AIP Factoring Practice/Help
|
|
- Kory Wilkins
- 6 years ago
- Views:
Transcription
1 The following pages include many problems to practice factoring skills. There are also several activities with examples to help you with factoring if you feel like you are not proficient with it. There are also several different methods of factoring represented here. Please do not feel like you are expected to complete this entire packet if you are proficient with factoring polynomials. It is being provided for you just for your use. 0
2 Factor each polynomial using GCF: Part 1 1) x 5x + ) m + 45 ) 15y + 0y 10 x( + ) 5( + ) 5( + - ) 4) 10 y 9 y + 1 5) 1t 5 + 6t 6) 4 9 6x + 15x + x Factor each polynomial using grouping 7) 4 6 y y y + 8) 4m 1m m ( 4y ) + ( + 6) y ( ) ( ) (y )( y ) 9) + 5x + 6 x 10) x + 5x ) x + 9x + 0 Challenge: 1) x + x 1) x x 8 1
3 Factoring ax + bx + c when a = 1 Part 1) 5x + 6 x ) x + x 6 ) 4x + 4 x 4) x + 8x ) + 1x + 6 x 6) x 5x + 4 7) + x 40 x 8) x 11x + 8 9) + 8x + 15 x 10) x + 11x 1 11) 16x + 64 x 1) x + 1x + 6
4 Factoring Using the Box Method Part EXPLORE 1 Factor x + 16x + 5 using the box method Place the first and last terms in the box STEP 1 Use the box model to factor x + 16x + 5. Place the x term in the upper left square of the box. Place the constant term in the lower right square of the box. List factors STEP Find the product of the terms in the box. Then list the factors of the product. Be sure to list the factors as the product of a number and x. Choose factors STEP Find the sum of the factors you found in Step. Circle the factors that add up to the middle term of x + 16x + 5. Place the factors in the box STEP 4 Place one of the factors you circled in Step in one of the empty squares. Place the other factor in the remaining empty square. Find the greatest common factor STEP 5 Find the GCF of the 1st column. Put this value in box (a). Use multiplication STEP 6 The product of boxes (a) and (c) must equal the value in the upper left-hand square. To find the value of (c) ask, what do you multiply the value in box (a) by to get x? Put your answer in box (c). Fill in remaining boxes STEP 7 Repeat the procedure in Step 6 to find the values for boxes (b) and (d). Write the factors STEP 8 The sum of boxes (a) and (b) form one of the factors. The sum of boxes (c) and (d) form the other. Write the factors of the quadratic on your worksheet. Your final answer is
5 Use your observations to complete these exercises DRAW CONCLUSIONS 1. Use the box model to factor x + 1x + 1. You may want to refer to the steps in Explore 1. In Exercises 4, use the box method to find the factors of the quadratic. ) x + 11x + 10 ) 4x + 15x + 9 4) x + 11x
6 EXPLORE x + 5x 6 using the box method Use your observations to complete these exercises. In Exercises 5 8, use the box method to find the factors of the quadratic. 5) x 19x ) 5x 8x 4 7) 6x + 5x 4 8) x x + 1 5
7 Activity Worksheet EXPLORE 1: x + 16x + 5 Product: Factors of the product: x + 16x + 5 = ( )( ) EXPLORE : 4x + 5x 6 Product: Factors of the product: 4x + 5x 6 = ( )( ) 6
8 Factoring ax + bx + c when a > 1 Part 4 When the coefficient of x is greater than 1, factoring can be a challenge. Factor by grouping is one method. The box method that you previously looked at is another method. Example: x + 15x + 7 Step 1: Find the product of A and C. (7) = 14 Step : Write down all the factors of the above product: 1 and 14, and 7 Step : Then pick the set of factors that add up to the B term of 15: 1 and 14 Step 4: Replace the middle term with the set of factors. Be sure to include the variable. x + 1x + 14x + 7 Step 5: Separate the first two terms from the second two terms and factor using GCF (x + 1x) + (14 x + 7) x ( x + 1) + 7(x + 1) Note that what is in parentheses is the same. If it is not the same, you need to retry the problem. Step 6: Use the distributive property backwards. What is not in parentheses will be grouped together and the matching pair of parentheses will be written once. ( x + 7)(x + 1) Your Final Answer! If you aren t sure, use the distributive property and you should get back to your original trinomial. Try some on your own! 1) + 9x + 7 x ) x + 8x + 5 ) x x 4) x + x 10 7
9 Factoring with Special Cases Part 5 Section 1: Factor the following trinomials using any method you prefer. Pay close attention to each answer. If you can spot the pattern, you can complete these problems very quickly. 1) 4 + 1x + 9 x ) x + 8x + 16 ) 10x + 5 x 4) 49y + 14y + 1 5) 9 + 4s + 16 s 6) r 18r ) 4 0x + 5 x 8) 16x + 7x ) 6 + 1d + 1 d 10) y + 4y ) These types of problems are called perfect square trinomials. Why do you think they are called this? What is the trick to complete these problems quickly? 8
10 Special Cases Continued Section : Factor the following binomials using any method you prefer. To make them easier to understand, you might want to insert a middle term of 0x. Pay close attention to each answer. If you can spot the pattern, you can complete these problems very quickly. 1) x 4 ) 4a 5 ) 9x 16 4) 16t ) 5w 81 6) 81 4m 7) 4t 1 8) p q 9) 4 5s k 10) 100 6q 11) This type of problem is called the difference of two squares. Why do you think they are called this? What is the trick to complete these problems quickly? 9
11 Factoring (Sums and Differences) Part 6 The Sum and Difference of Two Cubes Practice We have established the following two identities: ( a b ) = ( a b)( a + ab + b ( a + b ) = ( a + b)( a ab + b x + 7 y x + ( y) Treat x like your a and treat y like your b. Example 1: Find the factors of ( x + (y))( x x(y) + (y) ( x + y)( x xy + 9y ) Example : Find the factors of ) 8a 15b ( a) (5b) (a 5b)((a) + (a)(5b) + (5b) (a 5b)(4a + 10ab + 5b ) Find the factors of: 1) 1 x ) 8c 1 ) ) ) ) 1 c + 4) y 8 5) 64 h 6) a + 15b 7) 7a ) 8a + 4b 10
12 Factoring by Completing the Square Part 7 For an expression of the form x + bx, you can add a constant c to the expression so that the expression x + bx + c is a perfect square trinomial. This process is called completing the square. In this activity, you will use algebra tiles to complete the square. As you will see, this method can be use to solve any quadratic equation. EXPLORE Complete the square Find the value of c that makes x + 4x + c a perfect square trinomial. STEP 1 Model expression Use algebra tiles to model the expression x + 4x. How many x -tiles and x-tiles do you need? STEP Rearrange tiles Arrange the tiles to form a square. The arrangement will be incomplete in one of the corners. Draw your arrangement. STEP Complete the square Add 1-tiles to your model to complete the square. Draw the perfect square model. STEP 4 Find the value of c The number of 1-tiles is the value of c. The perfect square trinomial is x + 4x + or (x + ). 11
13 DRAW CONCLUSIONS Use your observations to complete these exercises 1. Complete the table using algebra tiles. Expression Number of 1-tiles needed to complete the square Expression written as a square x + 4x 4 x + 4x + 4 = (x + ) x + 6x x + 8x x + 10x. In the statement x + bx + c = (x + d), how are b and d related? How are c and d related?. Use your answer to Exercise to predict the number of 1-tiles you would need to add to complete the square for the expression x + 18x. Practice completing the square: 4) x x 5) x 8x 6) x 7x + 7) x x 1 8) x ) x + x 1
14 Completing the Square continued. Any Equation of the form ax + bx + c = 0 where a 0 can be written equivalently as a ( x h) + k = 0 for some real numbers h and k. For the equations below, write in the form a ( x h) + k = 0. Example: x + 6x 7 = 0 Step 1: Move the constant term x + 6x = 7 Step : Take half of the middle coefficient and square it. Add this number to both sides. x + 6 x + () = 7 + (9) Step : Convert ( x + ) = 16 x + Step 4: Move constant term back: ( ) 16 0 Practice 10) + 5x + 6 = 0 x 11) x 7x + 10 = 0 = 1) + 11x + 0 = 0 x 1) x + 7x 15 = 0 1
15 Solving equations by Factoring Part 8 Example: x + 5x + 6 = 0 Step 1: Factor ( x + )( x + ) = 0 Step : Separate the problem: Either x+=0 or x+=0 or both. Step : Solve both halves. x = - or x = -. Practice: 1) + 5x 4 = 0 x ) 4x + x 5 = 0 ) 6x + 9 = 0 x 4) x + 7x + 10 = 0 5) 15x + 6 = 0 x 6) x x + 1 = 0 7) x = 1 x 8) x 16x = 6 14
16 Factoring with the Calculator Part 9 15
17 Factoring a Sum or Difference of Cubes. When given a binomial to factor where both of the terms are perfect cubes, you may use the following method. a b = ( a) ( b) ( ) ( a b) ( a) + ab + ( b) S O AP OR a + b = ( a) + ( b) ( ) ( a + b) ( a) ab + ( b) S O AP S = Same sign as the binomial O = Opposite of the sign in the original binomial AP = Always a Positive Sign Examples: ( ) x x x x x x x + 8 = ( ) + () = ( + ) ( ) ( )() + () = ( )( ) x y x y xy x y x y x y xy 64 = ( ) ( ) (4) = 4 ( ) ( ) + ( )( )(4) + (4) = Practice: (Don t forget to use S-O-AP.) y. a a b 1000c x y
Factoring Polynomials
Factoring Polynomials Factoring Factoring is the process of writing a polynomial as the product of two or more polynomials. The factors of 6x 2 x 2 are 2x + 1 and 3x 2. In this section, we will be factoring
In algebra, factor by rewriting a polynomial as a product of lower-degree polynomials
Algebra 2 Notes SOL AII.1 Factoring Polynomials Mrs. Grieser Name: Date: Block: Factoring Review Factor: rewrite a number or expression as a product of primes; e.g. 6 = 2 3 In algebra, factor by rewriting
Factoring Guidelines. Greatest Common Factor Two Terms Three Terms Four Terms. 2008 Shirley Radai
Factoring Guidelines Greatest Common Factor Two Terms Three Terms Four Terms 008 Shirley Radai Greatest Common Factor 008 Shirley Radai Factoring by Finding the Greatest Common Factor Always check for
( ) FACTORING. x In this polynomial the only variable in common to all is x.
FACTORING Factoring is similar to breaking up a number into its multiples. For example, 10=5*. The multiples are 5 and. In a polynomial it is the same way, however, the procedure is somewhat more complicated
NSM100 Introduction to Algebra Chapter 5 Notes Factoring
Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the
Section 6.1 Factoring Expressions
Section 6.1 Factoring Expressions The first method we will discuss, in solving polynomial equations, is the method of FACTORING. Before we jump into this process, you need to have some concept of what
1.3 Polynomials and Factoring
1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.
Tool 1. Greatest Common Factor (GCF)
Chapter 4: Factoring Review Tool 1 Greatest Common Factor (GCF) This is a very important tool. You must try to factor out the GCF first in every problem. Some problems do not have a GCF but many do. When
6.1 The Greatest Common Factor; Factoring by Grouping
386 CHAPTER 6 Factoring and Applications 6.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.
Chapter R.4 Factoring Polynomials
Chapter R.4 Factoring Polynomials Introduction to Factoring To factor an expression means to write the expression as a product of two or more factors. Sample Problem: Factor each expression. a. 15 b. x
expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.
A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are
Name Intro to Algebra 2. Unit 1: Polynomials and Factoring
Name Intro to Algebra 2 Unit 1: Polynomials and Factoring Date Page Topic Homework 9/3 2 Polynomial Vocabulary No Homework 9/4 x In Class assignment None 9/5 3 Adding and Subtracting Polynomials Pg. 332
Factoring Methods. Example 1: 2x + 2 2 * x + 2 * 1 2(x + 1)
Factoring Methods When you are trying to factor a polynomial, there are three general steps you want to follow: 1. See if there is a Greatest Common Factor 2. See if you can Factor by Grouping 3. See if
Name Date Class Period. How can you use the box method to factor a quadratic trinomial?
Name Date Class Period Activity 9.6 Factoring Using the Box Method MATERIALS QUESTION EXPLORE 1 activity worksheet How can you use the box method to factor a quadratic trinomial? Factor 3x 2 + 16x + 5
Greatest Common Factor (GCF) Factoring
Section 4 4: Greatest Common Factor (GCF) Factoring The last chapter introduced the distributive process. The distributive process takes a product of a monomial and a polynomial and changes the multiplication
Factoring Algebra- Chapter 8B Assignment Sheet
Name: Factoring Algebra- Chapter 8B Assignment Sheet Date Section Learning Targets Assignment Tues 2/17 Find the prime factorization of an integer Find the greatest common factor (GCF) for a set of monomials.
Factoring Flow Chart
Factoring Flow Chart greatest common factor? YES NO factor out GCF leaving GCF(quotient) how many terms? 4+ factor by grouping 2 3 difference of squares? perfect square trinomial? YES YES NO NO a 2 -b
Factoring and Applications
Factoring and Applications What is a factor? The Greatest Common Factor (GCF) To factor a number means to write it as a product (multiplication). Therefore, in the problem 48 3, 4 and 8 are called the
Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder).
Math 50, Chapter 8 (Page 1 of 20) 8.1 Common Factors Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Find all the factors of a. 44 b. 32
Factoring Polynomials and Solving Quadratic Equations
Factoring Polynomials and Solving Quadratic Equations Math Tutorial Lab Special Topic Factoring Factoring Binomials Remember that a binomial is just a polynomial with two terms. Some examples include 2x+3
EAP/GWL Rev. 1/2011 Page 1 of 5. Factoring a polynomial is the process of writing it as the product of two or more polynomial factors.
EAP/GWL Rev. 1/2011 Page 1 of 5 Factoring a polynomial is the process of writing it as the product of two or more polynomial factors. Example: Set the factors of a polynomial equation (as opposed to an
MATH 90 CHAPTER 6 Name:.
MATH 90 CHAPTER 6 Name:. 6.1 GCF and Factoring by Groups Need To Know Definitions How to factor by GCF How to factor by groups The Greatest Common Factor Factoring means to write a number as product. a
A Systematic Approach to Factoring
A Systematic Approach to Factoring Step 1 Count the number of terms. (Remember****Knowing the number of terms will allow you to eliminate unnecessary tools.) Step 2 Is there a greatest common factor? Tool
1.3 Algebraic Expressions
1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,
Algebra 1 Chapter 08 review
Name: Class: Date: ID: A Algebra 1 Chapter 08 review Multiple Choice Identify the choice that best completes the statement or answers the question. Simplify the difference. 1. (4w 2 4w 8) (2w 2 + 3w 6)
Factoring (pp. 1 of 4)
Factoring (pp. 1 of 4) Algebra Review Try these items from middle school math. A) What numbers are the factors of 4? B) Write down the prime factorization of 7. C) 6 Simplify 48 using the greatest common
6.4 Special Factoring Rules
6.4 Special Factoring Rules OBJECTIVES 1 Factor a difference of squares. 2 Factor a perfect square trinomial. 3 Factor a difference of cubes. 4 Factor a sum of cubes. By reversing the rules for multiplication
Factors and Products
CHAPTER 3 Factors and Products What You ll Learn use different strategies to find factors and multiples of whole numbers identify prime factors and write the prime factorization of a number find square
Academic Success Centre
250) 960-6367 Factoring Polynomials Sometimes when we try to solve or simplify an equation or expression involving polynomials the way that it looks can hinder our progress in finding a solution. Factorization
Math 25 Activity 6: Factoring Advanced
Instructor! Math 25 Activity 6: Factoring Advanced Last week we looked at greatest common factors and the basics of factoring out the GCF. In this second activity, we will discuss factoring more difficult
Factoring Quadratic Expressions
Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the
POLYNOMIALS and FACTORING
POLYNOMIALS and FACTORING Exponents ( days); 1. Evaluate exponential expressions. Use the product rule for exponents, 1. How do you remember the rules for exponents?. How do you decide which rule to use
By reversing the rules for multiplication of binomials from Section 4.6, we get rules for factoring polynomials in certain forms.
SECTION 5.4 Special Factoring Techniques 317 5.4 Special Factoring Techniques OBJECTIVES 1 Factor a difference of squares. 2 Factor a perfect square trinomial. 3 Factor a difference of cubes. 4 Factor
Factoring Trinomials: The ac Method
6.7 Factoring Trinomials: The ac Method 6.7 OBJECTIVES 1. Use the ac test to determine whether a trinomial is factorable over the integers 2. Use the results of the ac test to factor a trinomial 3. For
FACTORING TRINOMIALS IN THE FORM OF ax 2 + bx + c
Tallahassee Community College 55 FACTORING TRINOMIALS IN THE FORM OF ax 2 + bx + c This kind of trinomial differs from the previous kind we have factored because the coefficient of x is no longer "1".
Factoring Polynomials
Factoring a Polynomial Expression Factoring a polynomial is expressing the polynomial as a product of two or more factors. Simply stated, it is somewhat the reverse process of multiplying. To factor polynomials,
Factoring Polynomials
Factoring Polynomials 4-1-2014 The opposite of multiplying polynomials is factoring. Why would you want to factor a polynomial? Let p(x) be a polynomial. p(c) = 0 is equivalent to x c dividing p(x). Recall
Factoring. Factoring Polynomial Equations. Special Factoring Patterns. Factoring. Special Factoring Patterns. Special Factoring Patterns
Factoring Factoring Polynomial Equations Ms. Laster Earlier, you learned to factor several types of quadratic expressions: General trinomial - 2x 2-5x-12 = (2x + 3)(x - 4) Perfect Square Trinomial - x
SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS
(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic
When factoring, we look for greatest common factor of each term and reverse the distributive property and take out the GCF.
Factoring: reversing the distributive property. The distributive property allows us to do the following: When factoring, we look for greatest common factor of each term and reverse the distributive property
The majority of college students hold credit cards. According to the Nellie May
CHAPTER 6 Factoring Polynomials 6.1 The Greatest Common Factor and Factoring by Grouping 6. Factoring Trinomials of the Form b c 6.3 Factoring Trinomials of the Form a b c and Perfect Square Trinomials
Factoring - Factoring Special Products
6.5 Factoring - Factoring Special Products Objective: Identify and factor special products including a difference of squares, perfect squares, and sum and difference of cubes. When factoring there are
This is Factoring and Solving by Factoring, chapter 6 from the book Beginning Algebra (index.html) (v. 1.0).
This is Factoring and Solving by Factoring, chapter 6 from the book Beginning Algebra (index.html) (v. 1.0). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/
2x 2x 2 8x. Now, let s work backwards to FACTOR. We begin by placing the terms of the polynomial inside the cells of the box. 2x 2
Activity 23 Math 40 Factoring using the BOX Team Name (optional): Your Name: Partner(s): 1. (2.) Task 1: Factoring out the greatest common factor Mini Lecture: Factoring polynomials is our focus now. Factoring
Factoring Special Polynomials
6.6 Factoring Special Polynomials 6.6 OBJECTIVES 1. Factor the difference of two squares 2. Factor the sum or difference of two cubes In this section, we will look at several special polynomials. These
6.3 FACTORING ax 2 bx c WITH a 1
290 (6 14) Chapter 6 Factoring e) What is the approximate maximum revenue? f) Use the accompanying graph to estimate the price at which the revenue is zero. y Revenue (thousands of dollars) 300 200 100
Factoring Trinomials of the Form x 2 bx c
4.2 Factoring Trinomials of the Form x 2 bx c 4.2 OBJECTIVES 1. Factor a trinomial of the form x 2 bx c 2. Factor a trinomial containing a common factor NOTE The process used to factor here is frequently
FACTORING POLYNOMIALS
296 (5-40) Chapter 5 Exponents and Polynomials where a 2 is the area of the square base, b 2 is the area of the square top, and H is the distance from the base to the top. Find the volume of a truncated
Pre-Calculus II Factoring and Operations on Polynomials
Factoring... 1 Polynomials...1 Addition of Polynomials... 1 Subtraction of Polynomials...1 Multiplication of Polynomials... Multiplying a monomial by a monomial... Multiplying a monomial by a polynomial...
How To Factor By Gcf In Algebra 1.5
7-2 Factoring by GCF Warm Up Lesson Presentation Lesson Quiz Algebra 1 Warm Up Simplify. 1. 2(w + 1) 2. 3x(x 2 4) 2w + 2 3x 3 12x Find the GCF of each pair of monomials. 3. 4h 2 and 6h 2h 4. 13p and 26p
Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.
Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}
Polynomials and Factoring
7.6 Polynomials and Factoring Basic Terminology A term, or monomial, is defined to be a number, a variable, or a product of numbers and variables. A polynomial is a term or a finite sum or difference of
6.1 Add & Subtract Polynomial Expression & Functions
6.1 Add & Subtract Polynomial Expression & Functions Objectives 1. Know the meaning of the words term, monomial, binomial, trinomial, polynomial, degree, coefficient, like terms, polynomial funciton, quardrtic
15.1 Factoring Polynomials
LESSON 15.1 Factoring Polynomials Use the structure of an expression to identify ways to rewrite it. Also A.SSE.3? ESSENTIAL QUESTION How can you use the greatest common factor to factor polynomials? EXPLORE
Factoring Polynomials
UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can
7-6. Choosing a Factoring Model. Extension: Factoring Polynomials with More Than One Variable IN T RO DUC E T EACH. Standards for Mathematical Content
7-6 Choosing a Factoring Model Extension: Factoring Polynomials with More Than One Variable Essential question: How can you factor polynomials with more than one variable? What is the connection between
CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation
CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation Prof. David Marshall School of Computer Science & Informatics Factorisation Factorisation is a way of
Veterans Upward Bound Algebra I Concepts - Honors
Veterans Upward Bound Algebra I Concepts - Honors Brenda Meery Kaitlyn Spong Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) www.ck12.org Chapter 6. Factoring CHAPTER
Topic: Special Products and Factors Subtopic: Rules on finding factors of polynomials
Quarter I: Special Products and Factors and Quadratic Equations Topic: Special Products and Factors Subtopic: Rules on finding factors of polynomials Time Frame: 20 days Time Frame: 3 days Content Standard:
How To Factor By Grouping
Lecture Notes Factoring by the AC-method page 1 Sample Problems 1. Completely factor each of the following. a) 4a 2 mn 15abm 2 6abmn + 10a 2 m 2 c) 162a + 162b 2ax 4 2bx 4 e) 3a 2 5a 2 b) a 2 x 3 b 2 x
FACTORING ax 2 bx c. Factoring Trinomials with Leading Coefficient 1
5.7 Factoring ax 2 bx c (5-49) 305 5.7 FACTORING ax 2 bx c In this section In Section 5.5 you learned to factor certain special polynomials. In this section you will learn to factor general quadratic polynomials.
Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
Using the ac Method to Factor
4.6 Using the ac Method to Factor 4.6 OBJECTIVES 1. Use the ac test to determine factorability 2. Use the results of the ac test 3. Completely factor a trinomial In Sections 4.2 and 4.3 we used the trial-and-error
Introduction Assignment
PRE-CALCULUS 11 Introduction Assignment Welcome to PREC 11! This assignment will help you review some topics from a previous math course and introduce you to some of the topics that you ll be studying
Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III
Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial
Factoring - Grouping
6.2 Factoring - Grouping Objective: Factor polynomials with four terms using grouping. The first thing we will always do when factoring is try to factor out a GCF. This GCF is often a monomial like in
The Greatest Common Factor; Factoring by Grouping
296 CHAPTER 5 Factoring and Applications 5.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.
x 4-1 = (x²)² - (1)² = (x² + 1) (x² - 1) = (x² + 1) (x - 1) (x + 1)
Factoring Polynomials EXAMPLES STEP 1 : Greatest Common Factor GCF Factor out the greatest common factor. 6x³ + 12x²y = 6x² (x + 2y) 5x - 5 = 5 (x - 1) 7x² + 2y² = 1 (7x² + 2y²) 2x (x - 3) - (x - 3) =
Factoring a Difference of Two Squares. Factoring a Difference of Two Squares
284 (6 8) Chapter 6 Factoring 87. Tomato soup. The amount of metal S (in square inches) that it takes to make a can for tomato soup is a function of the radius r and height h: S 2 r 2 2 rh a) Rewrite this
Factoring Polynomials
Factoring Polynomials 8A Factoring Methods 8-1 Factors and Greatest Common Factors Lab Model Factorization by GCF 8-2 Factoring by GCF Lab Model Factorization of x 2 + bx + c 8-3 Factoring x 2 + bx + c
Factoring Polynomials
Factoring Polynomials 8A Factoring Methods 8-1 Factors and Greatest Common Factors Lab Model Factoring 8-2 Factoring by GCF Lab Model Factorization of Trinomials 8-3 Factoring x 2 + bx + c 8-4 Factoring
PERFECT SQUARES AND FACTORING EXAMPLES
PERFECT SQUARES AND FACTORING EXAMPLES 1. Ask the students what is meant by identical. Get their responses and then explain that when we have two factors that are identical, we call them perfect squares.
SPECIAL PRODUCTS AND FACTORS
CHAPTER 442 11 CHAPTER TABLE OF CONTENTS 11-1 Factors and Factoring 11-2 Common Monomial Factors 11-3 The Square of a Monomial 11-4 Multiplying the Sum and the Difference of Two Terms 11-5 Factoring the
MATH 10034 Fundamental Mathematics IV
MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.
Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper
Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic
Factoring Trinomials of the Form
Section 4 6B: Factoring Trinomials of the Form A x 2 + Bx + C where A > 1 by The AC and Factor By Grouping Method Easy Trinomials: 1 x 2 + Bx + C The last section covered the topic of factoring second
A. Factoring out the Greatest Common Factor.
DETAILED SOLUTIONS AND CONCEPTS - FACTORING POLYNOMIAL EXPRESSIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!
How To Factor Quadratic Trinomials
Factoring Quadratic Trinomials Student Probe Factor Answer: Lesson Description This lesson uses the area model of multiplication to factor quadratic trinomials Part 1 of the lesson consists of circle puzzles
FACTORING OUT COMMON FACTORS
278 (6 2) Chapter 6 Factoring 6.1 FACTORING OUT COMMON FACTORS In this section Prime Factorization of Integers Greatest Common Factor Finding the Greatest Common Factor for Monomials Factoring Out the
Operations with Algebraic Expressions: Multiplication of Polynomials
Operations with Algebraic Expressions: Multiplication of Polynomials The product of a monomial x monomial To multiply a monomial times a monomial, multiply the coefficients and add the on powers with the
a. You can t do the simple trick of finding two integers that multiply to give 6 and add to give 5 because the a (a = 4) is not equal to one.
FACTORING TRINOMIALS USING THE AC METHOD. Factoring trinomial epressions in one unknown is an important skill necessary to eventually solve quadratic equations. Trinomial epressions are of the form a 2
Algebra 1 If you are okay with that placement then you have no further action to take Algebra 1 Portion of the Math Placement Test
Dear Parents, Based on the results of the High School Placement Test (HSPT), your child should forecast to take Algebra 1 this fall. If you are okay with that placement then you have no further action
MATH 108 REVIEW TOPIC 10 Quadratic Equations. B. Solving Quadratics by Completing the Square
Math 108 T10-Review Topic 10 Page 1 MATH 108 REVIEW TOPIC 10 Quadratic Equations I. Finding Roots of a Quadratic Equation A. Factoring B. Quadratic Formula C. Taking Roots II. III. Guidelines for Finding
HIBBING COMMUNITY COLLEGE COURSE OUTLINE
HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE: - Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,
1.1 Practice Worksheet
Math 1 MPS Instructor: Cheryl Jaeger Balm 1 1.1 Practice Worksheet 1. Write each English phrase as a mathematical expression. (a) Three less than twice a number (b) Four more than half of a number (c)
Mathematics Placement
Mathematics Placement The ACT COMPASS math test is a self-adaptive test, which potentially tests students within four different levels of math including pre-algebra, algebra, college algebra, and trigonometry.
Algebra 1 Course Title
Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept
Answers to Basic Algebra Review
Answers to Basic Algebra Review 1. -1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract
Factor Polynomials Completely
9.8 Factor Polynomials Completely Before You factored polynomials. Now You will factor polynomials completely. Why? So you can model the height of a projectile, as in Ex. 71. Key Vocabulary factor by grouping
Factoring. Factoring Monomials Monomials can often be factored in more than one way.
Factoring Factoring is the reverse of multiplying. When we multiplied monomials or polynomials together, we got a new monomial or a string of monomials that were added (or subtracted) together. For example,
Algebra I Vocabulary Cards
Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression
Polynomials. Key Terms. quadratic equation parabola conjugates trinomial. polynomial coefficient degree monomial binomial GCF
Polynomials 5 5.1 Addition and Subtraction of Polynomials and Polynomial Functions 5.2 Multiplication of Polynomials 5.3 Division of Polynomials Problem Recognition Exercises Operations on Polynomials
FACTORING QUADRATICS 8.1.1 through 8.1.4
Chapter 8 FACTORING QUADRATICS 8.. through 8..4 Chapter 8 introduces students to rewriting quadratic epressions and solving quadratic equations. Quadratic functions are any function which can be rewritten
CHAPTER 7: FACTORING POLYNOMIALS
CHAPTER 7: FACTORING POLYNOMIALS FACTOR (noun) An of two or more quantities which form a product when multiplied together. 1 can be rewritten as 3*, where 3 and are FACTORS of 1. FACTOR (verb) - To factor
Factoring Trinomials using Algebra Tiles Student Activity
Factoring Trinomials using Algebra Tiles Student Activity Materials: Algebra Tiles (student set) Worksheet: Factoring Trinomials using Algebra Tiles Algebra Tiles: Each algebra tile kits should contain
What are the place values to the left of the decimal point and their associated powers of ten?
The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything
Algebra 2 PreAP. Name Period
Algebra 2 PreAP Name Period IMPORTANT INSTRUCTIONS FOR STUDENTS!!! We understand that students come to Algebra II with different strengths and needs. For this reason, students have options for completing
How To Solve Factoring Problems
05-W4801-AM1.qxd 8/19/08 8:45 PM Page 241 Factoring, Solving Equations, and Problem Solving 5 5.1 Factoring by Using the Distributive Property 5.2 Factoring the Difference of Two Squares 5.3 Factoring