and Fluid Flow What determines the diffusion coefficient? What determines fluid flow? 1. Diffusion: Diffusion refers to the transport of substance against a concentration gradient. ΔS>0 Mass

### Natural Convection. Buoyancy force

Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient

### A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions

A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions by Laura Noelle Race An Engineering Project Submitted to the Graduate Faculty of Rensselaer

### What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation)

OPEN CHANNEL FLOW 1 3 Question What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation) Typical open channel shapes Figure

### Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS

Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS Lecture slides by Hasan Hacışevki Copyright

### Basic Principles in Microfluidics

Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces

### Abaqus/CFD Sample Problems. Abaqus 6.10

Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel

### Dimensional Analysis

Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous

### Lecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics

Lecture 11 Boundary Layers and Separation Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Overview Drag. The boundary-layer

### Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any

Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass

### Steady Flow: Laminar and Turbulent in an S-Bend

STAR-CCM+ User Guide 6663 Steady Flow: Laminar and Turbulent in an S-Bend This tutorial demonstrates the flow of an incompressible gas through an s-bend of constant diameter (2 cm), for both laminar and

### HEAT TRANSFER ENHANCEMENT ON DOUBLE PIPE HEAT EXCHANGER BY WIRE COILED AND TAPER WIRE COILED TURBULATOR INSERTS

HEAT TRANSFER ENHANCEMENT ON DOUBLE PIPE HEAT EXCHANGER BY WIRE COILED AND TAPER WIRE COILED TURBULATOR INSERTS J.Kalil basha 1,G.Karthikeyan 2, S.Karuppusamy 3 1,2 Assistant Professor, Dhanalakshmi Srinivasan

### Chapter 10. Open- Channel Flow

Updated: Sept 3 2013 Created by Dr. İsmail HALTAŞ Created: Sept 3 2013 Chapter 10 Open- Channel Flow based on Fundamentals of Fluid Mechanics 6th EdiAon By Munson 2009* *some of the Figures and Tables

### CEE 370 Fall 2015. Laboratory #3 Open Channel Flow

CEE 70 Fall 015 Laboratory # Open Channel Flow Objective: The objective of this experiment is to measure the flow of fluid through open channels using a V-notch weir and a hydraulic jump. Introduction:

### Basic Equations, Boundary Conditions and Dimensionless Parameters

Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

### Fluid Dynamics Basics

Fluid Dynamics Basics Bernoulli s Equation A very important equation in fluid dynamics is the Bernoulli equation. This equation has four variables: velocity ( ), elevation ( ), pressure ( ), and density

### cmn_lecture.2 CAD OF DOUBLE PIPE HEAT EXCHANGERS

cmn_lecture.2 CAD OF DOUBLE PIPE HEAT EXCHANGERS A double pipe heat exchanger, in essence, consists of two concentric pipes, one fluid flowing through the inner pipe and the outer fluid flowing countercurrently

### du u U 0 U dy y b 0 b

BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:

### OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS

Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS 3 Be able to determine the behavioural characteristics and parameters of real fluid

### Chapter 13 OPEN-CHANNEL FLOW

Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Lecture slides by Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc. Permission required

### Practice Problems on Pumps. Answer(s): Q 2 = 1850 gpm H 2 = 41.7 ft W = 24.1 hp. C. Wassgren, Purdue University Page 1 of 16 Last Updated: 2010 Oct 29

_02 A centrifugal with a 12 in. diameter impeller requires a power input of 60 hp when the flowrate is 3200 gpm against a 60 ft head. The impeller is changed to one with a 10 in. diameter. Determine the

### Pressure Drop in Air Piping Systems Series of Technical White Papers from Ohio Medical Corporation

Pressure Dro in Air Piing Systems Series of Technical White Paers from Ohio Medical Cororation Ohio Medical Cororation Lakeside Drive Gurnee, IL 600 Phone: (800) 448-0770 Fax: (847) 855-604 info@ohiomedical.com

### Michael Montgomery Marketing Product Manager Rosemount Inc. Russ Evans Manager of Engineering and Design Rosemount Inc.

ASGMT / Averaging Pitot Tube Flow Measurement Michael Montgomery Marketing Product Manager Rosemount Inc. Russ Evans Manager of Engineering and Design Rosemount Inc. Averaging Pitot Tube Meters Introduction

### CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

### oil liquid water water liquid Answer, Key Homework 2 David McIntyre 1

Answer, Key Homework 2 David McIntyre 1 This print-out should have 14 questions, check that it is complete. Multiple-choice questions may continue on the next column or page: find all choices before making

### Fundamentals of Fluid Mechanics

Sixth Edition. Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department

### Heat transfer in Flow Through Conduits

Heat transfer in Flow Through Conduits R. Shankar Suramanian Department of Chemical and Biomolecular Engineering Clarkson University A common situation encountered y the chemical engineer is heat transfer

### Introduction to Microfluidics. Date: 2013/04/26. Dr. Yi-Chung Tung. Outline

Introduction to Microfluidics Date: 2013/04/26 Dr. Yi-Chung Tung Outline Introduction to Microfluidics Basic Fluid Mechanics Concepts Equivalent Fluidic Circuit Model Conclusion What is Microfluidics Microfluidics

### Pacific Pump and Power

Pacific Pump and Power 91-503 Nukuawa Street Kapolei, Hawaii 96707 Phone: (808) 672-8198 or (800) 975-5112 Fax: (866) 424-0953 Email: sales@pacificpumpandpower.com Web: www.pacificpumpandpower.com Pumps

### FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or

### Experimentation and Computational Fluid Dynamics Modelling of Roughness Effects in Flexible Pipelines

Experimentation and Computational Fluid Dynamics Modelling of Roughness Effects in Flexible Pipelines Sophie Yin Jeremy Leggoe School of Mechanical and Chemical Engineering Daniel Teng Paul Pickering CEED

### Viscous flow in pipe

Viscous flow in pipe Henryk Kudela Contents 1 Laminar or turbulent flow 1 2 Balance of Momentum - Navier-Stokes Equation 2 3 Laminar flow in pipe 2 3.1 Friction factor for laminar flow...........................

### Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to:

I. OBJECTIVE OF THE EXPERIMENT. Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to: 1) Viscosity of gas (cf. "Viscosity of gas" experiment)

### FREESTUDY HEAT TRANSFER TUTORIAL 3 ADVANCED STUDIES

FREESTUDY HEAT TRANSFER TUTORIAL ADVANCED STUDIES This is the third tutorial in the series on heat transfer and covers some of the advanced theory of convection. The tutorials are designed to bring the

### Unsteady Pressure Measurements

Quite often the measurements of pressures has to be conducted in unsteady conditions. Typical cases are those of -the measurement of time-varying pressure (with periodic oscillations or step changes) -the

### Comparison of Heat Transfer between a Helical and Straight Tube Heat Exchanger

International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 1 (2013), pp. 33-40 International Research Publication House http://www.irphouse.com Comparison of Heat Transfer

### PIPING WORKBOOK. Solving Piping and Header Networks Using CHEMCAD. Version 6.2

PIPING WORKBOOK Solving Piping and Header Networks Using CHEMCAD Engineering advanced Version 6. Piping Simulation Methods Sizing Piping Components Pump Performance Curves Piping Networks Relief Header

### EXAMPLE: Water Flow in a Pipe

EXAMPLE: Water Flow in a Pipe P 1 > P 2 Velocity profile is parabolic (we will learn why it is parabolic later, but since friction comes from walls the shape is intuitive) The pressure drops linearly along

### Piping Hydraulic Line Design and Sizing Software KLM Technology Group

Piping Hydraulic Line Design and Sizing Software KLM Technology Group Practical Engineering Guidelines for Processing Plant Solutions #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor

### Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

### Experimental Study On Heat Transfer Enhancement In A Circular Tube Fitted With U -Cut And V -Cut Twisted Tape Insert

Experimental Study On Heat Transfer Enhancement In A Circular Tube Fitted With U -Cut And V -Cut Twisted Tape Insert Premkumar M Abstract Experimental investigation of heat transfer and Reynolds number

### Chapter 9. Steady Flow in Open channels

Chapter 9 Steady Flow in Open channels Objectives Be able to define uniform open channel flow Solve uniform open channel flow using the Manning Equation 9.1 Uniform Flow in Open Channel Open-channel flows

### NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

### HYDRAULIC ANALYSIS OF PIPE LINED WITH MADISON S 100% SOLIDS STRUCTURAL POLYURETHANE COATINGS

HYDRAULIC ANALYSIS OF PIPE LINED WITH MADISON S 100% SOLIDS STRUCTURAL POLYURETHANE COATINGS Shiwei William Guan, Ph.D. Vice President, R&D and International Business Madison Chemical Industries Inc. 490

### Chapter 28 Fluid Dynamics

Chapter 28 Fluid Dynamics 28.1 Ideal Fluids... 1 28.2 Velocity Vector Field... 1 28.3 Mass Continuity Equation... 3 28.4 Bernoulli s Principle... 4 28.5 Worked Examples: Bernoulli s Equation... 7 Example

### Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics

Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.

### Builder Specifications for Solar Ready Homes

Builder Specifications for Solar Ready Homes This document specifies the essential elements required to make a new home ready for the future installation of roof-mounted solar domestic hot water and photovoltaic

### TEMPERATURE, CONCENTRATION, AND PUMPING EFFECTS ON PAM VISCOSITY

TEMPERATURE, CONCENTRATION, AND PUMPING EFFECTS ON PAM VISCOSITY D. L. Bjorneberg ABSTRACT. As polyacrylamide (PAM) use in irrigated agriculture increases, new methods are being sought to accurately and

### THE EFFECTS OF UNIFORM TRANSVERSE MAGNETIC FIELD ON LOCAL FLOW AND VELOCITY PROFILE

International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 140 151, Article ID: IJCIET_07_02_011 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

### Mathematics and Computation of Sediment Transport in Open Channels

Mathematics and Computation of Sediment Transport in Open Channels Junping Wang Division of Mathematical Sciences National Science Foundation May 26, 2010 Sediment Transport and Life One major problem

### Battery Thermal Management System Design Modeling

Battery Thermal Management System Design Modeling Gi-Heon Kim, Ph.D Ahmad Pesaran, Ph.D (ahmad_pesaran@nrel.gov) National Renewable Energy Laboratory, Golden, Colorado, U.S.A. EVS October -8, 8, 006 Yokohama,

### A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW. 1998 ASME Fluids Engineering Division Summer Meeting

TELEDYNE HASTINGS TECHNICAL PAPERS INSTRUMENTS A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW Proceedings of FEDSM 98: June -5, 998, Washington, DC FEDSM98 49 ABSTRACT The pressure

### Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

### AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER

International Journal of Mechanical Engineering and Technology (IJMET) Volume 6, Issue 11, Nov 2015, pp. 16-22, Article ID: IJMET_06_11_002 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=6&itype=11

### HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi

HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi 2 Rajesh Dudi 1 Scholar and 2 Assistant Professor,Department of Mechanical Engineering, OITM, Hisar (Haryana)

### sensors ISSN 1424-8220 www.mdpi.com/journal/sensors

Sensors 2010, 10, 10560-10570; doi:10.3390/s101210560 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Article A New Approach to Laminar Flowmeters Fernando Lopez Pena *, Alvaro Deibe Diaz,

### Testing methods applicable to refrigeration components and systems

Testing methods applicable to refrigeration components and systems Sylvain Quoilin (1)*, Cristian Cuevas (2), Vladut Teodorese (1), Vincent Lemort (1), Jules Hannay (1) and Jean Lebrun (1) (1) University

### Hydraulics Laboratory Experiment Report

Hydraulics Laboratory Experiment Report Name: Ahmed Essam Mansour Section: "1", Monday 2-5 pm Title: Flow in open channel Date: 13 November-2006 Objectives: Calculate the Chezy and Manning coefficients

### Air Flow Measurements

ME-EM 30 ENERGY LABORATORY Air Flow Measurements Pitot Static Tube A slender tube aligned with the flow can measure local velocity by means of pressure differences. It has sidewall holes to measure the

### Advanced Differential Pressure Flowmeter Technology V-CONE FLOW METER TECHNICAL BRIEF

Advanced Differential Pressure Flowmeter Technology V-CONE FLOW METER TECHNICAL BRIEF Table of Contents Section 1 - General Introduction 1.1 1 Principles Of Operation 1.2 1 Reshaping The Velocity Profile

### Lecture 8 - Turbulence. Applied Computational Fluid Dynamics

Lecture 8 - Turbulence Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Turbulence What is turbulence? Effect of turbulence

### International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015

International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 EXPERIMENTAL STUDY

### Fluid Dynamics Viscosity. Dave Foster Department of Chemical Engineering University of Rochester Email: dafoster@che

Fluid Dynamics Viscosity Dave Foster Department of Chemical Engineering University of Rochester Email: dafoster@che che.rochester.eduedu 1 Chemical Engineering What do Chemical Engineers Do? Manufacturing

### Fluid flow in circular and noncircular pipes is commonly encountered in

cen72367_ch08.qxd 11/4/04 7:13 PM Page 321 FLOW IN PIPES CHAPTER 8 Fluid flow in circular and noncircular pipes is commonly encountered in practice. The hot and cold water that we use in our homes is pumped

### Laminar and Turbulent flow. Flow Sensors. Reynolds Number. Thermal flow Sensor. Flow and Flow rate. R = Mass Flow controllers

Flow and Flow rate. Laminar and Turbulent flow Laminar flow: smooth, orderly and regular Mechanical sensors have inertia, which can integrate out small variations due to turbulence Turbulent flow: chaotic

### Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India

Experimental Thermal and Fluid Science 32 (2007) 92 97 www.elsevier.com/locate/etfs Studies on heat transfer and friction factor characteristics of laminar flow through a circular tube fitted with right

### The Effect of Mass Flow Rate on the Enhanced Heat Transfer Charactristics in A Corrugated Plate Type Heat Exchanger

Research Journal of Engineering Sciences ISSN 2278 9472 The Effect of Mass Flow Rate on the Enhanced Heat Transfer Charactristics in A Corrugated Plate Type Heat Exchanger Abstract Murugesan M.P. and Balasubramanian

### A MTR FUEL ELEMENT FLOW DISTRIBUTION MEASUREMENT PRELIMINARY RESULTS

A MTR FUEL ELEMENT FLOW DISTRIBUTION MEASUREMENT PRELIMINARY RESULTS W. M. Torres, P. E. Umbehaun, D. A. Andrade and J. A. B. Souza Centro de Engenharia Nuclear Instituto de Pesquisas Energéticas e Nucleares

### Experimental Evaluation of the Discharge Coefficient of a Centre-Pivot Roof Window

Experimental Evaluation of the Discharge Coefficient of a Centre-Pivot Roof Window Ahsan Iqbal #1, Alireza Afshari #2, Per Heiselberg *3, Anders Høj **4 # Energy and Environment, Danish Building Research

### Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical

European Water 36: 7-35, 11. 11 E.W. Publications Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical Flow Conditions C.R. Suribabu *, R.M. Sabarish, R. Narasimhan and A.R. Chandhru

### Mercury is poured into a U-tube as in Figure (14.18a). The left arm of the tube has crosssectional

Chapter 14 Fluid Mechanics. Solutions of Selected Problems 14.1 Problem 14.18 (In the text book) Mercury is poured into a U-tube as in Figure (14.18a). The left arm of the tube has crosssectional area