FLUID FLOW Introduction General Description
|
|
|
- Marcus Walker
- 9 years ago
- Views:
Transcription
1 FLUID FLOW Introduction Fluid flow is an important part of many processes, including transporting materials from one point to another, mixing of materials, and chemical reactions. In this experiment, you will investigate fluid flow in a pipe network and will explore several methods (rotameter, orifice and venturi meters) for measurement of the fluid flow rate. You will also explore effects of the skin friction, pipe network configuration, and pipe fittings (tees, elbows, etc.) on the pressure drop across a pipe. The main independent variables in this experiment are: Feed flow rate Fluid flow network configuration General Description The Fluid Flow system uses tap water supplied from a large holding tank on the third floor of the Unit Ops lab. The pressurized water flows down under gravity to the pipe network on the first floor. The water flow rate at the inlet of the network can be measured by a rotameter. The inlet pressure can be measured by a pressure gauge. The pipe network contains two pipes of nominal diameter 0.75 and 0.5. The corresponding actual diameters for pipes of Schedule 40 are and 0.622, respectively 1. Each of the pipes contains tees, elbows, orifice plates, venturi meters, and valves. A tee is a pipe fitting that joins one pipe run to another that runs in a perpendicular direction to the main run. An elbow is used to change the direction of fluid flow. A venturi meter is a flow measurement instrument which uses the Bernoulli principle to measure the flow rate. It contains a converging section which gives an increase in the flow velocity and a corresponding pressure drop. An orifice plate is a thin plate with a hole in the middle. When the fluid reaches the orifice plate, the fluid is forced to converge to go through the small hole. As it does so, the velocity and the pressure changes. The difference in fluid pressure between the normal pipe section and the hole measured with a manometer can be used to estimate the flow rate. All throughout the pipe network, there are small metal manometer interfaces, which are used to measure the pressure differences between any two points in the pipe network using a digital manometer. In addition, there are several pressure gauges in the network. 1 Appendix A5 of C. J. Geankoplis, Transport Processes and Separation Process Principles (4 th ed., 2003) 1-1
2 Theory For each pipe segment, we can write the mechanical energy balance equation: (1) Here, v in = inlet fluid velocity v out = outlet velocity of fluid z in = elevation height of the inlet z out = elevation height of the outlet p in = inlet pressure p out = outlet pressure W loss = energy loss due to friction (per unit mass) ρ = fluid density Note that Eq. (1) assumes a steady-state flow. This equation simplifies if v in = v out and z in = z out : (2) If the fluid flow is split between two pipes, the pressure drop is the same in both pipes (since the inlet pressure is the same and the outlet pressure is atmospheric) and the total flow rate Q is where Q 1 and Q 2 are the flow rates through the individual pipes. Frictional Losses The frictional losses depend on the type of the flow (laminar or turbulent) and pipe elements (valves, elbows, tees, etc.). A common approach to characterization of frictional losses is to use the Fanning friction factor f defined as the friction force per unit surface area divided by the kinetic energy per unit volume (ρv 2 /2). (3) Frictional Losses in a Circular Tube of Constant Diameter Here, ΔL is the pipe length, D is the inside pipe diameter, v is the fluid velocity averaged over the pipe cross-section, and f is the Fanning friction factor. For a laminar flow one can solve the Navier-Stokes equations analytically and obtain the following expression for the friction factor. 1-2 (4) (5)
3 Here, Re = Dvρ/μ is the Reynolds number (ρ and μ are the fluid density and viscosity, respectively). For a turbulent flow the friction losses are given by empirical relationships, such as the Colebrook equation or the Moody diagram. These relationships involve new parameter ε corresponding to the roughness of the pipe. The roughness depends on multiple factors, including the material from which the pipe is made and degree of corrosion. The flow network in our lab consists of pipes made from plastic and galvanized steel. Frictional Losses in Fittings In addition to the pipes, the fluid flow network contains various fittings, including valves, tees, and elbows. The friction losses due to the fittings are described using the loss factor K f, Empirical values for friction losses due to various fittings are available in the literature. Venturi and Orifice Flow Meters The network also contains venturi and orifice flow meters. Both of them rely on measurement of pressure difference between two different points to determine the fluid flow rate. A venturi meter is a tube of non-constant diameter (see Fig. 1). To minimize disturbances to the flow, the edges of the venturi meter have the same diameter as the pipe into which the meter is inserted. Variation of the tube diameter leads to variation of the fluid pressure inside the meter. There are two pressure taps located at the widest and the narrowest locations of the tube. Therefore, we can determine the flow rate by measuring pressures p 1 and p 2 at these locations and substituting them into the Bernoulli equation. For an incompressible fluid, the pressure drop is related to the flow rate by the following formula: (6) ) ) (7) Here, D 1 and D 2 are the pipe diameters at the pressure tap locations and C d is the discharge coefficient. In the absence of the friction losses, C =1. In most venturi meters, C d is very close to 1. d 1-3
4 Figure 1. Venturi meter. The figure is taken from documentation by Lambda Square Inc. Complete documentation, including dimensions of the venturi meters, is available on the course website. An orifice meter is a plate with a machined hole in the center (see Fig. 2). The flow rate is determined by measuring the pressure drop as the flow passes through the plate. Eq. (7) still holds for orifice meter with D 1 and D 2 being diameters of the pipe and the orifice hole, respectively. The frictional losses in the orifice meter are much larger than in the venturi meter and a typical value of the discharge coefficient C is 0.6. Precise value C d should be determined experimentally. d Figure 2. Orifice flow meter ( Both venturi and orifice flow meters lead to a permanent pressure loss, i.e. pressure downstream from these meters does not fully recover to the pressure p 1 at their inlets. The permanent pressure loss in a venturi meter is about 10%. The permanent pressure loss in an orifice is ) ) (9) Here, p 3 is the pressure 4-8 pipe diameters downstream and β = D 2 /D
5 Objectives 1. Application and validation of the mechanical balance equation (1) to various pipe segments. 2. Determination of friction factors for pipes and pipe fittings such as tees, elbows, and valves. 3. Prediction of the pressure losses and flow rates in a simple piping network and comparison of prediction with the experiments. 4. Prediction at multiple flow rates of flow splitting through each piping network (½ and ¾ ) when both lines are simultaneously open; comparison of prediction with actual results 5. Determination of friction factors for pipes and pipe fittings such as tees, elbows, and valves. 6. Comparison of the different methods of flow measurement (rotameter, orifice plates, venturi meter, bucket-and-stopwatch method) in terms of accuracy, sensitivity, etc. 1-5
ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts
ME 305 Fluid Mechanics I Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Mechanical Engineering Department Middle East Technical University Ankara, Turkey [email protected]
Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids
Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction Last lab you investigated flow loss in a pipe due to the roughness
Experiment 3 Pipe Friction
EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional
Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any
Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass
Pressure drop in pipes...
Pressure drop in pipes... PRESSURE DROP CALCULATIONS Pressure drop or head loss, occurs in all piping systems because of elevation changes, turbulence caused by abrupt changes in direction, and friction
Chapter 8: Flow in Pipes
Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks
Experiment # 3: Pipe Flow
ME 05 Mechanical Engineering Lab Page ME 05 Mechanical Engineering Laboratory Spring Quarter 00 Experiment # 3: Pipe Flow Objectives: a) Calibrate a pressure transducer and two different flowmeters (paddlewheel
Fluid Flow Instrumentation
Fluid Flow Instrumentation In the physical world, mechanical engineers are frequently required to monitor or control the flow of various fluids through pipes, ducts and assorted vessels. This fluid can
Air Flow Measurements
ME-EM 30 ENERGY LABORATORY Air Flow Measurements Pitot Static Tube A slender tube aligned with the flow can measure local velocity by means of pressure differences. It has sidewall holes to measure the
Pipe Flow-Friction Factor Calculations with Excel
Pipe Flow-Friction Factor Calculations with Excel Course No: C03-022 Credit: 3 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980
A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW. 1998 ASME Fluids Engineering Division Summer Meeting
TELEDYNE HASTINGS TECHNICAL PAPERS INSTRUMENTS A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW Proceedings of FEDSM 98: June -5, 998, Washington, DC FEDSM98 49 ABSTRACT The pressure
Flow Measurement in Pipes and Ducts. Flow Measurement in Pipes and Ducts, Course #503. Presented by:
Flow Measurement in Pipes and Ducts, Course #503 Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.com This course is about measurement of the flow rate of a fluid flowing
4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re.
CHAPTER 08 1. What is most likely to be the main driving force in pipe flow? A. Gravity B. A pressure gradient C. Vacuum 2.What is a general description of the flow rate in laminar flow? A. Small B. Large
Michael Montgomery Marketing Product Manager Rosemount Inc. Russ Evans Manager of Engineering and Design Rosemount Inc.
ASGMT / Averaging Pitot Tube Flow Measurement Michael Montgomery Marketing Product Manager Rosemount Inc. Russ Evans Manager of Engineering and Design Rosemount Inc. Averaging Pitot Tube Meters Introduction
FLOW MEASUREMENT 2001 INTERNATIONAL CONFERENCE DERIVATION OF AN EXPANSIBILITY FACTOR FOR THE V-CONE METER
FLOW MEASUREMENT 200 INTERNATIONAL CONFERENCE DERIVATION OF AN EXPANSIBILITY FACTOR FOR THE V-CONE METER Dr D G Stewart, NEL Dr M Reader-Harris, NEL Dr R J W Peters, McCrometer Inc INTRODUCTION The V-Cone
Hydraulic losses in pipes
Hydraulic losses in pipes Henryk Kudela Contents 1 Viscous flows in pipes 1 1.1 Moody Chart.................................... 2 1.2 Types of Fluid Flow Problems........................... 5 1.3 Minor
MATLAB AS A PROTOTYPING TOOL FOR HYDRONIC NETWORKS BALANCING
MATLAB AS A PROTOTYPING TOOL FOR HYDRONIC NETWORKS BALANCING J. Pekař, P. Trnka, V. Havlena* Abstract The objective of this note is to describe the prototyping stage of development of a system that is
Open channel flow Basic principle
Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure
Chapter 28 Fluid Dynamics
Chapter 28 Fluid Dynamics 28.1 Ideal Fluids... 1 28.2 Velocity Vector Field... 1 28.3 Mass Continuity Equation... 3 28.4 Bernoulli s Principle... 4 28.5 Worked Examples: Bernoulli s Equation... 7 Example
Flow Measurement Options for Pipeline and Open Channel Flow
Flow Measurement Options for Pipeline and Open Channel Flow October 2013 Presented by Molly Skorpik - 2013 Montana Association of Dam and Canal Systems Conference Irrigation Training and Research Center
CEE 370 Fall 2015. Laboratory #3 Open Channel Flow
CEE 70 Fall 015 Laboratory # Open Channel Flow Objective: The objective of this experiment is to measure the flow of fluid through open channels using a V-notch weir and a hydraulic jump. Introduction:
Fluids and Solids: Fundamentals
Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.
Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India
Experimental Thermal and Fluid Science 32 (2007) 92 97 www.elsevier.com/locate/etfs Studies on heat transfer and friction factor characteristics of laminar flow through a circular tube fitted with right
Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical
European Water 36: 7-35, 11. 11 E.W. Publications Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical Flow Conditions C.R. Suribabu *, R.M. Sabarish, R. Narasimhan and A.R. Chandhru
Dynamic Process Modeling. Process Dynamics and Control
Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits
Testing Protocol for Differential Pressure Measurement Devices API MPMS Chapter 22.2
Testing Protocol for Differential Pressure Measurement Devices API MPMS Chapter 22.2 Steve Baldwin Chevron Energy Technology Company Houston, Texas USA Casey Hodges CEESI Measurement Solutions. Nunn, Colorado
Experiment (13): Flow channel
Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface is therefore constant and
Equipment for Engineering Education
Equipment for Engineering Education Instruction Manual Venturi Flume G.U.N.T. Gerätebau GmbH Fahrenberg 4 D-885 Barsbüttel Germany Phone: ++49 (40) 670854.0 Fax: ++49 (40) 670854.4 E-mail: [email protected]
Experimental Evaluation of the Discharge Coefficient of a Centre-Pivot Roof Window
Experimental Evaluation of the Discharge Coefficient of a Centre-Pivot Roof Window Ahsan Iqbal #1, Alireza Afshari #2, Per Heiselberg *3, Anders Høj **4 # Energy and Environment, Danish Building Research
INTRODUCTION TO FLUID MECHANICS
INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION
Grant Agreement No. 228296 SFERA. Solar Facilities for the European Research Area SEVENTH FRAMEWORK PROGRAMME. Capacities Specific Programme
Grant Agreement No. 228296 SFERA Solar Facilities for the European Research Area SEVENTH FRAMEWORK PROGRAMME Capacities Specific Programme Research Infrastructures Integrating Activity - Combination of
Theory overview of flow measurement using differential pressure devices based on ISO-5167 standard.
Theory overview of flow measurement using differential pressure devices based on ISO-567 standard. rian FL40 flow computer description. Flow Cad software users manual. Technical note, Differential pressure
Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati
Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 04 Convective Heat Transfer Lecture No. # 03 Heat Transfer Correlation
Advanced Differential Pressure Flowmeter Technology V-CONE FLOW METER TECHNICAL BRIEF
Advanced Differential Pressure Flowmeter Technology V-CONE FLOW METER TECHNICAL BRIEF Table of Contents Section 1 - General Introduction 1.1 1 Principles Of Operation 1.2 1 Reshaping The Velocity Profile
Practice Problems on Pumps. Answer(s): Q 2 = 1850 gpm H 2 = 41.7 ft W = 24.1 hp. C. Wassgren, Purdue University Page 1 of 16 Last Updated: 2010 Oct 29
_02 A centrifugal with a 12 in. diameter impeller requires a power input of 60 hp when the flowrate is 3200 gpm against a 60 ft head. The impeller is changed to one with a 10 in. diameter. Determine the
Calculating resistance to flow in open channels
Alternative Hydraulics Paper 2, 5 April 2010 Calculating resistance to flow in open channels http://johndfenton.com/alternative-hydraulics.html [email protected] Abstract The Darcy-Weisbach formulation
Air Flow Optimization via a Venturi Type Air Restrictor
, July 3-5, 013, London, U.K. Air Flow Optimization via a Venturi Type Air Restrictor Anshul Singhal, Mallika Parveen, Member, IAENG Abstract The aim of this project is to create a flow restriction device
BASIC UNDERSTANDING OF FLOW CALCULATIONS AND ESTIMATES MAKES SIZING VALVES SIMPLER
BASIC UNDERSTANDING OF FLOW CALCULATIONS AND ESTIMATES MAKES SIZING VALVES SIMPLER Valve size often is described by the nominal size of the end connections but a more important measure is the flow that
Pressure Drop in Air Piping Systems Series of Technical White Papers from Ohio Medical Corporation
Pressure Dro in Air Piing Systems Series of Technical White Paers from Ohio Medical Cororation Ohio Medical Cororation Lakeside Drive Gurnee, IL 600 Phone: (800) 448-0770 Fax: (847) 855-604 [email protected]
ME332 FLUID MECHANICS LABORATORY
ME332 FLUID MECHANICS LABORATORY Mihir Sen Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame, IN 46556 Contents January 8, 2003 Spring 2003 Before break: Experiments
Navier-Stokes Equation Solved in Comsol 4.1. Copyright Bruce A. Finlayson, 2010 See also Introduction to Chemical Engineering Computing, Wiley (2006).
Introduction to Chemical Engineering Computing Copyright, Bruce A. Finlayson, 2004 1 Navier-Stokes Equation Solved in Comsol 4.1. Copyright Bruce A. Finlayson, 2010 See also Introduction to Chemical Engineering
measurement, but almost any pipe elbow can be calibrated Elbow meters are not as potentially accurate as venturi,
Lecture 14 Flow Measurement in Pipes I. Elbow Meters An elbow in a pipe can be used as a flow measuring device much in the same way as a venturi or orifice plate The head differential across the elbow
Custody Transfer Measurement. with the V-Cone Flowmeter
Custody Transfer Measurement with the V-Cone Flowmeter Stephen A. Ifft McCrometer Inc. Hemet, California, USA Abstract This paper will discuss the approval of the McCrometer V-Cone flowmeter for custody
Open Channel Flow. M. Siavashi. School of Mechanical Engineering Iran University of Science and Technology
M. Siavashi School of Mechanical Engineering Iran University of Science and Technology W ebpage: webpages.iust.ac.ir/msiavashi Email: [email protected] Landline: +98 21 77240391 Fall 2013 Introduction
FLUID MECHANICS IM0235 DIFFERENTIAL EQUATIONS - CB0235 2014_1
COURSE CODE INTENSITY PRE-REQUISITE CO-REQUISITE CREDITS ACTUALIZATION DATE FLUID MECHANICS IM0235 3 LECTURE HOURS PER WEEK 48 HOURS CLASSROOM ON 16 WEEKS, 32 HOURS LABORATORY, 112 HOURS OF INDEPENDENT
A basic introduction to steam
A basic introduction to steam FOR HOT, COLD, MOIST AND DRY, FOUR CHAMPIONS FIERCE. STRIVE HERE FOR MASTERY Milton 1666 Steam Wonderful Steam Very high heat content Recyclable Clean, non toxic Biodegradable
DEVELOPMENT OF HIGH SPEED RESPONSE LAMINAR FLOW METER FOR AIR CONDITIONING
DEVELOPMENT OF HIGH SPEED RESPONSE LAMINAR FLOW METER FOR AIR CONDITIONING Toshiharu Kagawa 1, Yukako Saisu 2, Riki Nishimura 3 and Chongho Youn 4 ABSTRACT In this paper, we developed a new laminar flow
EXAMPLE: Water Flow in a Pipe
EXAMPLE: Water Flow in a Pipe P 1 > P 2 Velocity profile is parabolic (we will learn why it is parabolic later, but since friction comes from walls the shape is intuitive) The pressure drops linearly along
Darcy Friction Factor Formulae in Turbulent Pipe Flow
Darcy Friction Factor Formulae in Turbulent Pipe Flow Jukka Kiijärvi Lunowa Fluid Mechanics Paper 110727 July 29, 2011 Abstract The Darcy riction actor in turbulent pipe low must be solved rom the Colebrook
Contents. Microfluidics - Jens Ducrée Physics: Fluid Dynamics 1
Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors
Water hammering in fire fighting installation
Water hammering in fire fighting installation Forward One of major problems raised in the fire fighting network installed at Pioneer company for pharmaceutical industry /Sulaymania was the high water hammering
POURING THE MOLTEN METAL
HEATING AND POURING To perform a casting operation, the metal must be heated to a temperature somewhat above its melting point and then poured into the mold cavity to solidify. In this section, we consider
Fluid Dynamics Basics
Fluid Dynamics Basics Bernoulli s Equation A very important equation in fluid dynamics is the Bernoulli equation. This equation has four variables: velocity ( ), elevation ( ), pressure ( ), and density
2 1/2 Pipe. 40 = height. the gauge pressure inside the vessel from the gauge pressure at the nozzle inlet as shown:
116eering. Engineering. Engineering. Engineering. Engineerin Engineering Information SPECIFYING SPRAY NOZZLES Spray nozzles have three basic functions: meter flow distribute liquid break up a liquid stream
CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A
CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density
Application of the Orifice Meter for Accurate Gas Flow Measurement page 1. Application of the Orifice Meter for Accurate Gas Flow Measurement.
Application of the Orifice Meter for Accurate Gas Flow Measurement page 1 DANIEL MEASUREMENT AND CONTROL WHITE PAPER Application of the Orifice Meter for Accurate Gas Flow Measurement www.daniel.com Summary
HEAT TRANSFER ENHANCEMENT ON DOUBLE PIPE HEAT EXCHANGER BY WIRE COILED AND TAPER WIRE COILED TURBULATOR INSERTS
HEAT TRANSFER ENHANCEMENT ON DOUBLE PIPE HEAT EXCHANGER BY WIRE COILED AND TAPER WIRE COILED TURBULATOR INSERTS J.Kalil basha 1,G.Karthikeyan 2, S.Karuppusamy 3 1,2 Assistant Professor, Dhanalakshmi Srinivasan
Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS
Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS Lecture slides by Hasan Hacışevki Copyright
Energy Systems Engineering Technology
College of Technology Instrumentation and Control Module # 4 Flow Measurement Document Intent: The intent of this document is to provide an example of how a subject matter expert might teach Flow Measurement.
A MTR FUEL ELEMENT FLOW DISTRIBUTION MEASUREMENT PRELIMINARY RESULTS
A MTR FUEL ELEMENT FLOW DISTRIBUTION MEASUREMENT PRELIMINARY RESULTS W. M. Torres, P. E. Umbehaun, D. A. Andrade and J. A. B. Souza Centro de Engenharia Nuclear Instituto de Pesquisas Energéticas e Nucleares
The Viscosity of Fluids
Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et
THEORETICAL UNCERTAINTY OF ORIFICE FLOW MEASUREMENT page 1 THEORETICAL UNCERTAINTY OF ORIFICE FLOW MEASUREMENT INTRODUCTION COEFFICIENT OF DISCHARGE
THEORETICAL UNCERTAINTY OF ORIFICE FLOW MEASUREMENT page 1 DANIEL MEASUREMENT AND CONTROL WHITE PAPERS THEORETICAL UNCERTAINTY OF ORIFICE FLOW MEASUREMENT www.daniel.com INTRODUCTION Orifice meters are
The Viscosity of Fluids
Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et
ABB Flowmeters Review of industrial processing flowmeters
White paper ABB Flowmeters Review of industrial processing flowmeters Understanding flowmeters and their pros and cons By Ron DiGiacomo, ABB Measurement Products One of the most critical measurements in
PRESSURE DROP ANALYSIS OF INLET PIPE WITH REDUCER AND WITHOUT REDUCER USING CFD ANALYSIS
International Journal of Mechanical Engineering (IJME) ISSN(P): 2319-2240; ISSN(E): 2319-2259 Vol. 4, Issue 3, Apr - May 2015, 85-92 IASET PRESSURE DROP ANALYSIS OF INLET PIPE WITH REDUCER AND WITHOUT
Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics
Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.
Laminar and Turbulent flow. Flow Sensors. Reynolds Number. Thermal flow Sensor. Flow and Flow rate. R = Mass Flow controllers
Flow and Flow rate. Laminar and Turbulent flow Laminar flow: smooth, orderly and regular Mechanical sensors have inertia, which can integrate out small variations due to turbulence Turbulent flow: chaotic
SIZING AND CAPACITIES OF GAS PIPING
APPENDIX A (IFGS) SIZING AND CAPACITIES OF GAS PIPING (This appendix is informative and is not part of the code.) A.1 General. To determine the size of piping used in a gas piping system, the following
International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015
International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 EXPERIMENTAL STUDY
XI / PHYSICS FLUIDS IN MOTION 11/PA
Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A
Mercury is poured into a U-tube as in Figure (14.18a). The left arm of the tube has crosssectional
Chapter 14 Fluid Mechanics. Solutions of Selected Problems 14.1 Problem 14.18 (In the text book) Mercury is poured into a U-tube as in Figure (14.18a). The left arm of the tube has crosssectional area
The Versatile Differential Pressure Transmitter. By David Gunn Honeywell Process Solutions
The Versatile Differential Pressure Transmitter By David Gunn Honeywell Process Solutions The Versatile Differential Pressure Transmitter 2 Table of Contents Abstract... 3 Pressure Fundamentals... 3 Applications...
du u U 0 U dy y b 0 b
BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:
Urban Hydraulics. 2.1 Basic Fluid Mechanics
Urban Hydraulics Learning objectives: After completing this section, the student should understand basic concepts of fluid flow and how to analyze conduit flows and free surface flows. They should be able
Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity
1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood
Basic Equations, Boundary Conditions and Dimensionless Parameters
Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were
Model of a flow in intersecting microchannels. Denis Semyonov
Model of a flow in intersecting microchannels Denis Semyonov LUT 2012 Content Objectives Motivation Model implementation Simulation Results Conclusion Objectives A flow and a reaction model is required
Fundamentals of Fluid Mechanics
Sixth Edition. Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department
Use of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands
Use of OpenFoam in a CFD analysis of a finger type slug catcher Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Agenda Project background Analytical analysis of two-phase flow regimes
oil liquid water water liquid Answer, Key Homework 2 David McIntyre 1
Answer, Key Homework 2 David McIntyre 1 This print-out should have 14 questions, check that it is complete. Multiple-choice questions may continue on the next column or page: find all choices before making
HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi
HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi 2 Rajesh Dudi 1 Scholar and 2 Assistant Professor,Department of Mechanical Engineering, OITM, Hisar (Haryana)
HEAT TRANSFER ENHANCEMENT AND FRICTION FACTOR ANALYSIS IN TUBE USING CONICAL SPRING INSERT
HEAT TRANSFER ENHANCEMENT AND FRICTION FACTOR ANALYSIS IN TUBE USING CONICAL SPRING INSERT Rahul M. Gupta 1, Bhushan C. Bissa 2 1 Research Scholar, Department of Mechanical Engineering, Shri Ramdeobaba
A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions
A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions by Laura Noelle Race An Engineering Project Submitted to the Graduate Faculty of Rensselaer
Natural Convection. Buoyancy force
Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient
Abaqus/CFD Sample Problems. Abaqus 6.10
Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel
Testing methods applicable to refrigeration components and systems
Testing methods applicable to refrigeration components and systems Sylvain Quoilin (1)*, Cristian Cuevas (2), Vladut Teodorese (1), Vincent Lemort (1), Jules Hannay (1) and Jean Lebrun (1) (1) University
Experimental Study On Heat Transfer Enhancement In A Circular Tube Fitted With U -Cut And V -Cut Twisted Tape Insert
Experimental Study On Heat Transfer Enhancement In A Circular Tube Fitted With U -Cut And V -Cut Twisted Tape Insert Premkumar M Abstract Experimental investigation of heat transfer and Reynolds number
FUNDAMENTALS OF GAS TURBINE METERS John Gorham Sensus Metering Systems 805 Liberty Blvd. DuBois, PA 15801
FUNDAMENTALS OF GAS TURBINE METERS John Gorham Sensus Metering Systems 805 Liberty Blvd. DuBois, PA 15801 INTRODUCTION The majority of all gas measurement used in the world today is performed by two basic
Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations
Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.
Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation
Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of
WATER MEASUREMENT USING TWO INCH (50 mm) DRAIN TESTS
GAP.14.1.2.2 A Publication of Global Asset Protection Services LLC WATER MEASUREMENT USING TWO INCH (50 mm) DRAIN TESTS INTRODUCTION A hydrant or other large-volume flow test is necessary for proper water
For Water to Move a driving force is needed
RECALL FIRST CLASS: Q K Head Difference Area Distance between Heads Q 0.01 cm 0.19 m 6cm 0.75cm 1 liter 86400sec 1.17 liter ~ 1 liter sec 0.63 m 1000cm 3 day day day constant head 0.4 m 0.1 m FINE SAND
HYDRAULICS. H91.8D/C - Computerized Open Surface Tilting Flow Channel - 10, 12.5, 15 and 20 m long
HYDRAULICS H91.8D/C - Computerized Open Surface Tilting Flow Channel - 10, 12.5, 15 and 20 m long 1. General The series of channels H91.8D has been designed by Didacta Italia to study the hydrodynamic
What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation)
OPEN CHANNEL FLOW 1 3 Question What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation) Typical open channel shapes Figure
Pipe Flow Experiments
Pipe Flow Experiments Group: Day: Week: Library Card Number of Your Group Members -1- University of Warwick School of Engineering ESA7 laboratory Exercises Section I Theoretical Preparation 1. Introduction
EXPERIMENTAL STUDIES ON PRESSURE DROP IN A SINUSOIDAL PLATE HEAT EXCHANGER: EFFECT OF CORRUGATION ANGLE
EXPERIMENTAL STUDIES ON PRESSURE DROP IN A SINUSOIDAL PLATE HEAT EXCHANGER: EFFECT OF CORRUGATION ANGLE B. Sreedhara Rao 1, Varun S 2, MVS Murali Krishna 3, R C Sastry 4 1 Asst professor, 2 PG Student,
