Mathematical Modelling and Design of an Advanced Once-Through Heat Recovery Steam Generator

Size: px
Start display at page:

Download "Mathematical Modelling and Design of an Advanced Once-Through Heat Recovery Steam Generator"

Transcription

1 Mathematical Modelling and Design of an Advanced Once-Through Heat Recovery Steam Generator Abstract Marie-Noëlle Dumont, Georges Heyen LASSC, University of Liège, Sart Tilman B6A, B-4000 Liège (Belgium) Tel: Fax: MN.Dumont@ulg.ac.be The once-through heat recovery steam generator design is ideally matched to very high temperature and pressure, well into the supercritical range. Moreover this type of boiler is structurally simpler than a conventional one, since no drum is required. A specific mathematical model has been developed. Thermodynamic model has been implemented to suit very high pressure (up to 40 bar), sub- and supercritical steam properties. We illustrate the model use with a 180 bar once-through boiler (OTB). 1. Introduction Nowadays combined cycle (CC) power plants become a good choice to produce energy, because of their high efficiency and the use of low carbon content fuels (e.g. natural gas) that limits the greenhouse gases production to the minimum. CC plants couple a Brayton cycle with a Rankine cycle. The hot exhaust gas, available at the output of the gas turbine (Brayton cycle) is used to produce high-pressure steam for the Rankine cycle. The element, where the steam heating takes place, is the heat recovery steam generator (HRSG). High efficiency in CC (up to 58%) has been reached mainly for two reasons : Improvements in the gas turbine technology (i.e. higher inlet temperature); Improvement in the HRSG design We are interested in the second point. The introduction of several pressure levels with reheat in the steam cycle in the HRSG allows recovering more energy from the exhaust gas. Exergy losses decrease, due to a better matching of the gas curve with the water/steam curve in the heat exchange diagram (Dechamps,1998). Going to supercritical pressure with the OTB technology is another way to better match those curves and thus improve the CC efficiency. New improvements are announced in near future to reach efficiency as high as 60%. In the present work we propose a mathematical model for the simulation and design of the once-through boiler. It is not possible to use empirical equations used for the simulation of each part of the traditional boiler. General equations have to be used for each tube of the boiler. Moreover there is a more significant evolution of the water/steam flow pattern type due to the complete water vaporization inside the tubes (in a conventional boiler, the circulation flow is adjusted to reach a vapor fraction between 0% and 40% in the tubes and the vapor is separated in the drum). Changes of flow pattern induce a modification in the evaluation of the internal heat transfer coefficient as well as in the pressure drop formulation. The right equation has to be selected dynamically according to the flow conditions prevailing in the tube.

2 The uniform distribution of water among parallel tubes of the same geometry subjected to equal heating is not ensured from the outset but depends on the pressure drop in the tubes. The disappearance of the drum introduces a different understanding of the boiler s behavior. Effect of the various two-phase flow patterns have to be mathematically controlled. The stability criteria has changed.. Mathematical Model.1. Heat transfer.1.1. Water Mathematical models for traditional boilers are usually based on empirical equations corresponding to each part of the boiler : the economizer, the boiler and the superheater. Those three parts of boiler are clearly separated thus it is not difficult to choose the right equation. In a once-through boiler this separation is not so clear. We have first to estimate the flow pattern in the tube then to choose the equation to be used. Liquid single phase and vapor single phase are easily located with temperature and pressure data. According to Gnielinski (1993) the equation 1 applies for turbulent and hydrodynamically developed flow. ( ξ )( ) / 8 Re 1000 Pr l α * d Nu = = ; ξ = 1+ 1,7 /8 Pr 1 λ ( ξ /3 )( ) 1 ( 1,8 log Re 1, 64) During vaporization different flow patterns can be observed, for which the rate of heat transfer also differs. In stratified-wavy flow pattern incomplete wetting has an effect on the heat transfer coefficient. A reduction could appear for this type of flow pattern. Computing conditions where a change in flow pattern occurs is useful. A method to establish a flow pattern map in horizontal tube for given pressure and flow conditions is clearly exposed by Steiner (1993). This method has been used in this study. The different flow pattern in the vaporisation zone of the OTB are given in figure 1. The heat transfer coefficient is estimated from numerous data. It is a combination of convective heat transfer coefficient and nucleate boiling heat transfer coefficient. 10 (1) 1.E+0 1.E+01 1.E+00 1.E-01 1.E-0 1.E-03 1.E-04 1.E-05 Flow Pattern Diagram for Horizontal Flow (VDI (1993)) Flow in tubes with 5.08t/h and 5.166t/h Annular Mist (5) Wavy () Stratified (1) *1e X-Martinelli parameter Figure 1: Flow pattern map in the boiling zone. Plug or Slug (4) Internal heat transfer coef (kcal/hr/m²/k) ECOV3 6A ECOV34A ECOV3A ECOV30A ECOV8A ECOV6A ECOV4A Once-through HRSG ECOVA ECOV0A ECOV18A ECOV16A ECOV14A ECOV1A ECOV10A ECOV08A ECOV06A ECOV04A ECOV0A SUPH06A SUPH04A SUPH0A Traditional HRSG Figure : Internal heat transfer coefficient.

3 0 α( z) = 3α( z) 3 + α( z) 3 () conv B () z α conv ρ ( 1 x) 1.x ( 1 x) liq α go ρ x 1 8( 1 x) liq = α ρ α ρ lo vap lo vap (3) α ( z) B = { heatflow,pressure,roughness,geometry} (4) α lo α LO is the heat transfer coefficient with total mass velocity in the form of the liquid and α GO is the heat transfer coefficient with total mass velocity in the form of the vapor. The internal coefficients computed for all the tubes of the OTB are presented in figure..1.. Fumes There is no difference between the equations used for a conventional heat recovery boiler and a once trough heat recovery boiler. The main part of the heat transfer coefficient is the convective part (low fumes temperature). The effect of the turbulence has been introduced to reduce the heat transfer coefficient in the first few rows of the tube bundle. The main difficulty to evaluate the heat transfer coefficient for the fume side comes from the fins that enhance the heat transfer, but could also produce other sources of resistance in the heat transfer, such as fouling on the surface of fins or inadequate contact between the core tube and the fin base. There are two methods to evaluate the heat transfer coefficient: The first one is based on a general equation to evaluate the Nusselt number in cross flow over pipes and the efficiency of the fins. An apparent heat transfer coefficient is then computed with equation 6. The second one is based on empirical correlations derived from experimental data. For more than four banks in staggered arrangement, equation 7 can be used. It is not obvious to find the most appropriate correlation for a given fin geometry and tube bundle arrangement. The best is to ask finned tube manufacturers to provide their correlations for heat transfer coefficient and fin efficiency corresponding to the required finned tube LOAD (kw) ECOV36A ECOV34A ECOV3A ECOV30A ECOV8A ECOV6A ECOV4A ECOVA ECOV0A ECOV18A ECOV16A ECOV14A ECOV1A ECOV10A ECOV08A ECOV06A ECOV04A ECOV0A SUPH06A SUPH04A SUPH0A LOAD FUME IN WATER OUT Figure 3: Heat exchange diagram TEMPERATURE (C) Pressure drop (mmho) ECOV36A ECOV34A ECOV3A ECOV30A ECOV8A ECOV6A ECOV4A ECOVA ECOV0A ECOV18A ECOV16A Pressure drop ECOV14A ECOV1A ECOV10A ECOV08A ECOV06A ECOV04A vapour fraction ECOV0A SUPH06A Figure 4: Pressure drop and vapor fraction evolution SUPH04A SUPH0A

4 A A po fo α = α * + η app f A f A 0.15 A 1 Nu = 0.38 Re 0.6 Pr 3 d d A b (6) (7).1.3. Overall heat transfer coefficient Finally the overall heat transfer coefficient is obtained from equation 8. The global heat transferred for each tube is computed with equation 9. We call T sl semi logarithmic temperature difference. It is the best compromise between pure logarithmic temperature difference that has no sense here (only one tube) and pure arithmetic temperature difference that does not allow to follow the evolution of water properties along the tube. The heat exchange diagram of the OTB is presented in figure e 1 = + + (8) α α A A app λ* w α * i A i A Q = α * A* T ; sl.. Pressure drop..1. Water ( T T ) T = w w1 sl T T mf w1 ln T mf T w ; T + T f 1 f T = (9) mf 64 f = f ρ V l Re P = with g d i f = 4 Re (10) The coefficient f depends on the Reynolds number for flow within the tube. In laminar flow, the Hagen-Poiseuille law can be applied. In turbulent flow the Blasius equation is used. The main difficulty is the evaluation of water pressure drop during transition boiling. The pressure drop consists of three components : friction ( P f ), acceleration ( P m ) and static pressure ( P g ). In once-through horizontal tubes boiler P g =0. The Lockard-Martinelli formulation is used to estimate the friction term. P P = Φ L L ftt phases liquid (11)

5 0 1 Φ = 1+ + ftt X X with X = P L liquid P L vapor (1) The acceleration term is defined with equation 13 where α is the volume fraction of vapor (void fraction). It is recommended to discretize the tube in several short sections to obtain more accurate results (figure 4). x x ( 1 x) P = G * m α * ρ + ( 1 )* vap α ρ liq x 1 (13)... Fumes The pressure drop in a tube bundle is given by equation 14. In this case the number of rows (N R ) plays an important role in the pressure drop evaluation. The coefficient f is more difficult to compute from generalized correlations. The easiest way is once more to ask the finned tubes manufacturer to obtain accurate correlation. f ρ V P = N (14) R 3. Stability Stability calculation is necessary for the control of water distribution over parallel tubes of the same form and subjected to equal heating in forced circulation HRSG and particularly in OTB. The stability can be described with the stability coefficient S. HRSG manufacturers try to keep the stability coefficient in the range (0.7-). In OTB design inlet restrictions have been installed to increase single-phase friction in order to stabilize the boiler. Based on the π-criterion (Li Rizhu, Ju Huaiming, 00) defined as π P + P in liq =, the design has been realized with π about. This number has to Pboi + Pvap be reduced in near future when all various flow instabilities would be identified. relative change ( in pressure drop) relative change ( ) S = = with in flow rate S>0 stable S 0 unstable d( p) p d( M) M Pressure drop DP UNSTABLE STABLE Mass flow M Figure 5: Stability example.

6 4. An Example Results have been obtained for an OTB of pilot plant size (4 rows). WATER (10.5 t/h ;Tin=44 C ;Tout=500 C) FUMES (7.5 t/h ; Tin=59 C ;Tout= 197 C).In VALI- Belsim software in which the simulation model has been implemented, the simulation of the OTB needs 4 modules, one for each row of tubes. Since VALI implements an numerical procedures to solve large sets of non-linear equations, all model equations are solved simultaneously. The graphical user interface allows easy modification of the tube connections and the modelling of multiple pass bundles. 5. Conclusions and Future Work The mathematical model of the once-through boiler has been used to better understand the behaviour of the boiler. Future mathematical developments have still to be done to refine the stability criteria and improve the OTB design. Automatic generation of alternative bundle layouts in the graphical user interface is also foreseen. 6. Nomenclature A total area of outer surface (m²) A b bare tube outside surface area A fo fin outside surface area (m²) A i inside surface area (m²) A po free area of tube outer surface A w mean area of homogeneous tube wall c p specific heat capacity at constant pressure (J/kg/K) d i tube internal diameter (m) P pressure drop (bar) f pressure drop coefficient G mass flux (kg/m /s) H enthalpy flow (kw) N R number of rows in the bundle Nu Nusselt number Nu l l = α λ P pressure (bar) Pr Prandl number Pr = Q exchanged heat (kw) Re Reynolds number T temperature (K) V c p η fluid velocity (m/s) x vapor mass fraction x i component flow rate (kg/s) α heat transfer coefficient (kw/m²/k) α(z) local heat transfer coefficient λ thermal conductivity (W/m/K) ρ density (kg/m 3 ) η dynamic viscosity (Pa.s) or (kg/m/s) fin efficiency η f λ 7. References D. Steiner, 1993, VDI heat atlas, VDI-Verlag, HBB, Düsseldorf, Germany V.Gnielinski, 1993, VDI heat atlas, GA,GB, VDI-Verlag, Düsseldorf, Germany P.J. Dechamps, 1998, Advanced combined cycle alternatives with the latest gas turbines, ASME J. Engrg. Gas Turbines Power 10, Li Rizhu, Ju Huaiming, 00, Structural design and two-phase flow stability test for the steam generator, Nuclear Engineering and Design 18, Acknowledgements This work was financially supported by CMI Utility boilers (Belgium).

Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 04 Convective Heat Transfer Lecture No. # 03 Heat Transfer Correlation

More information

Correlations for Convective Heat Transfer

Correlations for Convective Heat Transfer In many cases it's convenient to have simple equations for estimation of heat transfer coefficients. Below is a collection of recommended correlations for single-phase convective flow in different geometries

More information

16. Heat Pipes in Electronics Cooling (2)

16. Heat Pipes in Electronics Cooling (2) 16. Heat Pipes in Electronics Cooling (2) 16.1 Pulsating Heat Pipes 16.1.1Introduction Conventional heat pipe technology has been successfully applied in the last thirty years for the thermal management

More information

Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla

Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications Steam Boiler Technology ebook Espoo 2002 Boiler Calculations Sebastian

More information

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES INTRODUCTION This tutorial is designed for students wishing to extend their knowledge of thermodynamics to a more

More information

FREESTUDY HEAT TRANSFER TUTORIAL 3 ADVANCED STUDIES

FREESTUDY HEAT TRANSFER TUTORIAL 3 ADVANCED STUDIES FREESTUDY HEAT TRANSFER TUTORIAL ADVANCED STUDIES This is the third tutorial in the series on heat transfer and covers some of the advanced theory of convection. The tutorials are designed to bring the

More information

Exergy Analysis of a Water Heat Storage Tank

Exergy Analysis of a Water Heat Storage Tank Exergy Analysis of a Water Heat Storage Tank F. Dammel *1, J. Winterling 1, K.-J. Langeheinecke 3, and P. Stephan 1,2 1 Institute of Technical Thermodynamics, Technische Universität Darmstadt, 2 Center

More information

5.2. Vaporizers - Types and Usage

5.2. Vaporizers - Types and Usage 5.2. Vaporizers - Types and Usage 5.2.1. General Vaporizers are constructed in numerous designs and operated in many modes. Depending upon the service application the design, construction, inspection,

More information

Natural Convection. Buoyancy force

Natural Convection. Buoyancy force Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient

More information

Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Static s Kinematics Dynamics Fluid Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

More information

Theoretical and Numerical Analysis of Heat Transfer in Pipeline System

Theoretical and Numerical Analysis of Heat Transfer in Pipeline System APCOM & ISCM -4 th December, 20, Singapore Theoretical and Numerical Analysis of Heat Transfer in Pipeline System Xiaowei Zhu, Hui Tang, *Hua Li, Jiahua Hong, Songyuan Yang School of Mechanical & Aerospace

More information

Power Plants. BENSON Once-Through Heat Recovery Steam Generator. Power Generation

Power Plants. BENSON Once-Through Heat Recovery Steam Generator. Power Generation Power Plants BENSON Once-Through Heat Recovery Steam Generator Power Generation BENSON Once-Through technology for Heat Recovery Steam Generators New application of proven technology Siemens development

More information

Fired Heater Design and Simulation

Fired Heater Design and Simulation Fired Heater Design and Simulation Mahesh N. Jethva 1, C. G. Bhagchandani 2 1 M.E. Chemical Engineering Department, L.D. College of Engineering, Ahmedabad-380 015 2 Associate Professor, Chemical Engineering

More information

International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015

International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015 International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 EXPERIMENTAL STUDY

More information

Design of heat exchangers

Design of heat exchangers Design of heat exchangers Exchanger Design Methodology The problem of heat exchanger design is complex and multidisciplinary. The major design considerations for a new heat exchanger include: process/design

More information

CONTENTS. ZVU Engineering a.s., Member of ZVU Group, WASTE HEAT BOILERS Page 2

CONTENTS. ZVU Engineering a.s., Member of ZVU Group, WASTE HEAT BOILERS Page 2 WASTE HEAT BOILERS CONTENTS 1 INTRODUCTION... 3 2 CONCEPTION OF WASTE HEAT BOILERS... 4 2.1 Complex Solution...4 2.2 Kind of Heat Exchange...5 2.3 Heat Recovery Units and Their Usage...5 2.4 Materials

More information

CFD Simulation of Subcooled Flow Boiling using OpenFOAM

CFD Simulation of Subcooled Flow Boiling using OpenFOAM Research Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet CFD

More information

A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW. 1998 ASME Fluids Engineering Division Summer Meeting

A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW. 1998 ASME Fluids Engineering Division Summer Meeting TELEDYNE HASTINGS TECHNICAL PAPERS INSTRUMENTS A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW Proceedings of FEDSM 98: June -5, 998, Washington, DC FEDSM98 49 ABSTRACT The pressure

More information

HEAT TRANSFER ENHANCEMENT AND FRICTION FACTOR ANALYSIS IN TUBE USING CONICAL SPRING INSERT

HEAT TRANSFER ENHANCEMENT AND FRICTION FACTOR ANALYSIS IN TUBE USING CONICAL SPRING INSERT HEAT TRANSFER ENHANCEMENT AND FRICTION FACTOR ANALYSIS IN TUBE USING CONICAL SPRING INSERT Rahul M. Gupta 1, Bhushan C. Bissa 2 1 Research Scholar, Department of Mechanical Engineering, Shri Ramdeobaba

More information

CASL-U-2013-0193-000

CASL-U-2013-0193-000 L3:THM.CFD.P7.06 Implementation and validation of the new RPI boiling models using STAR-CCM+ as CFD Platform Victor Petrov, Annalisa Manera UMICH September 30, 2013 EXECUTIVE SUMMARY This milestone is

More information

The soot and scale problems

The soot and scale problems Dr. Albrecht Kaupp Page 1 The soot and scale problems Issue Soot and scale do not only increase energy consumption but are as well a major cause of tube failure. Learning Objectives Understanding the implications

More information

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant

More information

Sizing of triple concentric pipe heat exchanger

Sizing of triple concentric pipe heat exchanger Sizing of triple concentric pipe heat exchanger 1 Tejas M. Ghiwala, 2 Dr. V.K. Matawala 1 Post Graduate Student, 2 Head of Department 1 Thermal Engineering, SVMIT, Bharuch-392001, Gujarat, INDIA, 2 Department

More information

Hybrid Modeling and Control of a Power Plant using State Flow Technique with Application

Hybrid Modeling and Control of a Power Plant using State Flow Technique with Application Hybrid Modeling and Control of a Power Plant using State Flow Technique with Application Marwa M. Abdulmoneim 1, Magdy A. S. Aboelela 2, Hassen T. Dorrah 3 1 Master Degree Student, Cairo University, Faculty

More information

Transient Analysis of Integrated Shiraz Hybrid Solar Thermal Power Plant Iman Niknia 1, Mahmood Yaghoubi 1, 2

Transient Analysis of Integrated Shiraz Hybrid Solar Thermal Power Plant Iman Niknia 1, Mahmood Yaghoubi 1, 2 Transient Analysis of Integrated Shiraz Hybrid Solar Thermal Power Plant Iman Niknia 1, Mahmood Yaghoubi 1, 2 1 School of Mechanical Engineering, Shiraz University, Shiraz, Iran 1, 2 Shiraz University,

More information

Heat transfer in Flow Through Conduits

Heat transfer in Flow Through Conduits Heat transfer in Flow Through Conduits R. Shankar Suramanian Department of Chemical and Biomolecular Engineering Clarkson University A common situation encountered y the chemical engineer is heat transfer

More information

Experiment 3 Pipe Friction

Experiment 3 Pipe Friction EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional

More information

Dynamic Process Modeling. Process Dynamics and Control

Dynamic Process Modeling. Process Dynamics and Control Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits

More information

Heat pipes and Thermosyphons. Heat pipes and Thermosyphons. Heat pipes and Thermosyphons. Heat pipes. Heat pipes. Heat pipes

Heat pipes and Thermosyphons. Heat pipes and Thermosyphons. Heat pipes and Thermosyphons. Heat pipes. Heat pipes. Heat pipes Heat pipes and Thermosyphons Cold end Hot end Inside the system, there is a fluid (usually termed refrigerant) Heat pipes and Thermosyphons Cold end Hot end Heat is transferred as latent heat of evaporation

More information

8. Evaporators */ A. Introduction

8. Evaporators */ A. Introduction CHAPTER 8. EVAPORATORS 8. Evaporators */ A. Introduction 8.01 The evaporator is one of the four basic and necessary hardware components of the refrigeration system. (The refrigerant may be considered as

More information

Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India

Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India Experimental Thermal and Fluid Science 32 (2007) 92 97 www.elsevier.com/locate/etfs Studies on heat transfer and friction factor characteristics of laminar flow through a circular tube fitted with right

More information

Heat Exchangers. Heat Exchanger Types. Heat Exchanger Types. Applied Heat Transfer Part Two. Topics of This chapter

Heat Exchangers. Heat Exchanger Types. Heat Exchanger Types. Applied Heat Transfer Part Two. Topics of This chapter Applied Heat Transfer Part Two Heat Excangers Dr. Amad RAMAZANI S.A. Associate Professor Sarif University of Tecnology انتقال حرارت کاربردی احمد رمضانی سعادت ا بادی Autumn, 1385 (2006) Ramazani, Heat Excangers

More information

QUESTIONS THERMODYNAMICS PRACTICE PROBLEMS FOR NON-TECHNICAL MAJORS. Thermodynamic Properties

QUESTIONS THERMODYNAMICS PRACTICE PROBLEMS FOR NON-TECHNICAL MAJORS. Thermodynamic Properties QUESTIONS THERMODYNAMICS PRACTICE PROBLEMS FOR NON-TECHNICAL MAJORS Thermodynamic Properties 1. If an object has a weight of 10 lbf on the moon, what would the same object weigh on Jupiter? ft ft -ft g

More information

Experimental Study of Free Convection Heat Transfer From Array Of Vertical Tubes At Different Inclinations

Experimental Study of Free Convection Heat Transfer From Array Of Vertical Tubes At Different Inclinations Experimental Study of Free Convection Heat Transfer From Array Of Vertical Tubes At Different Inclinations A.Satyanarayana.Reddy 1, Suresh Akella 2, AMK. Prasad 3 1 Associate professor, Mechanical Engineering

More information

2. CHRONOLOGICAL REVIEW ABOUT THE CONVECTIVE HEAT TRANSFER COEFFICIENT

2. CHRONOLOGICAL REVIEW ABOUT THE CONVECTIVE HEAT TRANSFER COEFFICIENT ANALYSIS OF PCM SLURRIES AND PCM EMULSIONS AS HEAT TRANSFER FLUIDS M. Delgado, J. Mazo, C. Peñalosa, J.M. Marín, B. Zalba Thermal Engineering Division. Department of Mechanical Engineering University of

More information

cmn_lecture.2 CAD OF DOUBLE PIPE HEAT EXCHANGERS

cmn_lecture.2 CAD OF DOUBLE PIPE HEAT EXCHANGERS cmn_lecture.2 CAD OF DOUBLE PIPE HEAT EXCHANGERS A double pipe heat exchanger, in essence, consists of two concentric pipes, one fluid flowing through the inner pipe and the outer fluid flowing countercurrently

More information

HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi

HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi 2 Rajesh Dudi 1 Scholar and 2 Assistant Professor,Department of Mechanical Engineering, OITM, Hisar (Haryana)

More information

Learning Module 4 - Thermal Fluid Analysis Note: LM4 is still in progress. This version contains only 3 tutorials.

Learning Module 4 - Thermal Fluid Analysis Note: LM4 is still in progress. This version contains only 3 tutorials. Learning Module 4 - Thermal Fluid Analysis Note: LM4 is still in progress. This version contains only 3 tutorials. Attachment C1. SolidWorks-Specific FEM Tutorial 1... 2 Attachment C2. SolidWorks-Specific

More information

Waste Heat Recovery through Air Conditioning System

Waste Heat Recovery through Air Conditioning System International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn : 2278-800X, www.ijerd.com Volume 5, Issue 3 (December 2012), PP. 87-92 Waste Heat Recovery through Air Conditioning

More information

Energy Efficient Process Heating: Insulation and Thermal Mass

Energy Efficient Process Heating: Insulation and Thermal Mass Energy Efficient Process Heating: Insulation and Thermal Mass Kevin Carpenter and Kelly Kissock Department of Mechanical and Aerospace Engineering University of Dayton 300 College Park Dayton, OH 45469-0210

More information

Comparison of Heat Transfer between a Helical and Straight Tube Heat Exchanger

Comparison of Heat Transfer between a Helical and Straight Tube Heat Exchanger International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 1 (2013), pp. 33-40 International Research Publication House http://www.irphouse.com Comparison of Heat Transfer

More information

NUMERICAL INVESTIGATIONS ON HEAT TRANSFER IN FALLING FILMS AROUND TURBULENCE WIRES

NUMERICAL INVESTIGATIONS ON HEAT TRANSFER IN FALLING FILMS AROUND TURBULENCE WIRES NUMERICAL INVESTIGATIONS ON HEAT TRANSFER IN FALLING FILMS AROUND TURBULENCE WIRES Abstract H. Raach and S. Somasundaram Thermal Process Engineering, University of Paderborn, Paderborn, Germany Turbulence

More information

Fundamentals of THERMAL-FLUID SCIENCES

Fundamentals of THERMAL-FLUID SCIENCES Fundamentals of THERMAL-FLUID SCIENCES THIRD EDITION YUNUS A. CENGEL ROBERT H. TURNER Department of Mechanical JOHN M. CIMBALA Me Graw Hill Higher Education Boston Burr Ridge, IL Dubuque, IA Madison, Wl

More information

Engine Heat Transfer. Engine Heat Transfer

Engine Heat Transfer. Engine Heat Transfer Engine Heat Transfer 1. Impact of heat transfer on engine operation 2. Heat transfer environment 3. Energy flow in an engine 4. Engine heat transfer Fundamentals Spark-ignition engine heat transfer Diesel

More information

Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity

Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity 1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood

More information

The Effect of Mass Flow Rate on the Enhanced Heat Transfer Charactristics in A Corrugated Plate Type Heat Exchanger

The Effect of Mass Flow Rate on the Enhanced Heat Transfer Charactristics in A Corrugated Plate Type Heat Exchanger Research Journal of Engineering Sciences ISSN 2278 9472 The Effect of Mass Flow Rate on the Enhanced Heat Transfer Charactristics in A Corrugated Plate Type Heat Exchanger Abstract Murugesan M.P. and Balasubramanian

More information

Turbulence, Heat and Mass Transfer (THMT 09) Poiseuille flow of liquid methane in nanoscopic graphite channels by molecular dynamics simulation

Turbulence, Heat and Mass Transfer (THMT 09) Poiseuille flow of liquid methane in nanoscopic graphite channels by molecular dynamics simulation Turbulence, Heat and Mass Transfer (THMT 09) Poiseuille flow of liquid methane in nanoscopic graphite channels by molecular dynamics simulation Sapienza Università di Roma, September 14, 2009 M. T. HORSCH,

More information

Theoretical and Experimental Investigation of Heat Transfer Characteristics through a Rectangular Microchannel Heat Sink

Theoretical and Experimental Investigation of Heat Transfer Characteristics through a Rectangular Microchannel Heat Sink Theoretical and Experimental Investigation of Heat Transfer Characteristics through a Rectangular Microchannel Heat Sink Dr. B. S. Gawali 1, V. B. Swami 2, S. D. Thakre 3 Professor Dr., Department of Mechanical

More information

A heat pipe heat recovery heat exchanger for a mini-drier

A heat pipe heat recovery heat exchanger for a mini-drier A heat pipe heat recovery heat exchanger for a mini-drier A Meyer Department of Mechanical Engineering, University of Stellenbosch, Stellenbosch R T Dobson Department of Mechanical Engineering, University

More information

Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to:

Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to: I. OBJECTIVE OF THE EXPERIMENT. Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to: 1) Viscosity of gas (cf. "Viscosity of gas" experiment)

More information

1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley.

1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley. Sample Questions REVISED FIRST CLASS PARTS A1, A2, AND A3 (NOTE: these questions are intended as representations of the style of questions that may appear on examinations. They are not intended as study

More information

Coupling Forced Convection in Air Gaps with Heat and Moisture Transfer inside Constructions

Coupling Forced Convection in Air Gaps with Heat and Moisture Transfer inside Constructions Coupling Forced Convection in Air Gaps with Heat and Moisture Transfer inside Constructions M. Bianchi Janetti 1, F. Ochs 1 and R. Pfluger 1 1 University of Innsbruck, Unit for Energy Efficient Buildings,

More information

Piping Hydraulic Line Design and Sizing Software KLM Technology Group

Piping Hydraulic Line Design and Sizing Software KLM Technology Group Piping Hydraulic Line Design and Sizing Software KLM Technology Group Practical Engineering Guidelines for Processing Plant Solutions #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor

More information

SAMPLE CHAPTERS UNESCO EOLSS

SAMPLE CHAPTERS UNESCO EOLSS STEAM TURBINE OPERATIONAL ASPECTS R.A. Chaplin Department of Chemical Engineering, University of New Brunswick, Canada Keywords: Steam Turbines, Operation, Supersaturation, Moisture, Back Pressure, Governing

More information

Flow distribution and turbulent heat transfer in a hexagonal rod bundle experiment

Flow distribution and turbulent heat transfer in a hexagonal rod bundle experiment Flow distribution and turbulent heat transfer in a hexagonal rod bundle experiment K. Litfin, A. Batta, A. G. Class,T. Wetzel, R. Stieglitz Karlsruhe Institute of Technology Institute for Nuclear and Energy

More information

Basic Equations, Boundary Conditions and Dimensionless Parameters

Basic Equations, Boundary Conditions and Dimensionless Parameters Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

More information

INTRODUCTION TO. Chapter 15

INTRODUCTION TO. Chapter 15 INTRODUCTION TO HEAT EXCHANGERS Chapter 15 What is a Heat Exchanger? A heat exchanger is a device that is used to transfer thermal energy (enthalpy) between two or more fluids, between a solid surface

More information

AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER

AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER International Journal of Mechanical Engineering and Technology (IJMET) Volume 6, Issue 11, Nov 2015, pp. 16-22, Article ID: IJMET_06_11_002 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=6&itype=11

More information

Performance of the Boiler and To Improving the Boiler Efficiency Using Cfd Modeling

Performance of the Boiler and To Improving the Boiler Efficiency Using Cfd Modeling IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 8, Issue 6 (Sep. - Oct. 2013), PP 25-29 Performance of the Boiler and To Improving the Boiler Efficiency

More information

STEAM TURBINE 1 CONTENT. Chapter Description Page. V. Steam Process in Steam Turbine 6. VI. Exhaust Steam Conditions, Extraction and Admission 7

STEAM TURBINE 1 CONTENT. Chapter Description Page. V. Steam Process in Steam Turbine 6. VI. Exhaust Steam Conditions, Extraction and Admission 7 STEAM TURBINE 1 CONTENT Chapter Description Page I Purpose 2 II Steam Turbine Types 2 2.1. Impulse Turbine 2 2.2. Reaction Turbine 2 III Steam Turbine Operating Range 2 3.1. Curtis 2 3.2. Rateau 2 3.3.

More information

MATLAB AS A PROTOTYPING TOOL FOR HYDRONIC NETWORKS BALANCING

MATLAB AS A PROTOTYPING TOOL FOR HYDRONIC NETWORKS BALANCING MATLAB AS A PROTOTYPING TOOL FOR HYDRONIC NETWORKS BALANCING J. Pekař, P. Trnka, V. Havlena* Abstract The objective of this note is to describe the prototyping stage of development of a system that is

More information

2.2. Basic Equations for Heat Exchanger Design

2.2. Basic Equations for Heat Exchanger Design .. Basic Equations for Heat Exchanger Design... The Basic Design Equation and Overall Heat Transfer Coefficient The basic heat exchanger equations applicable to shell and tube exchangers were developed

More information

Chapter 8: Flow in Pipes

Chapter 8: Flow in Pipes Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

More information

Heat exchangers are devices that facilitate the exchange of heat between

Heat exchangers are devices that facilitate the exchange of heat between cen5426_ch23.qxd /26/04 9:42 AM Page 03 HEAT EXCHANGERS CHAPTER 23 Heat exchangers are devices that facilitate the exchange of heat between two fluids that are at different temperatures while keeping them

More information

The Three Way Catalyst in Hybrid Vehicles

The Three Way Catalyst in Hybrid Vehicles CODEN:LUTEDX/(TEIE-5242)/1-47/(2007) Industrial Electrical Engineering and Automation The Three Way Catalyst in Hybrid Vehicles Bobbie Frank Dept. of Industrial Electrical Engineering and Automation Lund

More information

Simulation to Analyze Two Models of Agitation System in Quench Process

Simulation to Analyze Two Models of Agitation System in Quench Process 20 th European Symposium on Computer Aided Process Engineering ESCAPE20 S. Pierucci and G. Buzzi Ferraris (Editors) 2010 Elsevier B.V. All rights reserved. Simulation to Analyze Two Models of Agitation

More information

Michael Montgomery Marketing Product Manager Rosemount Inc. Russ Evans Manager of Engineering and Design Rosemount Inc.

Michael Montgomery Marketing Product Manager Rosemount Inc. Russ Evans Manager of Engineering and Design Rosemount Inc. ASGMT / Averaging Pitot Tube Flow Measurement Michael Montgomery Marketing Product Manager Rosemount Inc. Russ Evans Manager of Engineering and Design Rosemount Inc. Averaging Pitot Tube Meters Introduction

More information

EXPERIMENTAL RESEARCH ON FLOW IN A 5-STAGE HIGH PRESSURE ROTOR OF 1000 MW STEAM TURBINE

EXPERIMENTAL RESEARCH ON FLOW IN A 5-STAGE HIGH PRESSURE ROTOR OF 1000 MW STEAM TURBINE Proceedings of 11 th European Conference on Turbomachinery Fluid dynamics & Thermodynamics ETC11, March 23-27, 2015, Madrid, Spain EXPERIMENTAL RESEARCH ON FLOW IN A 5-STAGE HIGH PRESSURE ROTOR OF 1000

More information

An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation

An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation R K Kapooria Department of Mechanical Engineering, BRCM College of Engineering & Technology, Bahal (Haryana)

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.6, pp 2580-2587, 2014-2015

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.6, pp 2580-2587, 2014-2015 International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.6, pp 2580-2587, 2014-2015 Performance Analysis of Heat Transfer and Effectiveness on Laminar Flow with Effect of

More information

HEAT TRANSFER IM0245 3 LECTURE HOURS PER WEEK THERMODYNAMICS - IM0237 2014_1

HEAT TRANSFER IM0245 3 LECTURE HOURS PER WEEK THERMODYNAMICS - IM0237 2014_1 COURSE CODE INTENSITY PRE-REQUISITE CO-REQUISITE CREDITS ACTUALIZATION DATE HEAT TRANSFER IM05 LECTURE HOURS PER WEEK 8 HOURS CLASSROOM ON 6 WEEKS, HOURS LABORATORY, HOURS OF INDEPENDENT WORK THERMODYNAMICS

More information

Thermodynamical aspects of the passage to hybrid nuclear power plants

Thermodynamical aspects of the passage to hybrid nuclear power plants Energy Production and Management in the 21st Century, Vol. 1 273 Thermodynamical aspects of the passage to hybrid nuclear power plants A. Zaryankin, A. Rogalev & I. Komarov Moscow Power Engineering Institute,

More information

Examples for Heat Exchanger Design

Examples for Heat Exchanger Design for Heat Exchanger Design Lauterbach Verfahrenstechnik GmbH 1 / 2011 Contents Calculation 1 1. Water- Water Heat Exchanger 1 Basics...1 Task...1 1. Start the WTS program...1 2. Selection of basic data...1

More information

HEAVY OIL FLOW MEASUREMENT CHALLENGES

HEAVY OIL FLOW MEASUREMENT CHALLENGES HEAVY OIL FLOW MEASUREMENT CHALLENGES 1 INTRODUCTION The vast majority of the world s remaining oil reserves are categorised as heavy / unconventional oils (high viscosity). Due to diminishing conventional

More information

COMPARISON INVESTIGATION ON THE HEAT TRANSFER CHARACTERISTICS FOR SUPERCRITICAL CO 2 FLUID AND CONVENTIONAL REFRIGERANTS ABSTRACT 1.

COMPARISON INVESTIGATION ON THE HEAT TRANSFER CHARACTERISTICS FOR SUPERCRITICAL CO 2 FLUID AND CONVENTIONAL REFRIGERANTS ABSTRACT 1. COMPARISON INVESTIGATION ON THE HEAT TRANSFER CHARACTERISTICS FOR SUPERCRITICAL CO FLUID AND CONVENTIONAL REFRIGERANTS JUNLAN YANG (a), YITAI MA (b), SHENGCHUN LIU (b), XIANYANG ZENG (b) (a) Department

More information

Heat Transfer Enhancement in a Heat Exchanger using Punched and V-cut Twisted Tape Inserts

Heat Transfer Enhancement in a Heat Exchanger using Punched and V-cut Twisted Tape Inserts Heat Transfer Enhancement in a Heat Exchanger using Punched and V-cut Twisted Tape Inserts Imran Quazi#1, Prof. V.R.Mohite#2 #1DPCOE-Mechanical Department, SPP University Pune, India imranqu azi198 7@gmail.com

More information

Keywords: Heat transfer enhancement; staggered arrangement; Triangular Prism, Reynolds Number. 1. Introduction

Keywords: Heat transfer enhancement; staggered arrangement; Triangular Prism, Reynolds Number. 1. Introduction Heat transfer augmentation in rectangular channel using four triangular prisms arrange in staggered manner Manoj Kumar 1, Sunil Dhingra 2, Gurjeet Singh 3 1 Student, 2,3 Assistant Professor 1.2 Department

More information

Heat Transfer Analysis of Corrugated Plate Heat Exchanger of Different Plate Geometry: A Review

Heat Transfer Analysis of Corrugated Plate Heat Exchanger of Different Plate Geometry: A Review Heat Transfer Analysis of Corrugated Plate Heat Exchanger of Different Plate Geometry: A Review Jogi Nikhil G. 1, Assist. Prof. Lawankar Shailendra M. 2 1 M.Tech student, 2 Assistant Professor, Government

More information

FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or

More information

Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows

Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3.- 1 Basics: equations of continuum mechanics - balance equations for mass and momentum - balance equations for the energy and the chemical

More information

International journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online http://www.ijoer.

International journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online http://www.ijoer. REVIEW ARTICLE ISSN: 2321-7758 REVIEW OF HEAT TRANSFER AUGMENTATION TECHNIQUES MANOJ HAJARE, CHETAN DEORE, KAVITA KHARDE, PUSHKAR RAWALE, VIVEK DALVI Department of Mechanical Engineering, SITRC, NASHIK

More information

Effect of Aspect Ratio on Laminar Natural Convection in Partially Heated Enclosure

Effect of Aspect Ratio on Laminar Natural Convection in Partially Heated Enclosure Universal Journal of Mechanical Engineering (1): 8-33, 014 DOI: 10.13189/ujme.014.00104 http://www.hrpub.org Effect of Aspect Ratio on Laminar Natural Convection in Partially Heated Enclosure Alireza Falahat

More information

Experimental Study On Heat Transfer Enhancement In A Circular Tube Fitted With U -Cut And V -Cut Twisted Tape Insert

Experimental Study On Heat Transfer Enhancement In A Circular Tube Fitted With U -Cut And V -Cut Twisted Tape Insert Experimental Study On Heat Transfer Enhancement In A Circular Tube Fitted With U -Cut And V -Cut Twisted Tape Insert Premkumar M Abstract Experimental investigation of heat transfer and Reynolds number

More information

Thermodynamics. Chapter 13 Phase Diagrams. NC State University

Thermodynamics. Chapter 13 Phase Diagrams. NC State University Thermodynamics Chapter 13 Phase Diagrams NC State University Pressure (atm) Definition of a phase diagram A phase diagram is a representation of the states of matter, solid, liquid, or gas as a function

More information

EXPERIMENTAL STUDIES ON PRESSURE DROP IN A SINUSOIDAL PLATE HEAT EXCHANGER: EFFECT OF CORRUGATION ANGLE

EXPERIMENTAL STUDIES ON PRESSURE DROP IN A SINUSOIDAL PLATE HEAT EXCHANGER: EFFECT OF CORRUGATION ANGLE EXPERIMENTAL STUDIES ON PRESSURE DROP IN A SINUSOIDAL PLATE HEAT EXCHANGER: EFFECT OF CORRUGATION ANGLE B. Sreedhara Rao 1, Varun S 2, MVS Murali Krishna 3, R C Sastry 4 1 Asst professor, 2 PG Student,

More information

Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any

Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass

More information

Heat Exchangers in Boilers

Heat Exchangers in Boilers Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications Steam Boiler Technology ebook Espoo 2002 Heat Exchangers in Boilers Sebastian

More information

PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS

PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS ASME ORC 2015 3rd International Seminar on ORC Power Systems 12-14 October 2015, Brussels, Belgium PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS Vittorio

More information

SURVEY OF LONG TIME BEHAVIOR AND COSTS OF INDUSTRIAL FLUIDIZED BED HEAT EXCHANGERS

SURVEY OF LONG TIME BEHAVIOR AND COSTS OF INDUSTRIAL FLUIDIZED BED HEAT EXCHANGERS SURVEY OF LONG TIME BEHAVIOR AND COSTS OF INDUSTRIAL FLUIDIZED BED HEAT EXCHANGERS R. Rautenbach and T. Katz Institut für Verfahrenstechnik der RWTH Aachen, Turmstraße 46, Aachen, Germany Keywords : Fluidized

More information

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22 BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

More information

Energy Conservation: Heat Transfer Design Considerations Using Thermodynamic Principles

Energy Conservation: Heat Transfer Design Considerations Using Thermodynamic Principles Energy Conservation: Heat Transfer Design Considerations Using Thermodynamic Principles M. Minnucci, J. Ni, A. Nikolova, L. Theodore Department of Chemical Engineering Manhattan College Abstract Environmental

More information

EXPERIMENTAL ANALYSIS OF HEAT TRANSFER ENHANCEMENT IN A CIRCULAR TUBE WITH DIFFERENT TWIST RATIO OF TWISTED TAPE INSERTS

EXPERIMENTAL ANALYSIS OF HEAT TRANSFER ENHANCEMENT IN A CIRCULAR TUBE WITH DIFFERENT TWIST RATIO OF TWISTED TAPE INSERTS INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY Vol.33 (2015), No.3, pp.158-162 http://dx.doi.org/10.18280/ijht.330324 EXPERIMENTAL ANALYSIS OF HEAT TRANSFER ENHANCEMENT IN A CIRCULAR TUBE WITH DIFFERENT

More information

Steady Heat Conduction

Steady Heat Conduction Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another. hermodynamics gives no indication of how long

More information

Heat Exchangers - Introduction

Heat Exchangers - Introduction Heat Exchangers - Introduction Concentric Pipe Heat Exchange T h1 T c1 T c2 T h1 Energy Balance on Cold Stream (differential) dq C = wc p C dt C = C C dt C Energy Balance on Hot Stream (differential) dq

More information

CFD Application on Food Industry; Energy Saving on the Bread Oven

CFD Application on Food Industry; Energy Saving on the Bread Oven Middle-East Journal of Scientific Research 13 (8): 1095-1100, 2013 ISSN 1990-9233 IDOSI Publications, 2013 DOI: 10.5829/idosi.mejsr.2013.13.8.548 CFD Application on Food Industry; Energy Saving on the

More information

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts ME 305 Fluid Mechanics I Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Mechanical Engineering Department Middle East Technical University Ankara, Turkey csert@metu.edu.tr

More information

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives Have a working knowledge of the basic

More information

Comparison of fin-and-tube interlaced and face split evaporators with flow maldistribution

Comparison of fin-and-tube interlaced and face split evaporators with flow maldistribution Downloaded from orbit.dtu.dk on: Nov 06, 2015 Comparison of fin-and-tube interlaced and face split evaporators with flow maldistribution and compensation Kærn, Martin Ryhl; Elmegaard, Brian; Larsen, L.F.S.

More information

NUMERICAL SIMULATION OF PULSED ELECTRIC FIELDS (PEF) PROCESSING FOR CHAMBER DESIGN AND OPTIMISATION

NUMERICAL SIMULATION OF PULSED ELECTRIC FIELDS (PEF) PROCESSING FOR CHAMBER DESIGN AND OPTIMISATION Seventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 9-11 December 2009 NUMERICAL SIMULATION OF PULSED ELECTRIC FIELDS (PEF) PROCESSING FOR CHAMBER

More information