# Operations with Algebraic Expressions: Multiplication of Polynomials

Size: px
Start display at page:

Transcription

1 Operations with Algebraic Expressions: Multiplication of Polynomials The product of a monomial x monomial To multiply a monomial times a monomial, multiply the coefficients and add the on powers with the same variable as a base. Note: A common mistake that many students make is to multiply the on powers with the same variables as a base. This is NOT CORRECT. Remember the exponent rules! Exponent Rules Case What to do Rule Example Multiplying powers with the same base Dividing powers with the same base Simplifying power of a power Exponent of 0 Add the. Keep the base the same. Subtract the. Keep the base the same. Multiply the. Keep the base the same. Anything to the exponent of 0 equals 1. (x a )(x b ) = x a+b (2 5 )(2 3 ) = 2 8 x a = x a x b = x a b 2 = = 2 2 x b 2 3 (x a ) b = x ab (2 5 ) 3 = 2 15 x 0 = = 1 Other cases that come up when working with powers Case What to do Example Adding powers with the same base and SAME Adding powers with the same base and DIFFERENT Subtracting powers with the same base and SAME Subtracting powers with the same base and DIFFERENT The powers are like terms. Add the coefficients; keep the base and the exponent the same. The powers are NOT like terms. They can NOT be added. The powers are like terms. Subtract the coefficients; keep the base and the exponent the same. The powers are NOT like terms. They can NOT be subtracted. x a + x a = 2x a x a + x b = x a + x b 2x a x a = x a x a x b = x a x b

2 Simplify. 5x 3 ( 6x) = 5( 6)x Multiply the coefficients. Add the since both powers have base x. = 30x 4 Simplify. 20a 2 y 3 b ( 1 4 ay4 ) = 20( 1 4 )a2+1 y 3+4 b Multiply the coefficients. Add the for powers with base a. Add the for powers with base y. = 5a 3 yb Example 3: Simplify. 0.10p 10 q 4 (10)p 5 q -4 = 0.10(10)p 10+5 q 4-4 Multiply the coefficients. Add the for powers with base a. Add the for powers with base y. = 1p 15 q 0 Simplify q 0. Any number to the exponent of 0 equals 1. = p 15 (1) p 15 multiplied by 1 is just p 15 = p 15 The product of a monomial x binomial To multiply a monomial by a binomial, multiply the monomial by EVERY term making up the binomial. Remember: To find the product of two terms, multiply the coefficients and add the on powers with the same variable as a base. Expand. 5x 3 (7x xy) 5x 3 (7x xy) Step 1: Multiply the monomial by EVERY term making up the binomial. = 5x 3 (7x 2 ) + 5x 3 (15xy) Step 2: To find the product of two terms, multiply the coefficients and add the on powers with the same variable as a base.

3 = 35x x 4 y Expand. 2c 4 p(10c 3 p 2 4c) 2c 4 p(10c 3 p 2 4c) the Step 1: Multiply the monomial by EVERY term making up binomial. = 2c 4 p(10c 3 p 2 ) + ( 2c 4 p)( 4c) Step 2: To find the product of two terms, multiply the coefficients and add the on powers with the same variable as a base. = 20c 7 p 3 + 8c 5 p The product of a monomial x trinomial OR monomial x polynomial To multiply a monomial by a trinomial or any polynomial, multiply EVERY term in the trinomial or polynomial by the monomial. To find the product of two terms, multiply the coefficients and add the on powers with the same variable as a base. Example: Expand. 7x 3 (19x 7 y x + y) 7x 3 (19x 7 y x + y) the Step 1: Multiply the monomial by EVERY term making up binomial. = 7x 3 (19x 7 y) + 7x 3 (20) + 7x 3 ( 3x) + 7x 3 (y) Step 2: To find the product of two terms, multiply the coefficients and add the on powers with the same variable as a base. = 133x 10 y + 140x 3 21x 4 + 7x 3 y The product of a binomial x binomial To multiply a binomial by a binomial, multiply EVERY term in the first binomial by EVERY term in the second binomial. Then simplify by collecting (adding or subtracting) like terms, if it is possible.

4 You can use the FOIL (First, Outer, Inner, Last) method to remember how to multiply binomials. First Last (a + b)(c + d) = ac + ad + bc + bd Inner Expand. (3x + 2)(5x 2) Outer (3x + 2)(5x 2) Step 1: Use FOIL to multiply every term in the first binomial by every term in the second binomial. = 3x(5x) + (3x)( 2) + (2)(5x) + (2)( 2) Step 2: Evaluate every product. = 15x 2 + ( 6x) + 10x + ( 4) = 15x 2 6x + 10x 4 Step 3: Collect like terms. = 15x 2 + 4x 4 This is the final answer. Expand. (2y 8)(3x 1) (2y 8)(3x 1) Step 1: Use FOIL to multiply every term in the first binomial by every term in the second binomial. = 2y(3x) + (2y)( 1) + ( 8)(3x)+ ( 8)( 1) Step 2: Evaluate every product. = 6yx + ( 2y) + ( 24x) + (8) There are no like terms that can be collected. Simplify double signs. Arrange terms in alphabetical order*. = 6yx 24x 2y + 8 This is the final answer. *Note: By convention, terms are written from highest to lowest degree and in alphabetical order..

5 Squaring a binomial To square a binomial means to multiply the binomial by itself. The rules of multiplying a binomial by a binomial apply. To multiply a binomial by a binomial, multiply EVERY term in the first binomial by EVERY term in the second binomial. When multiplying a binomial by itself, the expanding follows a pattern as shown below. (a + b) 2 = (a + b)(a + b) = a 2 + ab + ab+ b 2 = a 2 + 2ab + b 2 Expand. (5x 3) 2 Solution 1: (5x 3) 2 = (5x 3)(5x 3) Step 1: Use FOIL method to expand. = 25x 2 15x 15x + 9 Step 2: Collect like terms. = 25x 2 30x + 9 Solution 2: (5x 3) 2 = (5x) 2 + 2(5x)( 3) + ( 3) 2 Step 1: Use the (a + b) 2 = a 2 + 2ab + b 2 pattern to expand. (a + b) 2 = a 2 + 2ab + b 2 = 25x 2 30x + 9 Step 2: Simplify each term. Expand. (9y + 2) 2 (9y + 2) 2 = (9y) 2 + 2(9y)(2) Step 1: Use the (a + b) 2 = a 2 + 2ab + b 2 pattern to expand = 81y y + 4 Step 2: Simplify each term.

6 Practice Questions: 1. Simplify each of the following algebraic expressions: a) 3b 2 a( 2b 3 ) b) p 4 r( 21pr 2 ) c) 22a(b 2 a 2b 3 a) d) 19x( y 2 + 3x 3 z) e) 3s(2s + 4qs 2 8) f) 2(11x xy 14y 3 ) g) (28q 3 s 9 + 2q 2 s 10q 5 s q +9) h) (2x + 3)(19x 1) i) (3x + 5)(7 3x) j) (9y 2 + 8)(3y 2) k) (5y 3)(y 3 + 6) l) (8a 3)(9a 10) m) (9x + 2) 2 n) (14 y) 2 o) (x 2 y) 2 p) (4a 3 3b) 2 Answers: 1. a) 6b 5 a b) 21p 5 r 3 c) 22b 2 a 2 44b 3 a 2 d) 57x 4 z 19xy 2 e) 6s qs 3 24s f) 22x 2 40xy + 28y 3 g) 28q 3 s 9 2q 2 s + 10q 5 s 3 18q 9 h) 38x x 3 i) 9x 2 + 6x + 35 j) 27y 3 18y y 16 k) 5y 4 3y y 18 l) 72a 2 107a 30 m) 81x x + 4 n) y 2 28y o) x 4 2x 2 y + y 2 p) 36a 6 24a 3 b + 9b 2

### expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.

A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are

### 1.3 Polynomials and Factoring

1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.

### Greatest Common Factor (GCF) Factoring

Section 4 4: Greatest Common Factor (GCF) Factoring The last chapter introduced the distributive process. The distributive process takes a product of a monomial and a polynomial and changes the multiplication

### Factoring. Factoring Monomials Monomials can often be factored in more than one way.

Factoring Factoring is the reverse of multiplying. When we multiplied monomials or polynomials together, we got a new monomial or a string of monomials that were added (or subtracted) together. For example,

### Name Intro to Algebra 2. Unit 1: Polynomials and Factoring

Name Intro to Algebra 2 Unit 1: Polynomials and Factoring Date Page Topic Homework 9/3 2 Polynomial Vocabulary No Homework 9/4 x In Class assignment None 9/5 3 Adding and Subtracting Polynomials Pg. 332

### NSM100 Introduction to Algebra Chapter 5 Notes Factoring

Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the

### Polynomial Expression

DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL EXPRESSIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

### 1.3 Algebraic Expressions

1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

### Algebra 1 Chapter 08 review

Name: Class: Date: ID: A Algebra 1 Chapter 08 review Multiple Choice Identify the choice that best completes the statement or answers the question. Simplify the difference. 1. (4w 2 4w 8) (2w 2 + 3w 6)

### Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial

### Factoring Special Polynomials

6.6 Factoring Special Polynomials 6.6 OBJECTIVES 1. Factor the difference of two squares 2. Factor the sum or difference of two cubes In this section, we will look at several special polynomials. These

### Chapter R.4 Factoring Polynomials

Chapter R.4 Factoring Polynomials Introduction to Factoring To factor an expression means to write the expression as a product of two or more factors. Sample Problem: Factor each expression. a. 15 b. x

### Factoring Trinomials of the Form x 2 bx c

4.2 Factoring Trinomials of the Form x 2 bx c 4.2 OBJECTIVES 1. Factor a trinomial of the form x 2 bx c 2. Factor a trinomial containing a common factor NOTE The process used to factor here is frequently

### In algebra, factor by rewriting a polynomial as a product of lower-degree polynomials

Algebra 2 Notes SOL AII.1 Factoring Polynomials Mrs. Grieser Name: Date: Block: Factoring Review Factor: rewrite a number or expression as a product of primes; e.g. 6 = 2 3 In algebra, factor by rewriting

### Factoring Flow Chart

Factoring Flow Chart greatest common factor? YES NO factor out GCF leaving GCF(quotient) how many terms? 4+ factor by grouping 2 3 difference of squares? perfect square trinomial? YES YES NO NO a 2 -b

### Pre-Calculus II Factoring and Operations on Polynomials

Factoring... 1 Polynomials...1 Addition of Polynomials... 1 Subtraction of Polynomials...1 Multiplication of Polynomials... Multiplying a monomial by a monomial... Multiplying a monomial by a polynomial...

### 15.1 Factoring Polynomials

LESSON 15.1 Factoring Polynomials Use the structure of an expression to identify ways to rewrite it. Also A.SSE.3? ESSENTIAL QUESTION How can you use the greatest common factor to factor polynomials? EXPLORE

### SPECIAL PRODUCTS AND FACTORS

CHAPTER 442 11 CHAPTER TABLE OF CONTENTS 11-1 Factors and Factoring 11-2 Common Monomial Factors 11-3 The Square of a Monomial 11-4 Multiplying the Sum and the Difference of Two Terms 11-5 Factoring the

### ( ) FACTORING. x In this polynomial the only variable in common to all is x.

FACTORING Factoring is similar to breaking up a number into its multiples. For example, 10=5*. The multiples are 5 and. In a polynomial it is the same way, however, the procedure is somewhat more complicated

### Tool 1. Greatest Common Factor (GCF)

Chapter 4: Factoring Review Tool 1 Greatest Common Factor (GCF) This is a very important tool. You must try to factor out the GCF first in every problem. Some problems do not have a GCF but many do. When

### How To Factor By Gcf In Algebra 1.5

7-2 Factoring by GCF Warm Up Lesson Presentation Lesson Quiz Algebra 1 Warm Up Simplify. 1. 2(w + 1) 2. 3x(x 2 4) 2w + 2 3x 3 12x Find the GCF of each pair of monomials. 3. 4h 2 and 6h 2h 4. 13p and 26p

Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the

### A Systematic Approach to Factoring

A Systematic Approach to Factoring Step 1 Count the number of terms. (Remember****Knowing the number of terms will allow you to eliminate unnecessary tools.) Step 2 Is there a greatest common factor? Tool

### 6.4 Special Factoring Rules

6.4 Special Factoring Rules OBJECTIVES 1 Factor a difference of squares. 2 Factor a perfect square trinomial. 3 Factor a difference of cubes. 4 Factor a sum of cubes. By reversing the rules for multiplication

### A. Factoring out the Greatest Common Factor.

DETAILED SOLUTIONS AND CONCEPTS - FACTORING POLYNOMIAL EXPRESSIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

### Algebra Cheat Sheets

Sheets Algebra Cheat Sheets provide you with a tool for teaching your students note-taking, problem-solving, and organizational skills in the context of algebra lessons. These sheets teach the concepts

### FACTORING TRINOMIALS IN THE FORM OF ax 2 + bx + c

Tallahassee Community College 55 FACTORING TRINOMIALS IN THE FORM OF ax 2 + bx + c This kind of trinomial differs from the previous kind we have factored because the coefficient of x is no longer "1".

### Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

### Factoring Guidelines. Greatest Common Factor Two Terms Three Terms Four Terms. 2008 Shirley Radai

Factoring Guidelines Greatest Common Factor Two Terms Three Terms Four Terms 008 Shirley Radai Greatest Common Factor 008 Shirley Radai Factoring by Finding the Greatest Common Factor Always check for

### By reversing the rules for multiplication of binomials from Section 4.6, we get rules for factoring polynomials in certain forms.

SECTION 5.4 Special Factoring Techniques 317 5.4 Special Factoring Techniques OBJECTIVES 1 Factor a difference of squares. 2 Factor a perfect square trinomial. 3 Factor a difference of cubes. 4 Factor

### POLYNOMIALS and FACTORING

POLYNOMIALS and FACTORING Exponents ( days); 1. Evaluate exponential expressions. Use the product rule for exponents, 1. How do you remember the rules for exponents?. How do you decide which rule to use

8. Radicals - Rationalize Denominators Objective: Rationalize the denominators of radical expressions. It is considered bad practice to have a radical in the denominator of a fraction. When this happens

### Factoring (pp. 1 of 4)

Factoring (pp. 1 of 4) Algebra Review Try these items from middle school math. A) What numbers are the factors of 4? B) Write down the prime factorization of 7. C) 6 Simplify 48 using the greatest common

### Using the ac Method to Factor

4.6 Using the ac Method to Factor 4.6 OBJECTIVES 1. Use the ac test to determine factorability 2. Use the results of the ac test 3. Completely factor a trinomial In Sections 4.2 and 4.3 we used the trial-and-error

### When factoring, we look for greatest common factor of each term and reverse the distributive property and take out the GCF.

Factoring: reversing the distributive property. The distributive property allows us to do the following: When factoring, we look for greatest common factor of each term and reverse the distributive property

### SOL Warm-Up Graphing Calculator Active

A.2a (a) Using laws of exponents to simplify monomial expressions and ratios of monomial expressions 1. Which expression is equivalent to (5x 2 )(4x 5 )? A 9x 7 B 9x 10 C 20x 7 D 20x 10 2. Which expression

### Rational Expressions - Least Common Denominators

7.3 Rational Expressions - Least Common Denominators Objective: Idenfity the least common denominator and build up denominators to match this common denominator. As with fractions, the least common denominator

### 5 means to write it as a product something times something instead of a sum something plus something plus something.

Intermediate algebra Class notes Factoring Introduction (section 6.1) Recall we factor 10 as 5. Factoring something means to think of it as a product! Factors versus terms: terms: things we are adding

### Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder).

Math 50, Chapter 8 (Page 1 of 20) 8.1 Common Factors Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Find all the factors of a. 44 b. 32

### This is Factoring and Solving by Factoring, chapter 6 from the book Beginning Algebra (index.html) (v. 1.0).

This is Factoring and Solving by Factoring, chapter 6 from the book Beginning Algebra (index.html) (v. 1.0). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/

### 1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes

Arithmetic of Algebraic Fractions 1.4 Introduction Just as one whole number divided by another is called a numerical fraction, so one algebraic expression divided by another is known as an algebraic fraction.

### How To Solve Factoring Problems

05-W4801-AM1.qxd 8/19/08 8:45 PM Page 241 Factoring, Solving Equations, and Problem Solving 5 5.1 Factoring by Using the Distributive Property 5.2 Factoring the Difference of Two Squares 5.3 Factoring

### In the above, the number 19 is an example of a number because its only positive factors are one and itself.

Math 100 Greatest Common Factor and Factoring by Grouping (Review) Factoring Definition: A factor is a number, variable, monomial, or polynomial which is multiplied by another number, variable, monomial,

### Algebra 2 PreAP. Name Period

Algebra 2 PreAP Name Period IMPORTANT INSTRUCTIONS FOR STUDENTS!!! We understand that students come to Algebra II with different strengths and needs. For this reason, students have options for completing

### 6.1 Add & Subtract Polynomial Expression & Functions

6.1 Add & Subtract Polynomial Expression & Functions Objectives 1. Know the meaning of the words term, monomial, binomial, trinomial, polynomial, degree, coefficient, like terms, polynomial funciton, quardrtic

### Factoring Algebra- Chapter 8B Assignment Sheet

Name: Factoring Algebra- Chapter 8B Assignment Sheet Date Section Learning Targets Assignment Tues 2/17 Find the prime factorization of an integer Find the greatest common factor (GCF) for a set of monomials.

### Polynomials and Factoring

7.6 Polynomials and Factoring Basic Terminology A term, or monomial, is defined to be a number, a variable, or a product of numbers and variables. A polynomial is a term or a finite sum or difference of

### Factoring Polynomials

Factoring Polynomials Factoring Factoring is the process of writing a polynomial as the product of two or more polynomials. The factors of 6x 2 x 2 are 2x + 1 and 3x 2. In this section, we will be factoring

### FACTORING OUT COMMON FACTORS

278 (6 2) Chapter 6 Factoring 6.1 FACTORING OUT COMMON FACTORS In this section Prime Factorization of Integers Greatest Common Factor Finding the Greatest Common Factor for Monomials Factoring Out the

### Factoring a Difference of Two Squares. Factoring a Difference of Two Squares

284 (6 8) Chapter 6 Factoring 87. Tomato soup. The amount of metal S (in square inches) that it takes to make a can for tomato soup is a function of the radius r and height h: S 2 r 2 2 rh a) Rewrite this

### FACTORING ax 2 bx c. Factoring Trinomials with Leading Coefficient 1

5.7 Factoring ax 2 bx c (5-49) 305 5.7 FACTORING ax 2 bx c In this section In Section 5.5 you learned to factor certain special polynomials. In this section you will learn to factor general quadratic polynomials.

### MATH 90 CHAPTER 6 Name:.

MATH 90 CHAPTER 6 Name:. 6.1 GCF and Factoring by Groups Need To Know Definitions How to factor by GCF How to factor by groups The Greatest Common Factor Factoring means to write a number as product. a

### Factoring Polynomials and Solving Quadratic Equations

Factoring Polynomials and Solving Quadratic Equations Math Tutorial Lab Special Topic Factoring Factoring Binomials Remember that a binomial is just a polynomial with two terms. Some examples include 2x+3

### #6 Opener Solutions. Move one more spot to your right. Introduce yourself if needed.

1. Sit anywhere in the concentric circles. Do not move the desks. 2. Take out chapter 6, HW/notes #1-#5, a pencil, a red pen, and your calculator. 3. Work on opener #6 with the person sitting across from

### Factoring - Grouping

6.2 Factoring - Grouping Objective: Factor polynomials with four terms using grouping. The first thing we will always do when factoring is try to factor out a GCF. This GCF is often a monomial like in

### The Greatest Common Factor; Factoring by Grouping

296 CHAPTER 5 Factoring and Applications 5.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.

### CAHSEE on Target UC Davis, School and University Partnerships

UC Davis, School and University Partnerships CAHSEE on Target Mathematics Curriculum Published by The University of California, Davis, School/University Partnerships Program 006 Director Sarah R. Martinez,

### Topic: Special Products and Factors Subtopic: Rules on finding factors of polynomials

Quarter I: Special Products and Factors and Quadratic Equations Topic: Special Products and Factors Subtopic: Rules on finding factors of polynomials Time Frame: 20 days Time Frame: 3 days Content Standard:

### 6.1 The Greatest Common Factor; Factoring by Grouping

386 CHAPTER 6 Factoring and Applications 6.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.

### Answers to Basic Algebra Review

Answers to Basic Algebra Review 1. -1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract

### 7-6. Choosing a Factoring Model. Extension: Factoring Polynomials with More Than One Variable IN T RO DUC E T EACH. Standards for Mathematical Content

7-6 Choosing a Factoring Model Extension: Factoring Polynomials with More Than One Variable Essential question: How can you factor polynomials with more than one variable? What is the connection between

### Math 10C. Course: Polynomial Products and Factors. Unit of Study: Step 1: Identify the Outcomes to Address. Guiding Questions:

Course: Unit of Study: Math 10C Polynomial Products and Factors Step 1: Identify the Outcomes to Address Guiding Questions: What do I want my students to learn? What can they currently understand and do?

### Math 25 Activity 6: Factoring Advanced

Instructor! Math 25 Activity 6: Factoring Advanced Last week we looked at greatest common factors and the basics of factoring out the GCF. In this second activity, we will discuss factoring more difficult

### Factoring Polynomials

UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can

### Simplifying Algebraic Fractions

5. Simplifying Algebraic Fractions 5. OBJECTIVES. Find the GCF for two monomials and simplify a fraction 2. Find the GCF for two polynomials and simplify a fraction Much of our work with algebraic fractions

### 5.1 FACTORING OUT COMMON FACTORS

C H A P T E R 5 Factoring he sport of skydiving was born in the 1930s soon after the military began using parachutes as a means of deploying troops. T Today, skydiving is a popular sport around the world.

### Factoring Trinomials: The ac Method

6.7 Factoring Trinomials: The ac Method 6.7 OBJECTIVES 1. Use the ac test to determine whether a trinomial is factorable over the integers 2. Use the results of the ac test to factor a trinomial 3. For

### Factoring. Factoring Polynomial Equations. Special Factoring Patterns. Factoring. Special Factoring Patterns. Special Factoring Patterns

Factoring Factoring Polynomial Equations Ms. Laster Earlier, you learned to factor several types of quadratic expressions: General trinomial - 2x 2-5x-12 = (2x + 3)(x - 4) Perfect Square Trinomial - x

### Factoring and Applications

Factoring and Applications What is a factor? The Greatest Common Factor (GCF) To factor a number means to write it as a product (multiplication). Therefore, in the problem 48 3, 4 and 8 are called the

### GCF/ Factor by Grouping (Student notes)

GCF/ Factor by Grouping (Student notes) Factoring is to write an expression as a product of factors. For example, we can write 10 as (5)(2), where 5 and 2 are called factors of 10. We can also do this

### Chapter 5. Rational Expressions

5.. Simplify Rational Expressions KYOTE Standards: CR ; CA 7 Chapter 5. Rational Expressions Definition. A rational expression is the quotient P Q of two polynomials P and Q in one or more variables, where

### Polynomials. Key Terms. quadratic equation parabola conjugates trinomial. polynomial coefficient degree monomial binomial GCF

Polynomials 5 5.1 Addition and Subtraction of Polynomials and Polynomial Functions 5.2 Multiplication of Polynomials 5.3 Division of Polynomials Problem Recognition Exercises Operations on Polynomials

### 2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

### Factoring Methods. Example 1: 2x + 2 2 * x + 2 * 1 2(x + 1)

Factoring Methods When you are trying to factor a polynomial, there are three general steps you want to follow: 1. See if there is a Greatest Common Factor 2. See if you can Factor by Grouping 3. See if

### Online EFFECTIVE AS OF JANUARY 2013

2013 A and C Session Start Dates (A-B Quarter Sequence*) 2013 B and D Session Start Dates (B-A Quarter Sequence*) Quarter 5 2012 1205A&C Begins November 5, 2012 1205A Ends December 9, 2012 Session Break

### BEGINNING ALGEBRA ACKNOWLEDMENTS

BEGINNING ALGEBRA The Nursing Department of Labouré College requested the Department of Academic Planning and Support Services to help with mathematics preparatory materials for its Bachelor of Science

### UNIT 5 VOCABULARY: POLYNOMIALS

2º ESO Bilingüe Page 1 UNIT 5 VOCABULARY: POLYNOMIALS 1.1. Algebraic Language Algebra is a part of mathematics in which symbols, usually letters of the alphabet, represent numbers. Letters are used to

### Polynomial Equations and Factoring

7 Polynomial Equations and Factoring 7.1 Adding and Subtracting Polynomials 7.2 Multiplying Polynomials 7.3 Special Products of Polynomials 7.4 Dividing Polynomials 7.5 Solving Polynomial Equations in

### ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola

### Mathematics Placement

Mathematics Placement The ACT COMPASS math test is a self-adaptive test, which potentially tests students within four different levels of math including pre-algebra, algebra, college algebra, and trigonometry.

### Factor Polynomials Completely

9.8 Factor Polynomials Completely Before You factored polynomials. Now You will factor polynomials completely. Why? So you can model the height of a projectile, as in Ex. 71. Key Vocabulary factor by grouping

### Factoring - Factoring Special Products

6.5 Factoring - Factoring Special Products Objective: Identify and factor special products including a difference of squares, perfect squares, and sum and difference of cubes. When factoring there are

### Factoring - Greatest Common Factor

6.1 Factoring - Greatest Common Factor Objective: Find the greatest common factor of a polynomial and factor it out of the expression. The opposite of multiplying polynomials together is factoring polynomials.

### PERFECT SQUARES AND FACTORING EXAMPLES

PERFECT SQUARES AND FACTORING EXAMPLES 1. Ask the students what is meant by identical. Get their responses and then explain that when we have two factors that are identical, we call them perfect squares.

### Section 5.0A Factoring Part 1

Section 5.0A Factoring Part 1 I. Work Together A. Multiply the following binomials into trinomials. (Write the final result in descending order, i.e., a + b + c ). ( 7)( + 5) ( + 7)( + ) ( + 7)( + 5) (

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### Mathematics Online Instructional Materials Correlation to the 2009 Algebra I Standards of Learning and Curriculum Framework

Provider York County School Division Course Syllabus URL http://yorkcountyschools.org/virtuallearning/coursecatalog.aspx Course Title Algebra I AB Last Updated 2010 - A.1 The student will represent verbal

### AIP Factoring Practice/Help

The following pages include many problems to practice factoring skills. There are also several activities with examples to help you with factoring if you feel like you are not proficient with it. There

### MATH 102 College Algebra

FACTORING Factoring polnomials ls is simpl the reverse process of the special product formulas. Thus, the reverse process of special product formulas will be used to factor polnomials. To factor polnomials

### COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level 2

COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level This study guide is for students trying to test into College Algebra. There are three levels of math study guides. 1. If x and y 1, what

### SPECIAL PRODUCTS AND FACTORS

SPECIAL PRODUCTS AND FACTORS I. INTRODUCTION AND FOCUS QUESTIONS http://dmciresidences.com/home/20/0/ cedar-crest-condominiums/ http://frontiernerds.com/metal-box http://mazharalticonstruction.blogspot.

### Monomial Factors. Sometimes the expression to be factored is simple enough to be able to use straightforward inspection.

The Mathematics 11 Competency Test Monomial Factors The first stage of factoring an algebraic expression involves the identification of any factors which are monomials. We will describe the process by

### 6.3 FACTORING ax 2 bx c WITH a 1

290 (6 14) Chapter 6 Factoring e) What is the approximate maximum revenue? f) Use the accompanying graph to estimate the price at which the revenue is zero. y Revenue (thousands of dollars) 300 200 100